The `vector' package*

Nick Efford†
nde@dcre.leeds.ac.uk
1994/09/16

Abstract

This package provides a set of new commands for representing vectors in various ways. The commonly-used bold and underlined notations are supported, as is the ‘hat’ notation for representing unit vectors. Macros are also provided to represent a row or column vector as a set of elements.

1 Introduction

\LaTeX2\v{c} provides the `\texttt{\textnormal{\textbackslash vec}}' command to represent vectors in math mode; $\texttt{\textnormal{\textbackslash vec\{a\}}}$, for example, produces \vec{a}. In the author’s experience, vectors are more commonly represented either in bold face roman type or else by means of underlining. Another convenient notation is the use of the ‘hat’ to indicate a unit-length vector. This package defines more suitable representations for vectors and unit vectors, using different fonts (boldface roman and sans serif) and two kinds of underlining (straight and wavy). It also defines macros which represent row or column vectors as implicit or explicit sequences of elements.

2 Examples

Six new commands are defined for representing vectors with a single (possibly composite) symbol. They are shown, with sample output, in table 1. Unlike `\texttt{\textnormal{\textbackslash vec}}', the new commands can be used in text mode as well as math mode.

\begin{verbatim}
\texttt{\textbackslash uvec} \hspace{0.5cm} By default, `\texttt{\textnormal{\textbackslash uvec}}' and `\texttt{\textnormal{\textbackslash uuvec}}' underline a symbol using a straight line. If a wavy line is preferred, then the `\texttt{\textnormal{\textbackslash wavy}}' package option should be specified.
\texttt{\textbackslash irvec} \hspace{0.5cm} Another set of commands are defined which can represent a vector as a row or column of elements. `\texttt{\textnormal{\textbackslash irvec}}' and `\texttt{\textnormal{\textbackslash icvec}}' generate ‘implicit’ row and column vectors, respectively. Here, only the first and last elements actually appear; `\texttt{\textnormal{\textbackslash ldots}}' is used to imply the existence of the rest. Both macros take one mandatory argument, a character which names the vector. By default, the first and last elements are constructed from this character and the subscripts ‘1’ and n, respectively. An optional argument allows final subscripts other than n to be specified. The subscript for the first element cannot be altered in this way, but then it is not likely that you will want to change this often. If you do need to change it, the command `\texttt{\textnormal{\textbackslash firstelement}}' can be used. Table 2 shows some sample output for `\texttt{\textnormal{\textbackslash irvec}}'.
\end{verbatim}

* This file is v1.0, last revised 1994/09/16.
† Address: School of Computer Studies, University of Leeds, Leeds LS2 9JT, United Kingdom
The syntax for \texttt{icvec} is the same as that for \texttt{irvec}. One important difference is that \texttt{icvec} can only be used in math mode, whereas \texttt{irvec} can be used in both math and text modes. For example, \texttt{\buvec{q} = \left(\icvec{q}\right)} produces

\[
\hat{\mathbf{q}} = \begin{pmatrix}
q_1 \\
\vdots \\
q_n
\end{pmatrix}
\]

\texttt{\rvec} and \texttt{\cvec} provide explicit representations of a vector as a row or column of elements, i.e., all elements of the vector are shown\(^1\). Three mandatory arguments are used to specify the name of the vector, an integer subscript for the first element and an integer subscript for the final element. For instance, \texttt{\bvec{x} = \{\rvec{x}\{1\}\{6\}\}} produces

\[
\mathbf{x} = \{x_1, x_2, x_3, x_4, x_5, x_6\}
\]

and \texttt{\bvec{y} = \left[\cvec{y}\{0\}\{3\}\right]} gives

\[
\mathbf{y} = \begin{bmatrix}
y_0 \\
y_1 \\
y_2 \\
y_3
\end{bmatrix}
\]

As with the implicit macros, \texttt{\rvec} may be used in both math and text modes, whereas \texttt{\cvec} may only be used in math mode.

\section{The Macros}

\begin{enumerate}
\item \texttt{\require{package}}
\item \texttt{\require{ifthen}}
\item \texttt{\require{calc}}
\item A boolean variable is defined and set to \texttt{true} if the \texttt{wavy} package option has been specified:
\begin{enumerate}
\item \texttt{\newboolean{@wavy}}
\item \texttt{\DeclareOption{wavy}{\setboolean{@wavy}{true}}}
\item \texttt{\ProcessOptions}
\end{enumerate}
\item \texttt{\bvec} represents a vector using a bold series roman character.
\begin{enumerate}
\item \texttt{\newcommand{\bvec}{\ensuremath{\mathbf{#1}}}}
\end{enumerate}
\item \texttt{\buvec} represents a unit vector as a bold roman character with a hat.
\begin{enumerate}
\item \texttt{\newcommand{\buvec}{\ensuremath{\mathbf{\hat{#1}}}}}
\end{enumerate}
\item \texttt{\svec} represents a vector as a sans serif character family.
\begin{enumerate}
\item \texttt{\newcommand{\svec}{\ensuremath{\mathsf{#1}}}}
\end{enumerate}
\end{enumerate}

\(^1\)Clearly, these macros are suitable only for vectors with comparatively small numbers of elements!
\texttt{\suvec} represents a unit vector as a sans serif character with a hat.

