
Detecting Volumetric Attacks on IoT Devices
via SDN-Based Monitoring of MUD Activity

Ayyoob Hamza1, Hassan Habibi Gharakheili1, Theophilus A. Benson2,
and Vijay Sivaraman1

UNSW Sydney1, Brown University2

ABSTRACT
Smart environments equipped with IoT devices are increas-
ingly under threat from an escalating number of sophisticated
cyber-attacks. Current security approaches are inaccurate,
expensive, or unscalable, as they require static signatures of
known attacks, specialized hardware, or full packet inspection.
The IETF Manufacturer Usage Description (MUD) frame-
work aims to reduce the attack surface on an IoT device by
formally defining its expected network behavior. In this paper,
we use SDN to monitor compliance with the MUD behav-
ioral profile, and develop machine learning methods to detect
volumetric attacks such as DoS, reflective TCP/UDP/ICMP
flooding, and ARP spoofing to IoT devices.

Our first contribution develops a machine for detecting
anomalous patterns of MUD-compliant network activity via
coarse-grained (device-level) and fine-grained (flow-level)
SDN telemetry for each IoT device, thereby giving visibil-
ity into flows that contribute to a volumetric attack. For our
second contribution we measure network behavior of IoT
devices by collecting benign and volumetric attacks traffic
traces in our lab, label our dataset, and make it available to the
public. Our last contribution prototypes a full working sys-
tem (built with an OpenFlow switch, Faucet SDN controller,
and a MUD policy engine), demonstrates its application in
detecting volumetric attacks on several consumer IoT devices
with high accuracy, and provides insights into cost and per-
formance of our system. Our data and solution modules are
released as open source to the community.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SOSR ’19, April 3–4, 2019, San Jose, CA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6710-3/19/04. . . $15.00
https://doi.org/10.1145/3314148.3314352

CCS CONCEPTS
• Security and privacy → Intrusion/anomaly detection
and malware mitigation; Denial-of-service attacks; • Net-
works → Programmable networks;

1 INTRODUCTION
The proliferation of insecure Internet-connected devices is
making it easy [26] for cyber-hackers to attack home, en-
terprise, and critical infrastructures at large scale. Recent
reports [25] show that attackers continue to exploit insecure
IoT devices to launch volumetric attacks in the form of DoS,
DDoS, brute force, and TCP SYN/UDP flooding. Moreover,
the progression of botnets [5, 33] such as Mirai and Per-
sirai, infecting millions of IoT devices, is enabling destructive
cyber-campaigns of unprecedented magnitude to be launched.

Network operators today lack the tools to know whether the
IoT devices connected to their network are behaving normally
or have been cyber-breached [33]. In fact, most operators
would not even know what “normal” behavior is, given the
myriad IoT devices in the market with different functionali-
ties and from various manufacturers. To alleviate this issue,
the IETF has recently proposed the Manufacturer Usage De-
scription (MUD) [14] framework, which requires vendors to
formally specify the intended network behavior of the IoT
devices they put into the market. MUD specification has not
been adopted yet. But, large organizations and critical infras-
tructure are increasingly deploying IoT devices at scale, and
thus demand an automated enforcement of baseline security
for multitude of IoT devices across their network. Note that
the MUD specification is approved for publication as an RFC
which motivates manufacturers to embrace this standard for
competing with other players such as Google [6] and Cisco
[2] who are strongly backing this standard. This specification
allows an operator to lock down the network traffic of the
IoT device using access control lists (ACLs) derived from its
MUD profile; indeed, our recent work [8] has used software
defined networking (SDN) as a vehicle to translate MUD pro-
files into static and dynamic flow rules that can be applied at
run-time on OpenFlow-capable switches to limit IoT traffic,
thereby significantly reducing their attack surface.

1

https://doi.org/10.1145/3314148.3314352

SOSR ’19, April 3–4, 2019, San Jose, CA, USA A. Hamza, H. Habibi Gharakheili, T. A. Benson, and V. Sivaraman

The focus on this paper is on attacks that can be launched
on IoT devices while still conforming to their MUD profiles.
Specifically, we consider volumetric attacks that are not pre-
vented by the MUD profile, since it’s ACLs simply allow or
deny traffic, and there is no provision to limit rates. In this
paper we show that a range of volumetric attacks (including
ones directly on the IoT device and ones that reflect off the
IoT device) are feasible in spite of MUD policy enforcement
in the network. Fending off such attacks requires more sophis-
ticated machinery that monitors the level of activity associated
with each policy rule to detect anomalies. We leverage earlier
studies [9] showing that IoT devices exhibit identifiable traffic
patterns (with limited diversity of activity cycles and protocol
use), making it feasible to develop machine learning methods
for detecting abnormal behavior, which is otherwise difficult
for general-purpose computers that exhibit much wider diver-
sity in network behavior [23]. The specific contributions of
our work are as follows:

