Life @ the Edge: Challenges Accelerating and Specializing

Theophilus A. Benson

Brown University

= Forbes

EDITORS' PICK | 1,761 views | Mar 30, 2020, 02:14am EDT

Azure Stack Edge Gets NVIDIA GPU To

TECHNOLOGY NEWS MARCH 5, 2020 / 12:32 PM / 2 MONTHS AGO

AT&T partners with Google Cloud for 5G edge computing

2000 edge deployments in the US?

MQTT

Analytics

Management

Edge

Local Persistence/Storage

Connectivity

Things

Dynamic Specialization of Edge Network Stack for Varying Objectives Applications of Edge Computing 5G IoT

Platforms for Edge Computing

Networking Stack
Operating System

RoadMap

Motivations

Data-Driven Specialization

Accelerator Management

- Networks evolve organically
 - Adaptation of new technology
- Protocols are redesigned
 - Encapsulate domain-specific insights
- Protocols are statically deployed
 - Protocol use is agnostic of conditions

one size fits all to address diverse networks and end user devices!!!

Web Performance

How speedy is SPDY? [NSDI '14]

- How Speedy is SDPY? [NSDI '15]
 -HTTP versions
- Verus [NSDI '15]/Pantheon [USENIX ATC'18]
 - -TCP versions
- How quick is QUIC? [IEEE ICC '16]
 -QUIC vs HTTP2 vs HTTP1.1
- Overclocking the Yahoo! [IMC '11]
 -HTTP pipelining, TCP ICW, ABC

Garage of Cars

How do you pick which car?

Infrastructure consolidation:

Providers own data center, edge, client

Well defined web metrics

- Web pages: SpeedIndex
- Video: Netflix metric

Open Challenges:

- Domain specific learning algorithm
- Fine-grained, low-overhead knobs

CDN Application

CDN SERVER

Barriers to Fine-grained and Dynamic Tuning

- Algorithm learning challenges
 - Need effective and accurate predictive algorithms
- System design challenges
 - Server must support low overhead fine grained tuning

Strawman Approach

- For each client
 - Greedily test each configuration
 - Pick optimal configuration

Challenges

- Network is dynamic
- Data collection is costly
- Data can be noisy (non-gaussian noise)

Challenges

- Costly data collection
 - Distribute cost over similar users
 - Generalize observations
- Network dynamics
 - Online exploration of network

- Noisy data (non-gaussian noise)
 - Resample to get clean data

Predictors

- Machine learning
 - Deep learning (CNN, RNN)

Data collection

performance g predictor

Challenges

- Costly data collection
 - Distribute cost over similar users
 - Generalize observations
- Network dynamics
 - Online exploration of network

- Noisy data (non-gaussian noise)
 - Resample to get clean data

Domain-specific learning ensemble

- Contextual Multi-armed bandit: explore-exploit!
 - Contextual-exploration: cluster provides context
 - Non-Guassian: random exploration
 - Efficient learning: Gaussian exploration
 - Exploitation Arm:
 - D-Tree: Generalize observation

Systems Support for Reconfiguration

	Flexibility	Overheads
One VM per Configuration		
One Container per Configuration		
User Space Tuning + Kernel Module		
Kernel Space Tuner+ kernel Module		

ConfigTron

On each CDN Server

Systems Approach to Configuration Tuning

- Manual protocol tuning
 - Coarse-grained and slow
 - Labor intensive
 - Slow to adapt to changes
- Bayesian-based tuning
 - DB: iTuned [VLDB'9], StarFish [CIDR'11]
 - Apps: WISP [SoCC'17], Ernest [NSDI'16]
 - Cloud: CherryPick [NSDI'17]
 - Fine-grained but static
 - Quickly finds "good" configuration
 - Doesn't adapt to network dynamics
 - Doesn't account for non-gaussian noise

ConfigTron is fine-grained and dynamic

Objective Functions

Configuration Knobs

RoadMap

Motivations

Data-Driven Specialization

Accelerator Management

GPU Virtualization

- CAVA[ASPLOS'20]
- Time-division multiplexing

FPGA Virtualization

- Virtal [ASPLOS'20]
- Space-division multiplexing

- Rich body of work on hardware accelerators
 - Class one: Siloed approach → limits global orchestration and management

- Rich body of work on hardware accelerators
 - Class one: Siloed approach → limits global orchestration and management
 - Class two: Unified approach \rightarrow disconnected from lower layer optimizations/advances

- Rich body of work on hardware accelerators
 - Class one: Siloed approach → limits global orchestration and management
 - Class two: Unified approach → disconnected from lower layer optimizations/advances
- Neither allows efficient management of a fabric of accelerators

Ideal Cloud Accelerators Fabric

- ``Accelerators'' and not developers are the first-class citizens
 - Simplify life-cycle management
- Provide ``big fabric'' abstraction
 - Abstract device level details

Semantic Boundary

Application

One Big Fabric

Runtime Compiler

Ensure efficient utilization of accelerators

- Capture data and execution pipelining
- Tackle various level of parallelism available

Unifying Instruction Set Architecture

- Unify at the instruction set level
 - Decouple fabric properties. From unification

- Enable innovation above and below ISA
 - Above (OS): global properties, e.g., security and efficiency
 - Below (Device drivers): local properties, e.g., security and efficiency

Preliminary Evidence of ISA for Accelerators

- Rich body of work on P4
 - Porting application to use P4
 - Developing P4 compilers for Accelerators

Primer on Programmable Data Planes

P4 Code

- Composed of multiple components:
 - Parser (FSM)
 - Control flow graph (weighted DAG)
 - Match/Action Tables

Language Limitations

No loops, pointers

```
table ipv4_lpm {
    reads {
        ipv4.dstAddr : lpm;
    }
    actions {
        set_next_hop; drop;
    }
}
```

Primer on Programmable Data Planes

Language Limitations

No loops, pointers

Easy to Analyze

Hardware Limitations

- Limited resources
- Limited processing

Predictable Performance

- Composed of multiple components:
 - Parser (FSM)
 - Control flow graph (weighted DAG)
 - Match/Action Tables

Preliminary Evidence of ISA for Accelerators

- Rich body of work on P4
 - Porting application to use P4
 - Developing P4 compilers for Accelerators

Initial benefits

- Practical verification → limited language
- Demonstrated acceleration → manual partitioning
- Simply development → More intuitive than Verilog
- Many open challenges
 - Security: device level and fabric level
 - Global management
 - Virtualization
 - Efficient utilization of hardware

The Road towards AcceleratorFabric

- Classic but Open Management Challenges
 - Security: device level and fabric level
 - Global resource management
 - Device virtualization
 - Efficient utilization of hardware
 - Program diagnosis and debugging

Consolidated Accelerator Deployments

Accelerator Deployments

Harmony [HotOS'19]

P4Visor [CoNEXT'18]

Life @ the Edge

The edge is real!! (and it gets you burgers)

- Heterogeneity dominates the edge
 - Let's lean into this heterogeneity
 - New systems techniques and principles
- Think holistically about management
 - Performance, efficiency AND correctness, security

Questions?