Sorting Senators, Collecting Data

Sep 17 2015
Warmup

• Get Google Spreadsheet from last class open!
Plan

• Pick liberal senator, Senator L
• Compare others to Senator L to determine liberalness
Problem

• What if senator L isn’t the most liberal?
 – Even those more liberal will be rated as some distance from senator L, and hence appear more conservative!
Slight improvement

• Pick liberal Senator L, and conservative Senator C.
• Compare other senators to both of these
• Now a senator more liberal than L will not only be distant from L, but more distant from C than L is
Analogous problem

- Put the stations on Amtrak’s Northeast Corridor in order
- You’re given only
 - Distances between stations
 - An example station near the NE end
 - An example station near the SW end
Distance table

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B (SW)</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G (NE)</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>180</td>
<td>300</td>
<td>220</td>
<td>200</td>
<td>80</td>
<td>165</td>
<td>100</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>120</td>
<td>40</td>
<td>380</td>
<td>260</td>
<td>345</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td>80</td>
<td>500</td>
<td>380</td>
<td>465</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td>420</td>
<td>300</td>
<td>385</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>120</td>
<td>35</td>
<td>300</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>85</td>
<td>180</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>265</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B (SW)</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G (NE)</td>
<td>H</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>--------</td>
<td>-----</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>180</td>
<td>300</td>
<td>220</td>
<td>200</td>
<td>80</td>
<td>165</td>
<td>100</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>120</td>
<td>40</td>
<td>380</td>
<td>260</td>
<td>345</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>0</td>
<td>80</td>
<td>500</td>
<td>380</td>
<td>465</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td>0</td>
<td>420</td>
<td>300</td>
<td>385</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>120</td>
<td>35</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>85</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>265</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Diagram:

- **B**
- **A?**
- **G**

CSCI 0931 - Intro. to Comp. for the Humanities and Social Sciences
Because BG distance is 345, BA = 180, and AG=165, A must be between them!

What about D?

Spend a minute trying to figure that out
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B (SW)</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G (NE)</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (NY)</td>
<td>0</td>
<td>180</td>
<td>300</td>
<td>220</td>
<td>200</td>
<td>80</td>
<td>165</td>
<td>100</td>
</tr>
<tr>
<td>B (Balt)</td>
<td>0</td>
<td>120</td>
<td>40</td>
<td>380</td>
<td>260</td>
<td>345</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>C (Richmond)</td>
<td>0</td>
<td>80</td>
<td>500</td>
<td>380</td>
<td>465</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D (DC)</td>
<td>0</td>
<td>420</td>
<td>300</td>
<td>385</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E (BOS)</td>
<td>0</td>
<td>120</td>
<td>35</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F (New Haven)</td>
<td>0</td>
<td>85</td>
<td>180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G (Prov)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>265</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H (Phila.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The diagram shows a linear representation of the cities with distances between them.
Conclusion?

• Example suggests that we need not pick the most liberal or most conservative senator to do our ranking

• We can use comparisons to find senators “further out”

• Tonight’s homework will suggest otherwise 😞
 – Don’t worry: we need to compare them anyway!
Collecting Data

• Last class we showed you XML file structure
• Talked briefly about CSV ("comma separated values") file structure
• Had you load a CSV file
• Let’s have some further info about loading XML
Getting at the contents of an XML file

Structure:
<roll_call_vote>
 <congress>113</congress>
 <session>2</session>
 <congress_year>2014</congress_year>
 <vote_number>8</vote_number>
 <vote_date>January 14, 2014, 03:22 PM</vote_date>
 <modify_date>January 14, 2014, 04:01 PM</modify_date>
 <vote_question_text>On the Motion to Table S. 1845</vote_question_text>
 <vote_document_text>A bill to provide for the extension of certain unemployment benefits, and for other purposes.
</vote_document_text>
 <vote_result_text>Motion to Table Failed (45-55)</vote_result_text>
 <question>On the Motion to Table</question>
 <vote_title>Motion to Table the Motion to Commit S. 1845 to the Committee on Finance with Instructions
</vote_title>
 <majority_requirement>1/2</majority_requirement>
</roll_call_vote>

Interpretation: A “roll call vote” contains a “congress”, a “session”, a “vote number”, and many other entities
<roll_call_vote>
 ...
 <count>
 <yeas>45</yeas>
 <nays>55</nays>
 <present/>
 <absent/>
 </count>
 <tie_breaker>
 <by_whom/>
 <tie_breaker_vote/>
 </tie_breaker>
 <members>
 <member>
 <member_full>Alexander (R-TN)</member_full>
 <last_name>Alexander</last_name>
 <first_name>Lamar</first_name>
 <party>R</party>
 <state>TN</state>
 <vote_cast>Yea</vote_cast>
 </member>
 ...

