Indirect Storage Access Function

Let $K = 2^k$ and $L = 2^l$. Consider the indirect storage access function $f_{ISA}^{(k,l)}(a, x_{K-1}, ... , x_0, y) = y_b$, $b = |x_a|_i$. a is a k-bit address vector, x_j is an l-bit address vector, and y is an L-bit data vector.

Problem 9.24 gives formula for $f_{mux}(n)$ of size $3 \times 2^n - 2$ that uses $2(2^n - 1)$ instances of address variables.

Applying this to the above formula for $f_{ISA}^{(k,l)}$ gives a formula that has size $O(n^2 / \log n)$.

Neciporuk’s Formula Size Lower Bound

Neciporuk’s lower bound method provides a lower bound to formula size of the same order as the upper bound for this function.

Given $f : B^n \to B$, partition its n variables X into p disjoint sets $X_1, X_2, ... , X_p$.

Let $r_j(f)$ be the no. of different subfunctions of f over X_j when fixing the values of variables in $X - X_j$.

We derive a lower bound on the formula size of f in terms of $r_i(f)$ for $1 \leq i \leq p$. ($r_i(f)$’s depend on the partition used. Choose the partition wisely!)

Theorem For every complete basis Ω there exists constant $c_{\Omega} = 1/(d+2)$ such that for every $f : B^n \to B$ its formula size satisfies

$$L_{\Omega}(f) \geq c_{\Omega} \sum_{j=1}^{p} \log_2 r_j(f)$$

Proof Let T be a minimal fan-out 1 circuit for f (a tree). Let n_j be number of instances of vars in X_j used in T. $L(f) = n_1 + n_2 + ... + n_p$.

Let T_j consist of paths from variables in X_j to root of T. Vertices with only one path entering them are called controller vertices. Others are combiner vertices. Assigning values to variables $X - X_p$ each controller computes one of 4 functions on a variable x, which we represent by $(a \text{ AND } x) \text{ XOR } b$ for constants a & b. (If $a=0$, its b, if $a=1$, its $x \text{ XOR } b$.)

Clearly each chain of controllers can be compressed to one controller.
Neciporuk’s Formula Size Lower Bound

Each combiner has at least two inputs on paths from variables in \(X_j \). Thus, if a gate (vertex) has maximum fan-in \(d \), at most \(d-2 \) combiner inputs are constants determined by the values of variables in \(X - X_j \).

By earlier lemma since \(T_j \) on \(X_j \) has \(n_j \) leaves, its number of vertices with fan-in \(\geq 2 \) (combiners) is at most \(n_j - 1 \). Also, \(T_j \) has \(\leq 2(n_j - 1) \) edges. Since \(T_j \) has at most one controller per edge plus one at output, it has \(\leq 2n_j - 1 \) controllers.

The number of functions computed by a combiner is at most \(2^{d-2} \) because it has at most \(d-2 \) constant inputs. At most 4 functions are computed by a controller.

Let \(m = n_j \). Thus, the max number of subfunctions computed by \(T_j \) is at most \(2^{(d-2)(m-1)} + 4^{(2m-1)} \) \(\leq 2^{(d+2)m} \). Thus, \((d+2)n_j \geq (\log_2 r_j(f)) \) and the theorem follows. ♥

Formula Size Lower Bound

Lemma Let \(L = 2^l = n \) and \(k = \lceil \log_2 (n/l) \rceil \). Then, \(L_{-\Omega}(f_{ISA}^{(k,l)}) = \Omega(n^2 / \log n) \)

Proof Recall that

\[
f_{ISA}^{(k,l)}(a, x_{K-1}, \ldots, x_0, y) = y_b, \ b = |x_0|.
\]

where \(a \) is a \(k \)-bit address vector, \(x_j \) is an \(l \)-bit address vector, and \(y \) is an \(L \)-bit data vector.

Let \(p = K = 2^k \) and let \(X_j \) contain the variables in \(x_j \) and possibly other variables that are fixed (which cannot increase \(r_j(f) \)).

If \(|a| = j \), \(r_j(f) \geq 2^L \) because each of \(2^L \) assignments of \(y \) defines a different function of the variables in \(X_j \).

It follows that the formula size is at least \(cL_{-\Omega}KL \). But \(K=2^k \geq n/l \) where \(l = \log_2 n \) and \(L=n \), from which the result follows. ♥