Complexity Classes IV

NP Optimization Problems and Probabilistically Checkable Proofs

Eric Rachlin
Decision vs. Optimization

- Most complexity classes are defined in terms of Yes/No questions.
- In the case of NP, we wish to know if a certificate exists that satisfies certain constraints (i.e. SAT, vertex cover, clique, …)
- Even if no certificate exists, we can still ask how many constraints can be satisfied, or how large (or small) some parameter can be.
- We let OPT to denote this value.
Decision vs. Optimization

- With respect to polynomial time, optimization is no harder than decision
- Example: MAXCLIQUE (perform binary search over instances of CLIQUE)
- Example: MAXSAT (perform binary search using a variant of SAT that asks if k clauses can be satisfied)
Approximation Algorithms

- If P ≠ NP, we cannot find OPT for an NP-complete optimization problem in polynomial time (PTIME).
- In practice, we may not need an exact answer (particularly if the parameters of the problem are themselves estimates).
- An **approximation algorithm** computes OPT’ such that |OPT - OPT’| ≤ f(OPT) for some f.
- For NP-complete problems, can f(OPT) be arbitrarily small?
What can we hope for?

- **A Polynomial Time Approximation Scheme (PTAS)** for an optimization problem is an algorithm that, for a given \(\epsilon \), results in a PTIME approximation algorithm such that \(|OPT - OPT'| \leq \epsilon OPT\).

- The approximation algorithm can still have a runtime that is exponential in \(1/\epsilon \).

- **Efficient Polynomial Time Approximation Scheme (EPTAS)** adds the requirement that the runtime be of the form \(f(\epsilon) \cdot \text{poly}(N) \).
How good is too good?

- A Fully Polynomial Time Approximation Scheme (FPTAS) is PTAS where the running time of the approximation algorithm is also polynomial in $1/\varepsilon$.
- It is not hard to show that an FPTAS for some NP-complete problems implies $P = NP$.
- It turns out the same is true for a PTAS, but this is far from obvious. It is a consequence of the PCP Theorem.
Strongly NP-Hard Problems

- A problem is strongly NP-hard if its NP-hardness does not require any of its numerical parameters to be exponential in the length of the problem.
- Examples: CLIQUE, TSP, SAT, …
- If an FPTAS exists for CLIQUE, we can approximate the solution to a factor less than $1/N$ and obtain an exact solution.
Hardness of Approximation

- Do PTASs exist for strongly NP-hard problems?
 - Yes!
 - Examples: Planar TSP, Euclidian TSP

- How can we show a PTAS does not exist for certain NP-complete problems?
 - Define NP in terms of PCPs…
 - …this leads to a gap introducing reduction…
 - …which leads to gap preserving reductions.
Reductions and NP

- Recall Cook’s Theorem (1971):
 - SAT is NP-Complete
 - The “tableau” of a nondeterministic Turing machine can be converted to an instance of SAT.
 - The instance of SAT is polynomial in the size of the tableau, and is satisfied if and only in the tableau accepts (and is valid).
- SAT was then reduced to other NP-complete problems (Karp, 1972).
More on Cook’s Theorem

- It is easy to show that the following language, ACCEPT, is NP-complete:
 - Let \(<M, x, 1^t> \) be a triple consisting of a deterministic Turing machine, a binary input to \(M \), and a string of \(t \) 1’s.
 - \(<M, x, 1^t> \) is in the language if \(M \) accepts some string of the form \(<x, y> \) in at most \(t \) steps. (Here \(y \) represents a certificate of length at most \(t \).)

- To prove Cook’s Theorem, give a polynomial time algorithm that designs a circuit outputting 1 if and only if \(M \) accepts \(<x, y> \) after \(t \) steps.
So what needs work?

- In Cook’s Theorem, the instance of SAT is satisfiable iff the nondeterministic Turing machine accepts after poly(N) steps.
- Even when it does not accept, the instance of SAT is still “almost” satisfiable.
- We want to introduce a gap.
 - Either the instances of SAT are satisfiable,
 - Or some fixed fraction of clauses are unsatisfied by any assignment of values to variables.
Gap Introducing Reduction

- Let x be an instance of some NP-complete decision problem L, let $L(x)$ denote *Is x in L?*
- Let $\text{MAXL}(x)$ be the corresponding optimization problem.
- A polynomial time (PTIME) reduction from L to L' is some PTIME function, R, such that $L'(R(x)) = L(x)$.
- R is **gap introducing** if, for all $L(x) = 1$ and $L(y) = 0$, $\text{MAXL}'(R(x))/\text{MAXL}'(R(y)) \geq \Delta$.
Gap Preserving Reductions

- If L is NP-complete, L' is in NP, and $R(x)$ is a PTIME gap introducing reduction from L to L':
 - L' is NP-complete
 - MAXL' is inapproximable to within a factor of Δ (if $P \neq NP$).
- Let R' be a reduction from L' to L''. R' is gap preserving if there exists a constant β such that for any constant Δ
 - if $\text{MAXL'}(x)/\text{MAXL'}(y) \geq \Delta$
 - then $\text{MAXL''}(R(x))/\text{MAXL''}(R(y)) \geq \beta$
- If MAXL' is inapproximable to within a factor of Δ, R' shows that L'' is inapproximable to within a factor β.
Going from NP to PCP

- Nondeterminism is equivalent to having access to a polynomial-sized “certificate”.
 - If a valid certificate exists, the machine accepts.
 - We see that many problems which appear hard to solve are easy to check.