First, we develop a system that learns expected patterns of
MUD-compliant behavior for each IoT device by monitoring
its activity via a combination of coarse-grained (per-device)
and fine-grained (per-flow) SDN telemetry at various time
scales, and has the capability to detect volumetric attacks and
the specific traffic streams that contribute to it. Second, we
measure network behavior of real IoT devices under normal
and attacks conditions – we subject our devices to volumteric
attacks including ARP spoof, TCP SYN flooding, Fraggle,
Ping of Death, and SSDP/SNMP/TCP /ICMP reflection. We
label our traffic traces (i.e., benign and attack) collected in our
lab and make our data openly available to the research com-
munity. Lastly, we prototype our system (using an OpenFlow
switch, Faucet SDN controller, and a MUD policy engine),
and quantify the efficacy of our scheme in detecting volumet-
ric attacks on several IoT devices, and release our solution
modules as open source to the community.

2 RELATED WORK
Intrusion detection systems for computer networks have been
studied extensively by the research community, and look ei-
ther for signatures of known attacks, anomalies indicative of
deviation from normal behavior, or specification of allowed
traffic. However, there are limited studies on intrusion detec-
tion solution for IoT devices [22]. Security of IoT devices is
increasingly becoming important due to their limited protec-
tion, if any.

Signatures-based intrusion detection: Nearly all deployed
solutions, including software tools like Bro[37] and Snort
[40], and commercial hardware appliances belong to this cate-
gory. There are studies that apply signature-based intrusion de-
tection/prevention in SDN environments [11, 45]. Signature-
based approach is not sufficient for addressing the new and
growing security issues that come with the proliferation of

IoT devices. Attack signatures can not be developed for a
growing number of IoT devices at scale. We will show (in
§5.6) that signature-based tools are only able to detect limited
number of attacks (to IoTs) those that are common for general
purpose computers.

Anomaly-based intrusion detection: Anomaly detection
holds promise as a way of detecting new and unknown threats,
but despite extensive academic research [28], has had very
limited success in operational environments. The reasons for
this are manifold [23]: “normal” network traffic can exhibit
much more diversity than expected (particularly for general-
purpose devices); obtaining “ground truth” on attacks in order
to train the classifiers is difficult; evaluating outputs can be
difficult due to the lack of appropriate datasets; false posi-
tives incur a high cost on network administrators to inves-
tigate; and there is often a semantic gap between detection
of an anomaly and actionable reports for the network opera-
tor. There are many studies that employ either entropy-based
[34, 42] or machine learning [21, 43, 44] techniques to detect
new attacks in SDN environments. Works in [21, 43, 44] use
two-class classification (i.e., benign and attack). This contra-
dicts with the expectation from anomaly-based technique that
needs to flag deviation from normal behavior [23]. Authors
of [21, 44] propose to use features including flow-level stats
(i.e., packet/byte count and duration), percentage of bidirec-
tional flows, growth rate of unidirectional flows, and growth
rate of number of unique ports, for their classifier. Work in
[43] employs deep learning algorithms using a similar set of
features to classify normal and abnormal traffic. Authors of
[24] applied a techniques in [21] to IoT devices. However,
their evaluation is limited to simulated traffic in mininet that
does not represent behavior of real IoT devices.

Specification-based intrusion detection: Specifying al-
lowed rules for general-purpose devices has been a challenge
[20] as traffic pattern highly depend on applications and user
activity. In [17], the authors propose a specification-based ap-
proach for a wireless sensor network, and expect the network
operator to define the rules. We believe this is too onerous
for the network operator; the behavior is better defined by the
manufacturer of the IoT device, which is exactly what IETF’s
MUD proposal [14] intends. Our work in [8] is the first that
proposes an IDS for IoT devices using a combination of MUD
and SDN and detects attack flows that are not specified in the
device formal MUD profile. This work employs a collection
of anomaly workers each trained by MUD behavioral profile
that detect attacks that conform with MUD profile but display
a deviated traffic profile.

