Circuit and Packet Switching

• Circuit switching
 – Legacy phone network
 – Single route through sequence of hardware devices established when two nodes start communication
 – Data sent along route
 – Route maintained until communication ends

• Packet switching
 – Internet
 – Data split into packets
 – Packets transported independently through network
 – Each packet handled on a best efforts basis
 – Packets may follow different routes
Packet Switching

10/25/2010

Computer Networks
Packet Switching
Protocols

• A protocol defines the rules for communication between computers
• Protocols are broadly classified as connectionless and connection oriented

- **Connectionless protocol**
 - Sends data out as soon as there is enough data to be transmitted
 - E.g., user datagram protocol (UDP)

- **Connection-oriented protocol**
 - Provides a reliable connection stream between two nodes
 - Consists of set up, transmission, and tear down phases
 - Creates virtual circuit-switched network
 - E.g., transmission control protocol (TCP)

Encapsulation

• A packet typically consists of
 - Control information for addressing the packet: header and footer
 - Data: payload

• A network protocol N1 can use the services of another network protocol N2
 - A packet p1 of N1 is encapsulated into a packet p2 of N2
 - The payload of p2 is p1
 - The control information of p2 is derived from that of p1
Network Layers

- Network models typically use a stack of layers
 - Higher layers use the services of lower layers via encapsulation
 - A layer can be implemented in hardware or software
 - The bottommost layer must be in hardware
- A network device may implement several layers
- A communication channel between two nodes is established for each layer
 - Actual channel at the bottom layer
 - Virtual channel at higher layers

Internet Layers

- Layers include: Application, Transport, Network, Link, Ethernet, Fiber Optics, Wi-Fi
- Physical Layer connects all the layers together.
Intermediate Layers

- **Link layer**
 - Local area network: Ethernet, WiFi, optical fiber
 - 48-bit media access control (MAC) addresses
 - Packets called frames

- **Network layer**
 - Internet-wide communication
 - Best efforts
 - 32-bit internet protocol (IP) addresses in IPv4
 - 128-bit IP addresses in IPv6

- **Transport layer**
 - 16-bit addresses (ports) for classes of applications
 - Connection-oriented transmission layer protocol (TCP)
 - Connectionless user datagram protocol (UDP)

Internet Packet Encapsulation

- **Application Layer**
- **Transport Layer**
- **Network Layer**
- **Link Layer**
Internet Packet Encapsulation

Data link frame
 IP packet
 TCP or UDP packet
 Application packet

The OSI Model

- The OSI (Open System Interconnect) Reference Model is a network model consisting of seven layers
- Created in 1983, OSI is promoted by the International Standard Organization (ISO)
Network Interfaces

- Network interface: device connecting a computer to a network
 - Ethernet card
 - WiFi adapter
- A computer may have multiple network interfaces
- Packets transmitted between network interfaces
- Most local area networks, (including Ethernet and WiFi) broadcast frames
- In regular mode, each network interface gets the frames intended for it
- Traffic sniffing can be accomplished by configuring the network interface to read all frames (promiscuous mode)

MAC Addresses

- Most network interfaces come with a predefined MAC address
- A MAC address is a 48-bit number usually represented in hex
 - E.g., 00-1A-92-D4-BF-86
- The first three octets of any MAC address are IEEE-assigned Organizationally Unique Identifiers
 - E.g., Cisco 00-1A-A1, D-Link 00-1B-11, ASUSTek 00-1A-92
- The next three can be assigned by organizations as they please, with uniqueness being the only constraint
- Organizations can utilize MAC addresses to identify computers on their network
- MAC address can be reconfigured by network interface driver software
Switch

- A **switch** is a common network device
 - Operates at the link layer
 - Has multiple ports, each connected to a computer
- Operation of a switch
 - Learn the MAC address of each computer connected to it
 - Forward frames only to the destination computer

Combining Switches

- Switches can be arranged into a **tree**
- Each port learns the MAC addresses of the machines in the segment (subtree) connected to it
- Fragments to unknown MAC addresses are broadcast
- Frames to MAC addresses in the same segment as the sender are ignored
MAC Address Filtering

- A switch can be configured to provide service only to machines with specific MAC addresses
- Allowed MAC addresses need to be registered with a network administrator
- A MAC spoofing attack impersonates another machine
 - Find out MAC address of target machine
 - Reconfigure MAC address of rogue machine
 - Turn off or unplug target machine
- Countermeasures
 - Block port of switch when machine is turned off or unplugged
 - Disable duplicate MAC addresses

