CS256
Applied Theory of Computation

Introduction & Complexity Classes I

John E Savage
Outline of the Course

- Serial and parallel complexity classes – 3 lectures
- Approximation to NP-hard problems – 5 lectures
- Circuit complexity – 6 lectures
- Space-time tradeoffs – 4 lectures
- Memory hierarchies & I/O-space tradeoffs – 3 lectures
- Parallel computation & classification – 4 lectures
- VLSI model, AT^2 tradeoffs, & algorithms – 4 lectures
- Quantum computation – 3 lectures
Background on Machine Models

- Memoryless serial and parallel machines
 - Logic & algebraic circuits (ring, field ops)
- Serial machines: RAM & TM
 - Memory hierarchies
- Parallel machines with memory
 - Fine- vs coarse-grained computers
 - PRAM - p RAMs with shared memory
Background on Machine Models (cont.)

- Parallel machines with memory (cont.)
 - PRAM - p RAMs with shared memory

```
<table>
<thead>
<tr>
<th>RAM</th>
<th>RAM</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_1$</td>
<td>$P_2$</td>
<td>$P_p$</td>
</tr>
</tbody>
</table>
```

- Loosely coupled network of computers
- VLSI model
Background on Machine Models (cont.)

- Loosely coupled models
Background on Machine Models (cont.)

- VLSI model
Performance Metrics

- Logical and algebraic circuits – circuit size & dept
- RAM and TM – Time & space
- Parallel machines – Time, no. processors, & space
- Memory hierarchies – I/O time vs primary storage
- Distributed computing
 - Time $T(n)$ to send length n message over single channel satisfies $T = l + nb$ where l is latency and b is bandwidth.
Complexity Classes I
Decision Problems and Classes

- Problems are classified computational problems by their need for space and time
 - Problems usually defined by languages.
 - Use standard models of computation.
 - Use standard measures of space and time.
- A language L is defined as a subset of the set of strings over an alphabet, $L \subseteq \Sigma^*$
- The complement of the language L, denoted \overline{L}, is the set $\Sigma^* - L$
Decision Problems

- Languages defined by **decision problems**.

Satisfiability (SAT)

Instance: A set of literals $X = \{x_1, \overline{x}_1, \ldots, x_n, \overline{x}_n\}$ and a sequence of clauses $C = (c_1, \ldots, c_m)$ where each c_i is a subset of X.

Answer: “Yes” if for some assignment of values to Boolean variables $\{x_1, \ldots, x_n\}$ at least one literal in each clause has value 1.
Decision Problems

- Strings in satisfiability define a language.
- The complement of a decision problem P, denoted $\text{co-}P$, is the set of “No” instances of a decision problem.
- Note that $\text{co-}P$ is not \overline{P} because $\text{co-}P \cup P$ is the set of strings describing well-formed clauses, not all strings over Σ^*.
Standard Computational Model
Random Access Machine

- Adds, subtracts, shift left or right one place, compare two words, perform Boolean vector AND, OR and NOT, do loads, stores, and conditional jumps and immediate and direct addressing.
- No multiplication or division allowed.
- If fixed-length addresses and fixed values are stored in memory initially, how big can addresses and values become?
Standard Computational Model

Turing Machine

- The standard one-tape Turing Machine
 - When space counts, input tape is read-only & space is number of cells used on work tape.

- The multi-tape TM
Standard Computational Models

- **Time** is number of steps executed. **Space** on the TM is number of tape cells used; on the RAM it is number of storage bits used.
- Time on TM and RAM can be shown to be within polynomial bounds of one another. Why is that?
 - Simulate T-step RAM on the TM.
 - Store RAM words as \((address, value)\) pairs on the TM tape.
 - To overwrite a word, invalidate the previous pair without removing it and write a new one.
- How many bits can each address have after T steps?
- How long does it take to simulate a RAM step on the TM?
- Does this imply \(O(T^3)\) time simulation?
Resource Bounds

• Typical resource functions are logarithms, polynomials of logs, linear, polynomials, super-polynomials, and exponentials.

