Complexity Classes VIII

Stronger Approximation Bounds

Eric Rachlin
Review of PCP

- $\text{PCP}_{c, s}[q(n), r(n)]$ is the class of languages that can be recognized with by some Turing machine (which we call a “verifier”) with soundness s (or less) and completeness c (or more) using $O(r(n))$ random bits and $O(q(n))$ queries to a proof.
 - Completeness c means that there exists a proof such that strings in L are accepted with probability c.
 - Soundness s means that for all proofs the TM accepts strings not in L with probability s.
PCP Verifiers

Input string, x \rightarrow \text{querier} \rightarrow \text{Proof string, y}

\text{Output} \leftarrow \text{Finite Control Unit, M} \leftarrow \text{Random Bits, r}

\text{Work tape}
The PCP Theorem

- PCP Theorem: $\text{NP} = \text{PCP}_{1, \frac{1}{2}} [1, \log(n)]$.
 - which implies $\text{NP} = \text{PCP}_{1, \frac{1}{n}} [\log(n), \log(n)]$.
- By representing the behavior of a verifier as an instance of 3SAT, we saw that a PTAS for 3SAT implied $\text{P} = \text{NP}$.
- By representing the behavior of a verifier as an instance of clique, we were able to show a constant factor approximation for CLIQUE implied $\text{P} = \text{NP}$.
- In both cases, our results were functions of q, the number of queries required to verify some NP-complete language.
IP

- IP is the class of languages “recognized” by a polynomial rounds of randomized interaction:
 - $q_1 = V(x, r_1)$
 - $a_1 = P(x, q_1)$
 - ...
 - $a_{\text{poly}(|x|)} = P(x, q_1, a_1, \ldots, q_{k-1}, a_{k-1}, q_k)$
 - $y = V(x, q_1, a_1, \ldots, q_{k-1}, a_{k-1}, q_k, r_k)$

- V is PTIME, P can safely be restricted to PSPACE.
 - Since P takes a random input, r, languages are recognized with completeness and soundness parameters.

- We saw last time that IP = PSPACE.
IP Verifier

Prover, P

Input string, x

Output, y

Finite Control Unit, V

Random Bits, r

Work tape
MIP

- MIP is defined like IP, except with multiple provers. The provers can be pitted against each other.
 - It turns out MIP = NEXPTIME.
 - Just two provers and one round of interaction suffice.
- In either IP or MIP, multiple repetitions of the proof protocol can drive error rates exponentially low.
- With MIP, we have an additional option. Ask many questions at once.
 - This is known as parallel repetition.

See end of lecture 7 for citations.
MIP Verifier

Input string, x

Output, y

Finite Control Unit, V

Work tape

Prover, P_1

Random Bits, r

Prover, P_2
PCP and MIP

● MIP is incredibly powerful, but what if we keep questions short (O(log(n)))?
● The PCP theorem implies NP-Complete problems can be reduced to gap instances of 3SAT.
● We have short a two prover one round protocol:
 ● Ask P₁ the assignment to the three variables in a clauses
 ● Ask P₂ the assignment to one of the variables
 ● Check for disagreement.
● Multiple sequential repetitions increase soundness.
 ● What about asking multiple questions at once? Yes!
 ● This results from the parallel repetition theorem (Raz, 1998)
Parallel Repetition

- The parallel repetition theorem says that
 - Through t parallel repetitions, we can reduce the soundness from s to $(1 - s^a)^{bt}$, where $a, b = o(1)$
- A PCP can be considered a one round MIP.
 - Different parts of the proof represent each prover.
- This implies the result we proved:
 - $\text{PCP}_{1, \frac{1}{2}}[1, \log(n)] = \text{PCP}_{1, \frac{1}{n}}[\log(n), \log(n)]$.
- Since $\text{MIP} = \text{NEXPTIME}$, we also have:
 - $\text{NEXP} = \text{PCP}_{1, \exp(-n)}[\text{poly}(n), \text{poly}(n)]$
MIP with PCP Verifier