Viewing and Changing MAC Addresses

- Viewing the MAC addresses of the interfaces of a machine
 - Linux: `ifconfig`
 - Windows: `ipconfig /all`
- Changing a MAC address in Linux
 - Stop the networking service: `/etc/init.d/network stop`
 - Change the MAC address: `ifconfig eth0 hw ether <MAC-address>`
 - Start the networking service: `/etc/init.d/network start`
- Changing a MAC address in Windows
 - Open the Network Connections applet
 - Access the properties for the network interface
 - Click “Configure …”
 - In the advanced tab, change the network address to the desired value
- Changing a MAC address requires administrator privileges
ARP

• The address resolution protocol (ARP) connects the network layer to the data layer by converting IP addresses to MAC addresses.
• ARP works by broadcasting requests and caching responses for future use.
• The protocol begins with a computer broadcasting a message of the form who has <IP address1> tell <IP address2>.
• When the machine with <IP address1> or an ARP server receives this message, it broadcasts the response <IP address1> is <MAC address>.
• The requestor’s IP address <IP address2> is contained in the link header.
• The Linux and Windows command `arp -a` displays the ARP table.

<table>
<thead>
<tr>
<th>Internet Address</th>
<th>Physical Address</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>128.148.31.1</td>
<td>00-00-0c-07-ac-00</td>
<td>dynamic</td>
</tr>
<tr>
<td>128.148.31.15</td>
<td>00-0c-76-b2-d7-1d</td>
<td>dynamic</td>
</tr>
<tr>
<td>128.148.31.71</td>
<td>00-0c-76-b2-d0-d2</td>
<td>dynamic</td>
</tr>
<tr>
<td>128.148.31.75</td>
<td>00-0c-76-b2-d7-1d</td>
<td>dynamic</td>
</tr>
<tr>
<td>128.148.31.102</td>
<td>00-22-0c-a3-e4-00</td>
<td>dynamic</td>
</tr>
<tr>
<td>128.148.31.137</td>
<td>00-1d-92-b6-f1-a9</td>
<td>dynamic</td>
</tr>
</tbody>
</table>

ARP Spoofing

• The ARP table is updated whenever an ARP response is received.
• Requests are not tracked.
• ARP announcements are not authenticated.
• Machines trust each other.
• A rogue machine can spoof other machines.
ARP Poisoning (ARP Spoofing)

• According to the standard, almost all ARP implementations are stateless
• An arp cache updates every time that it receives an arp reply... even if it did not send any arp request!
• It is possible to “poison” an arp cache by sending gratuitous arp replies
• Using static entries solves the problem but it is almost impossible to manage!

Telnet Protocol (RFC 854)

• Telnet is a protocol that provides a general, bi-directional, not encrypted communication
• telnet is a generic TCP client
 – Allows a computer to connect to another one
 – Provides remote login capabilities to computers on the Internet
 – Sends whatever you type
 – Prints whatever comes back
 – Useful for testing TCP servers (ASCII based protocols)
Wireshark

- Wireshark is a packet sniffer and protocol analyzer
- Captures and analyzes frames
- Supports plugins
- Usually required to run with administrator privileges
- Setting the network interface in promiscuous mode captures traffic across the entire LAN segment and not just frames addressed to the machine
- Freely available on www.wireshark.org

10/25/2010 Computer Networks 25
DEMO 1: Configuration using Telnet

In a switched network, packets are sent only to the destination computer. One would think that another computer plugged to the switch cannot sniff traffic.

Add a user on server:

```
adduser user
```

and then follow program instructions.

DEMO 1: ARP Spoofing

Using arp poisoning:

```
arpspoof 192.168.1.10 192.168.1.100
```

Gratuitous arp reply:

Bob’s IP → Cracker’s MAC

Alice’s IP → Cracker’s MAC

DEMO 1: catch telnet password

CLIENT
Alice
.10

LAN: 192.168.1.x
Regular traffic

Using arp poisoning

SERVER
Bob
.100

Cracker
.1

With dsniff, we catch the passwords used to log in to a telnet service:
dsniff -n

Acts as a router

ARP Caches

IP: 192.168.1.1
MAC: 00:11:22:33:44:01

Data

192.168.1.1 is at 00:11:22:33:44:01
192.168.1.105 is at 00:11:22:33:44:02

IP: 192.168.1.105
MAC: 00:11:22:33:44:02

ARP Cache
192.168.1.105 00:11:22:33:44:02

ARP Cache
192.168.1.1 00:11:22:33:44:01
Poisoned ARP Caches

192.168.1.105 is at 00:11:22:33:44:03

192.168.1.105 is at 00:11:22:33:44:03

192.168.1.1 is at 00:11:22:33:44:01

192.168.1.105 is at 00:11:22:33:44:02

192.168.1.1 is at 00:11:22:33:44:03

DEMO 2: network DOS using ARP

Ping 192.168.1.101

Broadcast storm

How can it be avoided?