Rules of the Red Pebble Game

- **Initialization** A pebble can be placed on an input vertex at any time.
- **Computation Step** A pebble can be placed on or moved to any non-input vertex if all of its immediate predecessors carry pebbles.
- **Pebble Deletion** A pebble can be removed at any time.
- **Goal** Each output vertex must be pebbled at least once.

The FFT Graph on 8 inputs

Pebbling Strategy

A **pebbling strategy** determines the sequence of rules invoked on vertices of a graph. A strategy uses **space** S if it uses at most S pebbles. It uses **time** T if T initialization and computation steps are done.

The **minimum space** S_{min} to pebble a graph G is the smallest space of any strategy that pebbles G.

The FFT graph exhibits a tradeoff between space and time. The time required when the minimum space is used is strictly more than that required when more space is available.

Pebbling the Balanced Binary Tree

The complete balanced binary on $n = 2^k$ inputs has $S_{\text{min}} = k + 1 = \log_2 n + 1$. It can be pebbled in $T = 2n - 1$ steps, but no fewer.

Theorem The complete balanced binary on $n = 2^k$ inputs has $S_{\text{min}} = k + 1 = \log_2 n + 1$. It can be pebbled in $T = 2n - 1$ steps, but no fewer.

Proof Initially each path from an input to the output is free of pebbles. Finally, (a pebble is on the output), all paths contain a pebble. There is a last time at which a path is open. Each path has $k + 1$ vertices. When placing a pebble on last input, all paths from other inputs to vertices on the path carry ≥ 1 pebble. Thus, $S_{\text{min}} \geq k + 1$. $T = 2n - 1$, $S_{\text{min}} = k + 1$ by induction.

Do left subtree in $2(n/2) - 1$ steps, leave pebble at its root, do right subtree with k pebbles in same time.
Pebbling the Pyramid Graph

Theorem $S_{\text{min}} = m$ for the pyramid graph $P(m)$ on m inputs. It can be pebbled in $n = m(m+1)/2$ steps where n is the number of vertices in the graph with S_{min} pebbles.

Proof The last open path argument can be used to show that $S_{\text{min}} \geq m$. To pebble $P(m)$ with m pebbles, place pebbles on all inputs. Move leftmost pebble up one level. Now all vertices one level up can be pebbled using $m-1$ pebbles. Repeat at subsequent levels. Each vertex is pebbled once.

Note: S_{min} is about the square root of its number of vertices, n, much larger than for binary tree.

Extreme Tradeoffs

Lemma H_k has $N(k) = 2k^2 + 5k - 6$ vertices, $k \geq 2$.

Proof Basis: $N(2) = 12 = 2(2)^2 + 5(2) - 6$

$$N(k) = N(k-1) + (k+1) + k + 1 + (k + k+1)$$

$$N(k) = 2(k-1)^2 + 5(k-1) - 6 + 4k + 3 = 2k^2 + 5k - 6$$

Lemma H_k requires $T(k) \geq (k+1)!$ steps to pebble with $S_{\text{min}}(H_k) = k$ but $N(k)$ steps with $k+1$ pebbles.

Proof In first case, we repbble $H_{k-1}(k+1)$ times. (Pebbling BP graph, removes all pebbles from H_{k-1}.) Thus, $T(k) \geq (k+1)T(k-1) \geq (k+1)(k)(k-1)...(3)/T(1)$.

Inductive Hypothesis: All outputs of H_{k-1} can be pebbled in succession using $k+1$ pebbles without reprebbling any vertices. We advance k pebbles to the inputs of the BP graph without reprebbling any vertices. The remaining pebble is used to pebble outputs of the BP graph in succession.

Note: $(k+1)!$ exponential in $N(k)$. Extreme tradeoff!