Data Representation, Part 1
Number Representation

• Hindu-Arabic numerals
 – developed by Hindus starting in 5th century
 » positional notation
 » symbol for 0
 – adopted and modified somewhat later by Arabs
 » known by them as “Rakam Al-Hind” (Hindu numeral system)
 – 1999 rather than MCMXCIX
 » (try doing long division with Roman numerals!)
Which Base?

• 1999
 – base 10
 » \(9 \cdot 10^0 + 9 \cdot 10^1 + 9 \cdot 10^2 + 1 \cdot 10^3\)
 – base 2
 » \(11111001111\)
 » \(1 \cdot 2^0 + 1 \cdot 2^1 + 1 \cdot 2^2 + 1 \cdot 2^3 + 0 \cdot 2^4 + 0 \cdot 2^5 + 1 \cdot 2^6 + 1 \cdot 2^7 + 1 \cdot 2^8 + 1 \cdot 2^9 + 1 \cdot 2^{10}\)
 – base 8
 » \(3717\)
 » \(7 \cdot 8^0 + 1 \cdot 8^1 + 7 \cdot 8^2 + 3 \cdot 8^3\)
 » why are we interested?
 – base 16
 » \(7CF\)
 » \(15 \cdot 16^0 + 12 \cdot 16^1 + 7 \cdot 16^2\)
 » why are we interested?
Words ...

12-bit computer word

0111111001111

3 7 1 7

16-bit computer word

00000111111001111

0 7 C F
Algorithm ...

```c
void baseX(unsigned int num, unsigned int base) {
    char digits[] = {'0', '1', '2', '3', '4', '5', '6', ...};
    char buf[8*sizeof(unsigned int)+1];
    int i;

    for (i = sizeof(buf) - 2; i >= 0; i--) {
        buf[i] = digits[num%base];
        num /= base;
        if (num == 0)
            break;
    }

    buf[sizeof(buf) - 1] = '\0';
    printf("%s\n", &buf[i]);
}
```
Or …

```bash
$ bc
obase=16
1999
7CF
$  
```
Quiz 1

• What’s the decimal (base 10) equivalent of 23_{16}?
 a) 19
 b) 33
 c) 35
 d) 37
Encoding Byte Values

• Byte = 8 bits
 – binary \(00000000_2\) to \(11111111_2\)
 – decimal: \(0_{10}\) to \(255_{10}\)
 – hexadecimal \(00_{16}\) to \(FF_{16}\)
 » base 16 number representation
 » use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 » write FA1D37B\(_{16}\) in C as
 • 0xFA1D37B
 • 0xfa1d37b
Boolean Algebra

• Developed by George Boole in 19th Century
 – algebraic representation of logic
 » encode “true” as 1 and “false” as 0

And

- \(A \& B = 1 \) when both \(A=1 \) and \(B=1 \)

<table>
<thead>
<tr>
<th>&</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Or

- \(A | B = 1 \) when either \(A=1 \) or \(B=1 \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Not

- \(\sim A = 1 \) when \(A=0 \)

<table>
<thead>
<tr>
<th>(\sim)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Exclusive-Or (Xor)

- \(A ^ B = 1 \) when either \(A=1 \) or \(B=1 \), but not both

<table>
<thead>
<tr>
<th>(^)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
General Boolean Algebras

• Operate on bit vectors
 – operations applied bitwise

 01101001 & 01010101 = 01000001
| 01010101 = 01111101
^ 01010101 = 00111100
~ 01010101 = 10101010

• All of the properties of boolean algebra apply
Example: Representing & Manipulating Sets

• Representation
 – width-w bit vector represents subsets of \{0, \ldots, w-1\}
 – \(a_j = 1\) iff \(j \in A\)

 \[
 \begin{align*}
 \text{01101001} & \quad \{0, 3, 5, 6\} \\
 \text{76543210} & \\
 \text{01010101} & \quad \{0, 2, 4, 6\} \\
 \text{76543210}
 \end{align*}
 \]

• Operations

 \[
 \begin{align*}
 \& & \text{intersection} & \quad \text{01000001} & \quad \{0, 6\} \\
 | & \text{union} & \quad \text{01111101} & \quad \{0, 2, 3, 4, 5, 6\} \\
 ^ & \text{symmetric difference} & \quad \text{00111100} & \quad \{2, 3, 4, 5\} \\
 \sim & \text{complement} & \quad \text{10101010} & \quad \{1, 3, 5, 7\}
 \end{align*}
 \]
Bit-Level Operations in C