3 ANOMALY DETECTION USING SDN
In this section we describe our attack detection solution, in-
cluding a brief summary of MUD profile (§3.1), the SDN-
based system architecture (§3.2), the anomaly detector (§3.3).

2

Detecting Volumetric Attacks on IoT Devices SOSR ’19, April 3–4, 2019, San Jose, CA, USA
吀倀

ⴀ䰀
䤀一
䬀
 匀
䴀
䄀
刀
吀 
倀䰀

唀
䜀

Figure 1: TP-Link smart plug.

3.1 MUD Profile
MUD is a relatively new IETF framework [14], and the spec-
ification is still evolving. A valid MUD profile contains a
root object called “access-lists” container that comprises sev-
eral access control entries (ACE), serialized in JSON format.
Access-lists are explicit in describing the direction of com-
munication, i.e., from-device and to-device. Each ACE would
match on source/destination port numbers for TCP/UDP, and
type and code for ICMP. The MUD specifications also distin-
guish local-networks traffic from Internet communications.
The MUD proposal defines how a MUD profile needs to be
fetched and how the behavior of an IoT device needs to be
defined. The MUD profile will be downloaded using a MUD
url (e.g., via DHCP option). IoT device manufacturers have
not yet provided MUD profiles for their devices. But, we
released the MUD profiles (automatically generated from
packet traces) for 28 consumer IoT devices [7] – in this paper,
we use a subset of those profiles corresponding to devices that
we experiment with.

We use Sankey diagram in Fig. 1 to represent the MUD
profile of TP-Link smart plug. It is seen that this IoT device
exchanges DNS queries/responses with the local DNS server,
communicates with a range of Internet domains for NTP ser-
vices (i.e., UDP port 123), and talks to its manufacturer server
(i.e., devs.tplinkcloud.com) over TCP port 50443. In
addition, the TP-Link smart plug exposes TCP port 9999 on
the local network to its mobile app for user interaction with
the device. We also see that the smart plug and its mobile app
send periodic pings to the gateway and the plug respectively
for connectivity check.

3.2 SDN-Based System Architecture
An IoT device advertises its MUD profile through a MUD
URL. According to the MUD standard, there are three options
for emitting the MUD URL namely DHCP, LLDP, and X.509
[14]. If a device is compromised, the MUD URL emitted can
potentially be spoofed in case of either DHCP or LLDP. But,
it is secure when the device uses the X.509 extension since
the MUD URL is added to the certificate by the manufacturer.
This means that the MUD URL emitted by an X.509 device
can not be spoofed without detection, even if the device is
exploited.

Fig. 2 shows the functional blocks in our architecture ap-
plied to a typical home or enterprise network. IoT devices
on the left can communicate with other devices on the local
network and also with Internet servers via a gateway. The
architecture comprises an SDN switch whose flow-table rules
will be managed dynamically, a MUD engine in conjunction
with our App on the SDN controller, a MUD collector and a
combination of anomaly-based and specification-based threat
detection. These components interact with each other to dy-
namically manage the flow-table rules inside the switch whilst
monitoring network activity of various flows pertinent to each
device.

It is important to note that our SDN switch does not send
any data packets to the controller; instead, packets that need
to be inspected in software are sent as copies on a separate
interface of the switch, to which a software inspection engine
is attached. This protects the controller from overload from
the data-plane, allowing it to scale to high rates and to service
other SDN applications.

The operational flow of events in Fig. 2 is as follows: the
switch is initially configured by a default rule, as shown by
step 1○, to mirror packets (on port-3), as shown by step 2○,
that reveal the device identity (e.g., DHCP), and all other
packets are forwarded normally (on either port-1 or port-2
depending on local or Internet communications). We note that
DHCP contains the MAC of the device and may provide a
mud-url if the device manufacturer adopts the MUD standard.
This helps our MUD policy engine discover a new IoT device
connected to the network – the MUD engine keeps track
of already discovered devices. Thereafter, the MUD engine
fetches the corresponding MUD profile from a MUD file
server, as shown by step 3○ – The MUD engine stores the
fetched profile till its validity period. In real scenario, the
MUD file server is operated by the manufacturer who can
keeps updating the profile if needed (e.g., firmware upgrade).

