CS256
Applied Theory of Computation

Memory Hierarchy Tradeoffs II

John E Savage
Overview

- Review of the Memory Hierarchy Game
- Review of the Hong-Kung Lower Bound
- Application of the Hong-Kung Bound to Matrix Multiplication
The Memory Hierarchy Game

- The game is played on a DAG. The number of pebbles at level $1 \leq l \leq L-1$ is p_l. p_L unlimited.
- **(initialization)** A level-L pebble can be placed on any input vertex at any time.
- **(computation)** Level-1 pebble can be placed on (or moved to) vertex whose predecessors have level-1 pebbles.
- **(pebble deletion)** A pebble can be deleted from a vertex at any time.
The Memory Hierarchy Game

- *(goal)* A level-L pebble must be on each output vertex at the end of the game.
- *(input from level-k)* Level-(k-1) pebble can be placed on vertex carrying level-k pebble, \(2 \leq k \leq L\)
- *(output from level-k)* Level-(k+1) pebble can be placed on vertex carrying level-k pebble, \(1 \leq k \leq L-1\).
The Memory Hierarchy Game

- In the I/O-limited version game level-L pebbles are allowed only on inputs and outputs. When L=2, this is the red pebble game; blue pebbles are allowed only on inputs and outputs.

- **Resource vector (RV) p = (p_1, p_2, ..., p_{L-1})** specifies the amount of space used at each level. T_k^{(L)}(p,G,P) is the I/O time at level k with RV p on the DAG G using pebbling strategy P for 2≤k ≤ L. The computation time T_1^{(L)}(p,G,P) is the number of times vertices are pebbled with level-1 pebbles.
The Memory Hierarchy Game

- A minimal pebbling strategy minimizes the number of I/O ops at level L, then at level L-1, all the way down to level 2. Finally it minimizes $T_1^{(L)}(\rho,G,P)$.
I/O Time Relationships

Let P be a strategy to pebble DAG G with RV p. Let $\text{In}(G)$ and $\text{Out}(G)$ be G's inputs & outputs. Then,

$$T_k^{(L)}(p, G, P) \geq |\text{In}(G)| + |\text{Out}(G)| \text{ for } 2 \leq k \leq L$$

$$T_1^{(L)}(p, G, P) \geq |V| - |\text{In}(G)|$$

Theorem Let $s_k = p_1 + p_2 + \ldots + p_{k-1}$. Let $T_1^{(2)}(S, G, P)$ & $T_2^{(2)}(S, G, P)$ be the computation and I/O times for a minimal red-blue pebbling of G with S red pebbles.

$$T_k^{(L)}(p, G, P)) \geq T_2^{(2)}(s_{k-1}, G, P) \text{ for } 2 \leq k \leq L$$

$$T_1^{(L)}(p, G, P) \geq T_1^{(2)}(s_{k-1}, G, P) \text{ for } 2 \leq k \leq L$$
Hong-Kung Lower Bound

Definition The **S-span** of DAG G, $\rho(S,G)$, is the maximum number of vertices of G that can be pebbled with S red pebbles in red pebble game maximized over all initial placements of S red pebbles. (Initialization rule is disallowed.)

Theorem For every pebbling P of $G = (V,E)$ in the red-blue pebble game with S red pebbles, the I/O time used, $T_2^{(2)}(S,G,P)$ satisfies

$$\left\lfloor \frac{T_2^{(2)}(S,G,P)}{S} \right\rfloor \rho(2S,G) \geq |V| - |\text{In}(G)|$$
The Hong-Kung bound applies to individual DAGs or types of DAGs.

Unlike lower bounds for the red pebble game, we can’t yet derive I/O complexity lower bounds that apply to all DAGs for a function.

We now derive a lower bound on I/O complexity for the family of algorithms F_n based on the standard algorithm for matrix-matrix multiplication in which two-input adders are used.

These algorithms form inner products but don’t specify the order in which the additions of inner products are done.
Matrix-Matrix Multiplication

Lemma For every graph in the family F_n of $n \times n$ matrix multiplication algorithms computing $C = AB$, the S-span satisfies $\rho(S, G) \leq 2S^{3/2}$ for $S \leq n^2$.

Proof Let $A = \{a_{i,j}\}$, $B = \{b_{i,j}\}$, $C = \{c_{i,j}\}$ for $1 \leq i, j \leq n$, $c_{i,j} = \sum_k a_{i,k} b_{k,j}$ is associated with the root of an inner product tree. G in F_n has product vertices $a_{i,k} b_{k,j}$ and 2-input addition vertices uniquely associated with $c_{i,j}$.
Matrix-Matrix Multiplication

Proof (cont.) Consider an initial placement of $S \leq n^2$ pebbles on G of which r are on addition or product vertices and $S - r$ are on inputs in A or B, which are common to multiple inner product trees. Let p be the max no. of product vertices that can be pebbled from the inputs.