Interpretation: A “roll call vote” contains a “members”, which is itself a container, containing many “member”’s. A “path” to senator Alexander’s first name could be written

 roll_call_vote/members/member/first_name

...but this would also be a path to any other senator’s first name
XPath

• Listing “tags” separated by slashes is an instance of an “Xpath”, which is a standard for describing locations of data in an XML file.
• Google’s importXML uses this.
Example of importXML

=importXML("http://www.senate.gov/legislative/LIS/roll_call_votes/vote1132/vote_113_2_00008.xml", "/members/member/first_name")

• The URL for the XML file: http://www.senate.gov/...008.xml
• The Xpath search string: "/members/member/first_name"
Meaning of Xpath String

• "//members/member/first_name"
• "//members/member/first_name"
 – Means “any path at all can go here”
 – Full path would be “/roll_call_vote/members/member/first_name”
 – Alternative short form that works for this doc: "//first_name"
• Different form: “/roll_call_vote/*/first_name”
• Any “first_name” that’s a great-grandchild of the roll_call_vote. ("*" means “replace with any one item”)
• Many fancier forms available...if you need them.
So Far

Define Problem

Use Bernie Sanders’ votes to compare how liberal other senators are

Find Data

XML Format

Make a HUGE spreadsheet table

Computer (spreadsheet)

Solution

Write a set of instructions
So Far

Define Problem

Use Bernie Sanders’ votes to compare how liberal other senators are

Find Data

Write a set of instructions

Computer (spreadsheets)

Solution

XML Format

CSV Format

Make a HUGE table

Vote on bills only!
This is going to be a lab day

• Ask for help/clarification *at any point.*
Soon you’ll have a big (but not so big) table of votes

XML Format → TAs → CSV Format → you → Make HUGE Table

- Import the data we want into spreadsheet
- Format the table to get what we want
So far, we’ve done this...

XML Format

TAs

CSV Format

you

XML Format

you

Make Small Table

Make HUGE Table

Import the data we want into spreadsheet

Format the table to get what we want
A note on names

- We call files by their file *extension*: an XML file ends with `.xml`, a CSV file ends with `.csv`, etc.
Why?
Why?

We’re learning how to gather data off the web, then format into something we can work with.
Ctrl (Command on Mac) is your friend

Bottommost Cell: Ctrl and ↓
Topmost Cell: Ctrl and ↑
Rightmost Cell: Ctrl and →
Leftmost Cell: Ctrl and ←
Pressing Ctrl selects each cell you click

Shift is your friend too: Pressing Shift selects all cells between clicks.
Pressing Shift and using arrow keys selects blocks
Activity 1-1

• Proceed from wherever you got to during the last class
• Hint for task 3 (formatting data)

Tip: Press ‘Ctrl’ and an arrow to go ALL THE WAY to the beginning/end of a row/column.

Tip: To get back to original sort order: Sort by both ‘session’ and then by ‘vote_number’
Look at your spreadsheet

1. Open the spreadsheet.
2. You should have 2,401 rows (Task 3.7)
3. You should have columns through E.
Task 3.8

• We want a unique identifier for the vote of each bill in this congress.
 – Which two columns together make a unique key?
Task 3.9

• Add another column to the table by entering a `vote_id` column in cell F1.
• Write a formula to output `session:vote_number` values for this row.
• Use fill down or copy/paste, if necessary, to apply this formula to all the other rows.
Task 3.10

• Add a `numerical_vote` column in cell G1.
• Write a formula to output:
 – 1 if the senator voted Nay
 – 2 if the senator voted Yea
 – 0 otherwise