Input string, x

Finite Control Unit, M

Work tape

Output

Proof 1

Proof 2

querier

Random Bits, r
A 2 query PCP (sort of)

- Now we have a two query PCP, in a larger alphabet.
- We know that NP-complete problems can be reduced to 3SAT via a gap introducing reduction.
- Using our 2 prover model
 - Ask the first prover the assignment to all variables in some set of k clauses.
 - Ask the second the assignment to some set of k variables, at least one from each clause.
 - The parallel repetitions theorem states that regardless of the original gap, there is some k such that our soundness is close to 0.
Reducing the Alphabet

- In the PCP theorem, we were able to reduce the alphabet from \{1,\ldots,m\} to \{0,1\} using Walsh-Hadamard Codes.
 - If \(x\) is the binary representation of a variable ranging 1 to \(m\), \(WH(x)\) lists all \(m\) different sums of \(x\)'s bits.
 - \(WH(x)\) and \(WH(y)\) are \(1/2\)-close if \(x \neq y\).
 - If \(WH'(x)\) is \(\varepsilon\)-close to \(WH(x)\), we can use two queries to determine any entry in \(WH(x)\) with probability at least \(2\varepsilon\).
 - RECALL: \(WH(x)_s = WH(x)_{s'} + WH(x)_{s'+s}\).
 - If \(WH'(x)\) is not \(\varepsilon\)-close to any codeword \(WH(x)\), it turns out we can detect this with probability at least \(\min(\varepsilon, 1/2)\).
 - \(\text{Prob}[WH'(x)_s = WH'(x)_{s'} + WH'(x)_{s'+s}] \leq \max(1 - \varepsilon, 1/2)\)
- Now we use an even longer code...
The Long Code

- If \(x \) is a \(b = \log(m) \) bit string, \(\text{LONG}(x) \) has \(2^m \) entries, one for each function of \(x \).
- A function of \(b \) bits is represented by a \(2^b = m \) row truth table. There are \(2^m \) possible functions.
- Again, \(\text{LONG}(x) \) and \(\text{LONG}(y) \) are \(1/2 \)-close if \(x \neq y \).
- If \(\text{LONG}'(x) \) \(\epsilon \)-close to \(\text{LONG}(x) \), we can use two queries to find any \(f(x) \) with probability at least \(2\epsilon \).
 - \(\text{LONG}'(x)_{f(x)} = \text{LONG}'(x)_{g(x)} + \text{LONG}'(x)_{f(x)} + g(x) \)
- Again, if \(\text{LONG}'(x) \) is not close to a codeword, we can detect this with probability close to \(1/2 \).
 - TEST: \(\text{LONG}'(x)_{f(x)} = \text{LONG}'(x)_{g(x)} + \text{LONG}'(x)_{f(x)} + g(x) \)
PCP using the Long Code

- Our 2 query PCP verifier asked two questions:
 - What are the values in k clauses?
 - What are the values of k variables?
- It then checks if the two answers, a_1 and a_2, are consistent:
 - For some function h, check $h(a_1) = a_2$.
- If we pick a second random boolean function, f, we can perform the check with probability 1/2.
 - For some random f, let $g(x) = f(h(x))$, check $g(a_1) = f(a_2)$.
 - The soundness of this test can’t be guaranteed.
- This type of test uses the long codes of a_1 and a_2.
A Three Query PCP

- Assume the proof consists of $\text{LONG}(a_1)$ and $\text{LONG}(a_2)$ for every possible pair of queries.
- We check $g(a_1) = f(a_2)$ using a random function, $g'(x)$
 - $\text{LONG}(a_2)_{f(x)} = \text{LONG}(a_1)_{g'(x)} + \text{LONG}(a_1)_{g(x)} + g'(x)$
- This test would have perfect completeness, but it must be modified slightly.
 - When checking $\text{LONG}(a_2)_{f(x)}$, we sometimes check f’s compliment.
 - The function indexed in the last term must have a small amount of “random noise” added to it.
- It leads to a 3 query PCP with completeness $1 - \epsilon$ and soundness $1/2 + \epsilon$.
- For each randomly chosen pair of questions, the test is linear.
Hardness of 3SAT

- The protocol shows $\text{NP} = \text{PCP}_{1-\varepsilon, \frac{1}{2}+\varepsilon} [3, \log(n)]$.
 - Language in NP can be recognized by a verifier M that makes 3 queries to a proof y given some random input r.
 - In other words, $M_{r,x}(y)$ is a function of 3 bits of y, plus it is linear.