The MUD policy engine translates access control entries
(ACEs) of the MUD profile into a set of flow rules (explained
in §3.3). We note that MUD specifications allow manufac-
turers to specify Internet endpoints by their domain-name
in ACEs. These ACEs can not be directly translated to flow
rules and need further inspection to infer DNS bindings. The
MUD engine, therefore, inserts proactive flow entries, shown
by step 4○, for ACEs with known endpoints (i.e., static IPs)
while others are reactively inserted based on run-time DNS
bindings. We set an idle-timeout for reactive flow rules that
are associated with a domain name, as DNS bindings could
be dynamic.

Following insertion of device flow rules, we mirror all
DNS responses in addition to exception packets that do not
match on any proactive or reactive flow rule (i.e., default
mirror of local and Internet traffic). These mirrored packets
are inspected by a module inside the MUD policy engine

3

SOSR ’19, April 3–4, 2019, San Jose, CA, USA A. Hamza, H. Habibi Gharakheili, T. A. Benson, and V. Sivaraman

MUD Policy
Engine

SDN
Controller

SDN App

MUD Profile

Internet
port-1 port-2

port-3local
network

1

MUD
File Server

2

3

4

gateway

SDN switch

MUD
Collector

Specification-based
Intrusion detector

5

6

Anomaly detector

Figure 2: Our SDN-based intrusion
detection system.

Table 1: Flow rules for TP-Link Smart Plug.
flow-id sEth dEth typeEth Source Destination proto sPort dPort priority action
a.1 <gwMAC> <devMAC> 0x0800 [ntp domain names] * 17 123 * 20 forward
a.2 <devMAC> <gwMAC> 0x0800 * [ntp domain names] 17 * 123 20 forward
b.1 <gwMAC> <devMAC> 0x0800 devs.tplinkcloud.com * 6 50443 * 20 forward
b.2 <devMAC> <gwMAC> 0x0800 * devs.tplinkcloud.com 6 * 50443 20 forward
c <devMAC> * 0x888e * * * * * 11 forward
d.1 <devMAC> FF:FF:FF:FF:FF:FF 0x0800 * * 17 * 67 11 forward
d.2 <gwMAC> <devMAC> 0x0800 * * 17 67 * 11 forward
e.1 <gwMAC> <devMAC> 0x0800 gateway IP * 1 * * 11 forward
e.2 <devMAC> <gwMAC> 0x0800 * gateway IP 1 * * 11 forward
f.1 <devMAC> <gwMAC> 0x0800 * gateway IP 17 * 53 11 forward
f.2 <gwMAC> <devMAC> 0x0800 gateway IP * 17 53 * 11 forward & mirror
g.1 <devMAC> <gwMAC> 0x0800 * * * * * 10 forward & mirror
g.2 <gwMAC> <devMAC> 0x0800 * * * * * 10 forward & mirror
h.1 * <devMAC> 0x0806 * * * * * 7 forward
h.2 <devMAC> * 0x0806 * * * * * 7 forward
i.1 <devMAC> * 0x0800 * * 6 9999 * 6 forward
i.2 * <devMAC> 0x0800 * * 6 * 9999 6 forward
j.1 <devMAC> * 0x0800 * * 1 * * 6 forward
j.2 * <devMAC> 0x0800 * * 1 * * 6 forward
k * <devMAC> 0x0800 * * * * * 5 forward & mirror

called “specification-based intrusion detector” to detect traffic
that does not conform to the MUD specification. This module
maintains an intermediate set of rules translated from the
MUD profile along with a DNS cache (all in memory) to
verify if headers of the mirrored packet match with intended
profile of the device.

We note that a sophisticated attack traffic can still pass
undetected [8] using spoofing techniques. In order to identify
such threats we monitor the activity of all device flows that
specified by the MUD profile. To do so, we use MUD collector
to periodically pull flow counters (denoted by step 5○ in
Fig. 2) from the switch, compute the attributes for each device,
and stream them to the corresponding anomaly detector, as
denoted by step 6○. In what follows we explain our features
and anomaly detection algorithm.

3.3 Anomaly Detection Method
We develop a machine learning technique (explained in §3.3.4)
to determine if an IoT device is involved in a volumteric at-
tack or not (the “attack detection”), and if so, to determine the
flow that contributes to the attack (the “attack flow(s) identi-
fication”). Our objective is to train our machine with benign
traffic profile of each device, and detect attacks by detecting
deviation from expected traffic pattern in a device flows that
are defined by the device MUD profile.