We show that at most $p+r-1$ vertices in the addition trees can be pebbled for a total of at most $\pi = 2p+r-1$ vertices pebbled.
Matrix-Matrix Multiplication

Proof (cont.) There is no loss in generality in assuming that we pebble the p product vertices before the addition vertices. Thus, we start with $p+r$ pebbles on the vertices of one or more addition trees associated with inner products. These pebbles allow us to pebble vertices in some number t of subtrees. If q pebbles are used to pebble one subtree, the number of vertices pebbled is maximized when the q pebbles are on inputs to the subtree. Since the subtrees are binary, at most $q-1$ vertices can be pebbled. Thus, the $p+r$ pebbles can pebble a most $p+r-t$ vertices in addition trees. This number is largest when $t=1$.
Matrix-Matrix Multiplication

Proof (cont.) We now derive an upper bound on \(p \).
Let \(\mathcal{A} \) be 0-1 matrix whose \(i,j \) entry is 1 if \(a_{i,j} \) carries one of the \(S \) pebbles initially. Let \(\mathcal{B} \) be defined the same way. Let \(\mathcal{C} \) be matrix obtained by multiplying \(\mathcal{A} \) and \(\mathcal{B} \). Then \(p = \Sigma_{i,j} c_{i,j} \) is the number of product vertices that can be pebbled from initial placement of \(S \) pebbles. We show that \(p \leq \sqrt{S} (S-r) \).
Matrix-Matrix Multiplication

Proof (cont.) Let \(A \) and \(B \) have \(a \) and \(b \) 1’s, where \(a+b = S-r \). There are at most \(a/\alpha \) rows containing at least \(\alpha \) 1’s. Since \(B \) has \(b \) 1’s, at most \(ab/\alpha \) 1’s in \(C \) can be formed by inner products with these rows. At most \(S \) inner products can be formed with sparse rows. These contribute at most \(\alpha S \) 1’s to \(p \). \((A \) has \(a \) 1’s.\) Hence, \(p = ab/\alpha + \alpha S \). Since \(\alpha \) is unknown, we choose it to maximize \(p \), i.e. \(\alpha = \sqrt{ab}/S \). Thus, \(p \leq 2\sqrt{ab}S \leq \sqrt{S} (S-r) \) and \(\pi = 2p+r-1 \leq 2\sqrt{S} (S-r) + r -1 \leq 2\sqrt{S} S = 2 S^{3/2} \). Q.E.D.
Matrix-Matrix Multiplication

Theorem Let $S \geq 3$. For every graph G in F_n computing $n \times n$ matrix multiplication $C = AB$

\[
T_1^{(2)}(S, G) = \Omega(n^3)
\]
\[
T_2^{(2)}(S, G) = \Omega(n^3/\sqrt{S})
\]

There is a pebbling strategy P for G satisfying both of the following bounds simultaneously.

\[
T_1^{(2)}(S, G, P) = O(n^3)
\]
\[
T_2^{(2)}(S, G, P) = O(n^3/\sqrt{S})
\]

Proof The lower bound follows directly from the Hong-Kung bound. We give an algorithm that achieves the upper bound.
Matrix-Matrix Multiplication

Proof (cont.) Assume that \(r = \sqrt{(S/3)} \) divides \(n \). Represent each matrix \(A, B, \) and \(C \) as an \(n/r \times n/r \) matrix \(X, Y, \) and \(Z \). To compute the product \(C = AB \), form the product \(Z = XY \). This involves inner products of rows of \(X \) with columns of \(Y \). Each row of \(X \) corresponds to \(r \) rows of \(A \) and each column of \(Y \) corresponds to \(r \) columns of \(B \). Treat each set of \(r \) rows of \(A \) as a row of \(r \times r \) blocks. Do the same with columns of \(B \).
Matrix-Matrix Multiplication

\[
\begin{align*}
C &= A \times B
\end{align*}
\]
Matrix-Matrix Multiplication

- **Proof (cont.)** Each block of A or B has at most \(r^2 \leq S/3 \) entries. To form an inner product of a row of X with a column of Y, read in one block from A and one from B, form their product and store the result if the first such product or add it to the previous result, if not. At most \(S \) pebbles is used for this purpose. Since each block of A is involved in \(n/r \) inner products, each element of A (and B) is involved in \(n/r \) I/O ops, giving the desired result. Q.E.D