- The DNF of each $M_{r,x}(y)$ involves 4 clauses of 3 variables each.

- If a string is not in the language, close to 1 out of 8 clauses is unsatisfied.

- Unless $P = \text{NP}$, the known 7/8-approximation of 3SAT is the best possible.
Completeness and Soundness

- Proving completeness is easy. If the answers are correctly encoded, we will accept w.h.p.
- Proving soundness is more difficult. To show it is difficult to cheat, Fourier Analysis is used.
- We prove the simpler soundness result we used in Step 3 of the PCP theorem.
 - If $WH'(x)$ is not ϵ-close to any codeword $WH(x)$,
 $\text{Prob}[WH'(x)_s = WH'(x)_{s'} + WH'(x)_{s'' + s}] \leq \max(1 - \epsilon, 1/2)$
Soundness of WH’(x)

- For a binary string \(x \) in \(\{0,1\}^b \), \(WH(x) \) lists all \(2^b = m \) sums of \(x \)'s bits.
 - Each sum is indexed by one of \(m \) binary \(b \)-tuples.
- For the purpose of our analysis, we take binary to mean \(\{-1, 1\} \) (that is, 0 is replaced with -1).
 - Now \(WH(x) \) is all \(m \) products of \(x \)'s bits.
 - Also, let \(\text{dot}(x, y) = E[x_i y_i] \) (meaning the standard dot product by \(m \))
- The Fourier basis of \(\{0,1\}^m \) is \(f_\alpha \) for each subset \(\alpha \) of \(\{1,\ldots,b\} \), where \(f_{\alpha,x} = \prod_{i \in \alpha} x_i \).
 - Each \(f_\alpha \) corresponds to a linear functions of \(\{0,1\}^b \).
- Notice that the basis is orthonormal, so every \(WH(x) \) can be represented as the sum of basis elements, \(\sum WH_\alpha(x) \).
- Also \(\text{dot}(WH(x), WH(y)) = \sum WH_\alpha(x)WH_\alpha(y) \).
More Soundness

- Using our new alphabet of \{-1, 1\}, we wish to show that:
 - If \(\text{Prob}[WH'(x)_s \cdot WH'(x)'_s] \geq 1/2 + \varepsilon \), there is some basis element \(f_\alpha \) such that \(\text{dot}(WH'(x), f_\alpha) \geq 2\varepsilon \).
 - We call \(\text{dot}(WH'(x), f_\alpha) \) fourier coefficient \(c_\alpha \) of \(WH'(x) \).
 - \(s' \) is chosen at random and \(s' \cdot s \) is pairwise multiplication.

- We can prove \(\mathbb{E}[WH'(x)_s \cdot WH'(x)'_s \cdot WH'(x)'_s \cdot s] \geq 2\varepsilon \)
 - Write each codeword as sum of Fourier coefficients.
 - Simplify using \(f_{\alpha, s'} \cdot s = f_{\alpha, s} \cdot f_{\alpha, s} \).
 - Use linearity of expectation.
 - Simplify with orthonormality.
Conclusion

- Using the PCP theorem and parallel repetition, we can construct a high soundness, high completeness PCP.
- Using the Long Code, we can ask long questions using only a few queries.
- Combining these, Hastad (2001) was able to show that $\text{NP} = \text{PCP}_{1-\varepsilon, 1/2+\varepsilon}[3, \log(n)]$.
- This implied that a PTIME 7/8-approximation for 3SAT is as good possible unless $P = \text{NP}$.
- The approach applies to other problems as well.