- For PCPs, machines also have access to a certificate (called a proof).
 - The proof is selectively queried using random bits.
 - A valid proof causes the machine to accept, an invalid proof will be rejected with high probability.
Machines with access to random bits and a proof

Diagram:*

- **Input string, x**
- **Proof string, y**
- **Random Bits, r**
- **Work tape**
- **Finite Control Unit, M**
- **querier**

Output
Randomized Computation

- Random bits allow machines to recognize languages with high probability (w.h.p.)
 - Example: Polynomial Identity Testing.

- **Completeness** is the probability of recognizing a string in the language.
- **Soundness** is the probability of accepting a string not in the language.
Completeness and Soundness with Certificates

- For a TM accepting a language L, with access to random bits and a proof/certificate:
 - Completeness c means that there exists a certificate such that strings in L are accepted with probability c.
 - Soundness s means that for all certificates the TM accepts strings not in L with probability s.
PCP Complexity Classes

- $\text{PCP}_{c, s}[q(n), r(n)]$ is the class of languages that can be recognized with by some Turing machine with soundness s (or less) and completeness c (or more) using $O(r(n))$ random bits and $O(q(n))$ queries to a proof.

- By definition, $\text{NP} = \text{PCP}_{1, 0}[\text{poly}(n), 0]$
An example

- Graph isomorphism (GI) in NP not known to be in P, nor NP-complete.
- Easy to prove that G and G’ are isomorphic: reveal a permutation of their vertices transforming G to G’.
- Harder to prove that G and G’ are not isomorphic: Write an exponentially long “proof”, listing every permutation of G and G’, and check for duplicates.
- Alternatively, if G and G’ are not isomorphic, write an even longer “proof”: For each N vertex graph, write whether it is isomorphic to G, G’ or neither.
Example Continued

- Second proof can be checked quickly w.h.p.
- **STEP 1**: Randomly choose G or G’.
 - **STEP 2**: Randomly select one of the N! possible permutations of the graph’s vertices.
 - **STEP 3**: Check if the resultant graph, G” is listed in the proof as a permutation of G or G’
- If G and G’ are not isomorphic, a proof exists causing our protocol to always accept.
- If they are isomorphic, each G” is equally likely to result from G or G’. Any proof fails half the time.
- The number of queries is small, but proof size (and hence number of random bits), is too large.
PCP versus NP

- Any language \(L \) in \(\text{PCP}_{c, s} \left[\text{poly}(n), \log(n) \right] \) is recognized by some machine \(M_L \) that makes \(O(\text{poly}(n)) \) queries to a proof for each possible sequence of \(O(\log(n)) \) random bits.

- Given \(M_L \), there exists a nondeterministic Turing machine \(M^N_L \) that recognizes \(L \).
 - On input \(x \), \(M^N_L \) “guesses” a proof, then simulates \(M_L \) on all sequences of random bits.
 - If at least \(c \) fraction of sequences accept, \(x \) is in \(L \).

- \(\text{PCP}_{c, s} \left[\text{poly}(n), \log(n) \right] \subseteq \text{NP} \)
The Power of Randomness

- We just saw $\text{PCP}_{c, s}[\text{poly}(n), \log(n)] \subseteq \text{NP}$
 - So $\text{PCP}_{c, s}[\text{poly}(n), \log(n)] = \text{PCP}_{1, 0}[\text{poly}(n), 1]$
- The power of $\text{PCP}_{c, s}[\log(n), \text{poly}(n)]$ is not nearly as clear (Solves at least coGI).
- What about when proof are polynomial in length?
 - $\text{PCP}_{c, s}[\log(n), \log(n)]? \text{PCP}_{c, s}[1, \log(n)]?$
The PCP Theorem

- It turns out $\text{NP} \subseteq \text{PCP}_{1, \frac{1}{2}} [1, \log(n)]$.
- PCP Theorem (Arora, Lund, Motwani, Sudan, and Szegedy): $\text{NP} = \text{PCP}_{1, \frac{1}{2}} [1, \log(n)]$.
- Recently, a simpler proof was given by Dinur.
 - An NP-complete problem is reduced to a problem in $\text{PCP}_{1, \frac{1}{2}} [1, \log(n)]$
- The theorem gives us our first hard to approximate problem.
Why PCP_{1, 1/2} [1, log(n)]

- If NP = PCP_{1, 1/2} [1, log(n)], then every language in NP can be recognized by a machine that makes a constant number of random queries to a polynomial-sized proof.
- In the spirit of Cook’s Theorem, the behavior of these machines can be captured as an instance of SAT.
- Now instances of SAT will have a gap.
An Inapproximability Result

- The following language, PROB, is NP-complete:
 - Let \(<M, x, 1^t>\) be a triple consisting of a Turing machine with access to \(\log(t)\) random bits, a binary input \(x\), and a string of \(t\) 1’s.
 - \(<M, x, 1^t>\) is in the language if \(M\) accepts some input \(<x, y>\) in \(t\) steps with probability \(p = 1\).
 - If \(M\) ignores its random bits, PROB is the same as ACCEPT
- Since PROB is NP-complete, any language in NP can be reduced to PROB through some polynomial time reduction, \(R\).
- The PCP Theorem implies \(R\) exists such that:
 - \(M\)’s behavior on \(<x, y>\), when given a particular sequence of random bits, is only a function of \(O(1)\) bits of \(y\).
 - \(\text{OPT} = p_{\max}\) cannot be approximated to within a factor of 2.
- The PCP Theorem gives us a gap introducing reduction!
Conclusion

- NP-hard decision problems can be recast as NP-hard optimization problems.
- Often optimization problems are easier to approximate than to solve exactly.
- PCPs allow us to recast NP, using randomness and selectively queried proofs.
- The PCP theorem implies that the NP-complete problem, PROB, does not have a PTAS. Next we:
 - Give a gap preserving reduction from PROB to SAT
 - Give a gap preserving reduction from SAT to 3SAT. As is often the case, the standard reduction already works!