How we define underlined vectors depends on the value of boolean variable \@wavy:

\begin{verbatim}
\ifthenelse{\boolean{@wavy}}{%
 \PackageInfo{vector}{wavy underlining selected}
 If \@wavy is set then we define a macro \texttt{\undertilde}^2, which places a tilde symbol underneath its argument:
\newcommand{\undertilde}[1]{\mathord{\vtop{\ialign{##
\hfil\displaystyle{#1}\hfil
\crcr
\noalign{\kern1.5pt
\noalign{\kern1.5pt}\crcr}}}}}

We then define \texttt{\uvec} in terms of \texttt{\undertilde}:
\newcommand{\uvec}[1]{\ensuremath{\undertilde{#1}}}

\newcommand{\uuvec}[1]{\ensuremath{\hat{\undertilde{#1}}}}
\end{verbatim}

If \@wavy is not set, then we define \texttt{\uvec} and \texttt{\uuvec} in terms of \texttt{\underline}:

\newcommand{\uvec}[1]{\ensuremath{\underline{#1}}}
\newcommand{\uuvec}[1]{\ensuremath{\hat{\underline{#1}}}}

Now we define a variable to store the subscript used for the first element of a row or column vector, along with a command which can be used to alter that variable:

\begin{verbatim}
def{\first@element}{1}
\newcommand{\firstelement}[1]{\def{\first@element}{#1}}
\end{verbatim}

The \texttt{\irvec} command is very simple:

\begin{verbatim}
\newcommand{\irvec}[2][n]{\ensuremath{{#2}_{\first@element},\ldots,{#2}_{#1}}}
\end{verbatim}

The \texttt{\icvec} command uses an \texttt{array} environment, and so can only be used in a math environment:

\begin{verbatim}
\newcommand{\icvec}[2][n]{\begin{array}{c}
\{#2\}_{\first@element}\\vdots\{#2\}_{#1}
\end{array}}
\end{verbatim}

For \texttt{\rvec} and \texttt{\cvec}, we must define a loop counter which stores the current subscript of a vector element:

\begin{verbatim}
\newcounter{vec@elem}
\end{verbatim}

Now we define \texttt{\rvec}. We must check that the last subscript for the vector elements (#3) is greater than the first subscript (#2). If this is so, then we use \texttt{\whiledo} to loop over specified range of values, generating a vector element with subscript \texttt{\vec@elem} followed by a comma on each iteration. Otherwise, we simply generate a single vector element.

\begin{verbatim}
\newcommand{\rvec}[3]{%
 \ensuremath{%
 \ifthenelse{#3 > #2}{%
 \whiledo{
 \vec@elem < #3}{%
 {#2}_{\first@element}\,,%
 {#2}_{\vec@elem}\,,%
 {#2}_{#1}
 }%
 }%

Note that I didn’t write this macro. Unfortunately, I cannot give proper credit as I do not recall how I came by it!

2
\def\cvec{\textnormal{\textsc{cvec}}}

We define \cvec in a similar way to \rvec, only here we iterate within an array environment and generate a vector element and a linebreak on each iteration.

\newcommand{\cvec}[3]{
 \ifthenelse{#3 > #2}{
 \setcounter{vec@elem}{#2}
 \begin{array}{c}
 \whiledo{\value{vec@elem} < #3}{\{#1\}_{\thevec@elem} \stepcounter{vec@elem}}
 {#1}_{#3}
 \end{array}
 }{{#1}_{#2}}
}

\cvec
\begin{tabular}{|l|l|}
\hline
\textit{\textbackslash bvec}(a), \textit{\textbackslash buvec}(a) & a, \hat{a} \\
\textit{\textbackslash vec}(a), \textit{\textbackslash suvec}(a) & a, \hat{a} \\
\textit{\textbackslash uvec}(a), \textit{\textbackslash uuvec}(a) & a, \hat{a} / q, \hat{a} \\
\hline
\end{tabular}

Table 1: new commands for symbolic vectors.

\begin{tabular}{|l|l|}
\hline
\textit{\textbackslash irvec}(a) & a_1, \ldots, a_n \\
\textit{\textbackslash irvec}[4](a) & a_1, \ldots, a_4 \\
\textit{\textbackslash firstelement}[0]\{a\} & a_0, \ldots, a_9 \\
\textit{\textbackslash irvec}[9](a) & a_0, \ldots, a_9 \\
\hline
\end{tabular}

Table 2: row vectors with implicit elements.