- Operations &, |, ~, ^ available in C
 - apply to any “integral” data type
 » long, int, short, char
 - view arguments as bit vectors
 - arguments applied bit-wise
- Examples (char datatype)
 \(\sim 0x41 \rightarrow 0xBE\)
 \(\sim 01000001_2 \rightarrow 10111110_2\)
 \(\sim 0x00 \rightarrow 0xFF\)
 \(\sim 00000000_2 \rightarrow 11111111_2\)
 \(0x69 \& 0x55 \rightarrow 0x41\)
 \(01101001_2 \& 01010101_2 \rightarrow 01000001_2\)
 \(0x69 \mid 0x55 \rightarrow 0x7D\)
 \(01101001_2 \mid 01010101_2 \rightarrow 01111101_2\)
Contrast: Logic Operations in C

• Contrast to Logical Operators
 – &&, ||, !
 » view 0 as “false”
 » anything nonzero as “true”
 » always return 0 or 1
 » early termination/short-circuited execution

• Examples (char datatype)
 !0x41 → 0x00
 !0x00 → 0x01
 !!0x41 → 0x01

 0x69 && 0x55 → 0x01
 0x69 || 0x55 → 0x01
 p && *p (avoids null pointer access)
Contrast: Logic Operations in C

• Contrast to Logical Operators
 – &&, ||, !
 » view 0 as “false”
 » anything nonzero as “true”
 » always return 0 or 1
 » early termination/short-circuited execution

• Examples (char datatype)
 !0x41 → 0x00
 !0x00 → 0x01
 !!0x41 → 0x01

 0x69 && 0x55 → 0x01
 0x69 || 0x55 → 0x01

 p && *p (avoids null pointer access)

Watch out for && vs. & (and || vs. |)… One of the more common oopsies in C programming
Shift Operations

- **Left Shift: \(x \ll y \)**
 - shift bit-vector \(x \) left \(y \) positions
 - throw away extra bits on left
 - fill with 0’s on right
- **Right Shift: \(x \gg y \)**
 - shift bit-vector \(x \) right \(y \) positions
 - throw away extra bits on right
 - logical shift
 - fill with 0’s on left
 - arithmetic shift
 - replicate most significant bit on left
- **Undefined Behavior**
 - shift amount < 0 or \(\geq \) word size

<table>
<thead>
<tr>
<th>Argument (x)</th>
<th>01100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ll 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. (\gg 2)</td>
<td>00011000</td>
</tr>
<tr>
<td>Arith. (\gg 2)</td>
<td>00011000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument (x)</th>
<th>10100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ll 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. (\gg 2)</td>
<td>00101000</td>
</tr>
<tr>
<td>Arith. (\gg 2)</td>
<td>11101000</td>
</tr>
</tbody>
</table>
Unsigned Integers

\[
\text{value} = \sum_{i=0}^{w-1} b_i \cdot 2^i
\]
Signed Integers

• Sign-magnitude

\[
\begin{array}{cccc}
 & b_{w-1} & b_{w-2} & b_{w-3} \\
 \text{sign} & & & \\
 \text{magnitude} & \cdots & b_2 & b_1 & b_0 \\
\end{array}
\]

value = \((-1)^{b_{w-1}} \cdot \sum_{i=0}^{w-2} b_i \cdot 2^i\)

• two representations of zero!
 • computer must have two sets of instructions
 • one for signed arithmetic, one for unsigned
Signed Integers

- **Ones’ complement**
 - negate a number by forming its bitwise complement
 » e.g., \((-1)\cdot01101011 = 10010100\)

\[
\text{value} = -b_{w-1}(2^{w-1} - 1) + \sum_{i=0}^{w-2} b_i \cdot 2^i
\]

\[
= \sum_{i=0}^{w-2} b_i \cdot 2^i \quad \text{if } b_{w-1} = 0
\]

\[
= \sum_{i=0}^{w-2} (b_i-1) \cdot 2^i \quad \text{if } b_{w-1} = 1
\]

\text{two zeroes!}
Signed Integers

- Two’s complement
 \[b_{w-1} = 0 \Rightarrow \text{non-negative number} \]
 \[
 \text{value} = \sum_{i=0}^{w-2} b_i \cdot 2^i
 \]

- \[b_{w-1} = 1 \Rightarrow \text{negative number} \]
 \[
 \text{value} = (-1) \cdot 2^{w-1} + \sum_{i=0}^{w-2} b_i \cdot 2^i
 \]
 \[
 \text{one zero!}
 \]
Signed Integers

• Negating two’s complement

\[
value = -b_{w-1}2^{w-1} + \sum_{i=0}^{w-2} b_i 2^i
\]

– how to compute \(-value\)?

\((\sim value) + 1\)
Signed Integers

• Negating two’s complement (continued)

\[\text{value} + (\sim \text{value} + 1) \]

\[= (\text{value} + \sim \text{value}) + 1 \]

\[= (2^w - 1) + 1 \]

\[= 2^w \]

\[
\begin{array}{cccccccc}
1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 \\
\end{array}
\]
Quiz 2

• We have a computer with 4-bit words that uses two’s complement to represent negative numbers. What is the result of subtracting 0010 (2) from 0001 (1)?

 a) 0111
 b) 1001
 c) 1110
 d) 1111