• We must avoid functions so complex that they cannot be computed in the time and/or space they are used to define.

Definition A function \(r: N \rightarrow N \) is proper if it is non-decreasing & for a letter \(a \) there is a deterministic multi-tape TM \(M \) that on all inputs of length \(n \) in time \(O(n + r(n)) \) and space \(O(r(n)) \) writes the string \(a^{r(n)} \) on one of its tapes and halts.
Proper Functions and Precise TMs

Theorem Let $r(n)$ be a proper function with $r(n) \geq n$. Let M be a multi-tape DTM, NDTM, or oracle TM with k work tapes that computes a total function f in time or space $r(n)$. Then there is a constant $K > 0$ and a precise Turing machine of the same type that computes f in time and space $Kr(n)$.
Proper Functions and Precise TMs (cont.)

Proof Let M_p simulate in $K_1 r(n)$ steps the machine M_r that computes $r(n)$ to write a string of length $r(n)$ on a special enumeration tape as well as $K_1 r(n)$ special blank symbols on its work tapes. Since the number of tapes on M_p is finite, it uses $kr(n)$ cells for some k. M_p alternates between writing on its tapes and reading from the enumeration tape. It continues to read once every two cycles from the enumeration tape after simulating M to insure that it uses exactly $2r(n)$ steps.
Resource Bounds

- If $r(n)$ is proper, a DTM M_r exists that can be used to limit a computation on an input of length n to time $O(n + r(n))$ and space $O(r(n))$

Definition A *precise multi-tape TM* (deterministic or not) has a proper function $r(n)$ such that on every input of length n, it halts in precisely $r(n)$ steps.
Space and Time Complexity

Classes

- Deterministic and nondeterministic space and time defined for DTMs & NDTMs using proper resource functions.

- $\text{TIME}(r(n))$ and $\text{SPACE}(r(n))$ are sets of languages accepted in $r(n)$ deterministic time & space by DTMs.

- $\text{NTIME}(r(n))$ and $\text{NSPACE}(r(n))$ are sets of langs. accepted in $r(n)$ nondet. time & space by NDTMs.

- The classes \mathbf{P} and \mathbf{NP}

$$
\mathbf{P} = \bigcup_k \text{TIME}(n^k)
$$

$$
\mathbf{NP} = \bigcup_k \text{NTIME}(n^k)
$$
Space and Time Complexity Classes

- Language L_c is \textbf{NP}-complete language if it is in \textbf{NP} & for any other language L in \textbf{NP} there’s a poly-time computable translation function $t()$ such that w is in L if and only if $t(w)$ is in L_c. That is, the decision problem for L can be settled in poly-time by L_c.

- Exponential complexity classes

 $$\text{EXPTIME} = \bigcup_n \text{TIME}(2^n)$$
 $$\text{NEXPTIME} = \bigcup_n \text{NTIME}(2^n)$$
Hierarchy Theorem

Time Hierarchy Theorem If \(r(n) \geq n \) is a proper resource function, then \(\text{TIME}(r(n)) \) is strictly contained in \(\text{TIME}(r(n) \log r(n)) \).

- Let \(r(n) \) and \(s(n) \) be proper resource functions. Then \(r(n) = o(s(n)) \) ("little oh") if for all \(K > 0 \) there exists an \(N_0 \) such that \(s(n) \geq Kr(n) \) for \(n \geq N_0 \).
Hierarchy and Gap Theorems

- **Space Hierarchy Theorem** *If* \(r(n) \) *and* \(s(n) \) *are proper resource functions and* \(r(n) = o(s(n)) \), *then* \(\text{SPACE}(r(n)) \) *is strictly contained in* \(\text{SPACE}(s(n)) \).

- **Gap Theorem** *There is a recursive function* \(r(n): B^* \rightarrow B^* \) *such that* \(\text{TIME}(r(n)) = \text{TIME}(2^{r(n)}) \)

Theorem: \(\text{P} \subseteq \text{NP} \subseteq \text{EXPTIME} \subseteq \text{NEXPTIME} \) *but* \(\text{P} \) *is strictly contained in* \(\text{EXPTIME} \).