3.3.1 Device Flow Rules. As briefly explained in §3.2,
we translate a given MUD profile [7] to flow-table rules and
monitor the expected traffic of the device. For example in
Table 1, we show flow rules translated from the MUD profile
of the TP-Link smart plug. Highlighted rows (i.e., flow-IDs
a.1, a.2, b.1 & b.2) correspond to a snapshot of reactive flow
rules as they vary over time. Note that reactive rules have a
priority slightly higher than of flows mirroring the Internet
traffic. This way, we stop mirroring packets of Internet flows
that conform to the MUD profile. We show domain-names
for Internet source/destination to make it easier to visualize
(in actual flow-table IP addresses are used). Non-highlighted
rows correspond to proactive rules. Proactive rules f.2, g.1 &

g.2, and k, respectively mirror: DNS replies, default Internet
traffic from/to, and the local traffic to this device. We only
have one direction of local traffic (i.e., to the IoT device) to
avoid conflicting with matching on flows of other devices.
Mirroring traffic coming to the device allows us to inspect
any attempt to access standard vulnerable services such as
Telnet, SSH, or HTTP that may be open on IoT devices.

3.3.2 Detection Machines. We now present our two-
stage method for detecting anomalies. For each device, we
train a specific machine based on its MUD profile. We note
that our method is able to detect an attack on the device and
also to identify flow(s) contributing to the attack. Fig. 3 de-
picts the machine structure specific to TP-Link smart plug for
detection of anomalies caused by volumetric attacks traffic. In
this structure, we first identify whether anomaly occurs over
local or Internet communication using two channel workers
(stage-1) – these workers utilize coarse-grained (device-level)
telemetry. A true alarm from the stage-1 workers would trig-
ger corresponding workers at stage-2 where we identify the
flow over which the attacker causes the anomaly using special-
ized flow workers, each corresponding to a flow in Table 1 –
these workers utilize fine-grained (flow-level) telemetry. Note
that an attack is triggered only when workers of the two stages
indicate an anomalous behaviour. In §5.3 we will show that
the combination of the two stages allows us to reduce false
positives while maintaining high true positives.

3.3.3 Features Extractor. Having captured device flow
rules of each IoT device (e.g., Table 1 for TP-Link smart plug),
we now extract corresponding features of network activity.

We use the count of packets and bytes provided by each
flow rule as features. This is because that the size of the packet
can vary for a given protocol. For example, Fig. 4(a) shows
the scatter plot of packet count versus byte count of DNS
downstream traffic captured for Samsung camera over one
month in our lab. It is seen that for a given packet count,
the byte count varies in a range of 1 KB or more – packet
count and byte count are not highly correlated. However, for

4

Detecting Volumetric Attacks on IoT Devices SOSR ’19, April 3–4, 2019, San Jose, CA, USA

PCA

a
anomaly detector

b
anomaly detector

d
anomaly detector

e
anomaly detector

Stage 1
channel workers

Stage 2
flow workers

Flow
telemetry Features

extractor

f
anomaly detector

At
ta

ck
er

\V
ic

tim

Id
en

tif
ie

r

Internet
anomaly detector

Local
anomaly detector

h
anomaly detector

i
anomaly detector

j
anomaly detector

Clustering Outlier DetectionClustering

Figure 3: Structure of our anomaly detection machines
for TP-Link smart plug.
TCP Port 465 downstream traffic for the same device, shown
in Fig. 4(b), packet count and byte count are highly corre-
lated (meaning a fairly consistent packet size). We collect
flow counters every one minute and additionally we consider
the total, mean, and standard-deviation of packet/byte count
over sliding windows of 2-, 3- and 4-minute (explained in
§5). This generates a total of 20 features per each flow rule
at any point in time. It should be noted that we only consid-
ered flow-level attributes for features of our models to avoid
the cost of packet inspection. Our primary objective in this
paper is to identify the anomalous flow(s). Upon detection
of attack flow(s), we may use packet-level attributes (e.g., IP
destination cardinalities or inter-arrival times) to identify the
attacker/victim host, which is beyond the scope of this paper.

For workers of the stage-1, we use attributes of a set of
flows that share the channel specified by the MUD profile (i.e.,
local or Internet) – for example flows a.1, a.2, b.1, and b.2 for
the Internet channel. Each worker of the stage-2 corresponds
to a bidirectional traffic flow (i.e., a couple of flow rule to/from
the device). For example, machine “a” of the stage 2 in Fig. 3
uses features of two flows a.1 and a.2 from Table 1.

Note that we may have multiple reactive rules for an Inter-
net flow due to dynamic DNS bindings. We therefore aggre-
gate these rules by wild-carding the Internet endpoint. It is
important to note that we don’t consider default rules (i.e., g.1,
g.2, and k) for anomaly detection, as they are taken care by
the specification-based intrusion detector (explained in §3.2).

