CS148 - Building Intelligent Robots
Advanced Track Class Project

Instructor: Chad Jenkins (cjenkins)
Getting started

• Meet with me to discuss potential projects
 – we should have met by 10/14
 – it would help me to know your interests ahead of time

• Project ideas
 – autonomous control projects
 • articulated robot control (e.g., humanoids, Puma arm)
 • groups of simpler robots (e.g., robocup, SLAM)
 • learning approaches (e.g., learning robot tasks or skills)
 • implementation of a paper
 – robot construction
 – new sensors and sensor data processing
 • time of flight, etc.
Advanced track milestones

- 10/14: Completion of labs
- 10/21: Project proposal
- 11/2: Peer-reviewing and project workshop
- 11/18: Prototype
- 12/7: Final demonstration
- 12/9: Final paper
Project proposals

• Format
 – ICRA conference
 • http://www.icra2005.org
 – 4 sections

• Objectives
 – goals for the project
 – scope for implementation
 – or scope for a survey paper

• Approach
 – design/architecture methodology
 – technical implementation plan (details)

• Discussion
 – related work
 • papers, websites, projects
 – challenges and potential problems
 – outline for alternatives
 • Plan B, C, ...

• Evaluation
 – how will you validate your implementation

• Multiple people can collaborate on a project
Project peer-reviewing

• Each student will review two project proposals other than their own

• Review criteria
 – clarity of project objectives and approach
 – technically interesting problem
 – likely challenges and potential problems are addressed

• Review format
 – 1-2 pages (single column, single space, ascii)
 – summarize proposal, address criteria, provide suggestions
Project workshop

• 5-7 minute pitch for your project
 – additional 3-5 minutes for questions and comments

• 6 slides maximum

• The goal: get feedback from peers to improve your project

• Emphasize high-level objectives and interestingness
Implementation prototype

• In-class demonstration
 – open to questions and comments from class

• Prototype is a “proof-of-concept” that demonstrates the feasibility of the project

• Be prepared to state
 – progress made in implementation
 – remaining issues and features for implementation
Final presentation

• In-class demonstration and brief presentation
 – 5-7 slides, 10-15 minutes
 – open to questions, comments, and testing from class

• Final implementation is a working system that meets or exceeds reasonable expectations set in the proposal

• Be prepared to roughly state
 – features and robustness of the implementation
 – features not implemented and shortcomings of the approach
 – significant issues of large importance not addressed will result in score deduction
Final paper

• Format
 – ICRA conference format
 – 5 sections and a conclusion

• Introduction/Motivation
 – short summary of work
 – why the project is interesting

• Approach/Implementation
 – design/architecture methodology
 – technical details of implementation

• Discussion
 – related work
 • papers, websites, projects
 – challenges and problems addressed
 – strengths and shortcomings
 – potential extension

• Evaluation
 – how implementation was tested
 – how well did it perform

• Workload breakdown
 – clearly state individual contribution for collaborations