3.3.4 Anomaly Detection Workers. We build our anom-
aly detection workers (both in stage-1 and stage-2) based on
the concept of one-class classification [18] – device workers
are trained by features of benign traffic from their respective
IoT device, and are able to detect whether a traffic observation
belongs to the trained class or not. We employ a clustering-
based outlier detection algorithm comprising three steps, as

0 5 10 15
Packet count

0

1K

2K

3K

4K

5K

B
y
te

 c
o

u
n

t

(a) UDP port 53 downstream.

0 5 10 15
Packet count

0

1K

2K

3K

4K

5K

B
y
te

 c
o

u
n

t

(b) TCP port 465 downstream.

Figure 4: Byte count vs. packet count of downstream re-
mote traffic to Samsung smart-cam.

0 500 1000

time (min)

0

50K

100K

150K

200K

250K

B
yt

e
co

un
t

Benign

Attack

(a)

134
82 7

5
6

(b)

Figure 5: (a) Traffic profile from an Internet server TCP
port 443 to Netatmo camera. (b) Markov Chain of states
transition for the worker “a” of TP-Link plug.

shown in Fig. 3. This is because a simple thresholding would
not be able to distinguish volumetric attacks from benign
traffic. To better illustrate the case, we show in Fig. 5(a)
profiles of benign traffic (solid blue lines) from an Internet
server TCP 443 to Netatmo camera and TCP SYN reflection
attack (dashed red lines) to the same device. It is seen that
no threshold value would detect the attack. This means that
even having static rate-limits in the MUD profile may not be
sufficient in detecting all attacks, instead it is needed to model
and learn the dynamics of traffic profile for various flows. For
our one-class classification, we tried three main techniques
[18] including probabilistic (i.e., Gaussian mixture models),
domain based (i.e., one-class SVM), and cluster-based (i.e.,
DBSCAN, Kmeans), and found that clustering approach per-
formed the best in modeling the benign behavior of our IoT
types.

Principle Component Analysis (PCA): We note that if a
device contains 17 flow rules, then it would have 238 features
in total (each flow contributes to 14 features). This makes it
computationally expensive to analyze this large number of
features. However, there are features which are highly corre-
lated (e.g., Fig. 4(b)) and can be transformed, reducing the
space dimension. We, therefore, employ PCA [29] to extract
the principal components of our features that are orthogonal
to each other. We use Kaiser rule [15] (eigenvalues >1) to de-
duce and select the most suitable set of principle components
that capture as much variation across benign instances in our
dataset. As per PCA requirement, we normalize all features
using z-scores method.

5

SOSR ’19, April 3–4, 2019, San Jose, CA, USA A. Hamza, H. Habibi Gharakheili, T. A. Benson, and V. Sivaraman

Table 2: Anomaly detection machine for TP-Link plug.
Worker Local Internet a b d e f h i j

Features 261 81 41 41 41 41 41 41 41 21
PCA 18 9 4 5 5 2 4 4 4 2

Coverage (%) 97.14 94.9 93.51 96.27 96.46 99.99 98.69 96.62 99.99 99.99
Clusters 53 48 8 50 4 4 36 14 2 4

Clustering: As discussed earlier, we employ several anom-
aly detection workers for each device, an efficient and inex-
pensive clustering algorithm is needed that (a) can set the pa-
rameters automatically (i.e., self-tuned), and (b) is able to deal
with our benign dataset that contains mixture of sparse and
dense regions. Among many possible clustering algorithms,
we use X-means [12] (i.e., a flavor of K-means algorithm)
that is a fairly lightweight yet efficient clustering method.
Accuracy of high dimensional data clustering depends on the
distance function used [10]. Conducting several experiments,
Manhattan distance function provided us with the most op-
timal result. Lastly, we train the clustering algorithm by the
principle components of our training dataset (obtained from
PCA). As a result, the output of X-means algorithm are the
coordinates of the cluster heads, as shown at the bottom of
Fig. 3 by green dots labeled by ci . Table 2 summarizes the
count of features identified for each worker of TP-Link plug.
It is seen that how PCA reduces the feature dimension signifi-
cantly while a high level of variations in the training dataset is
covered. The last column shows the number of benign clusters
created for each worker.

Outlier Detection: We employ two outliers detection tech-
niques (i.e., boundary detection and Markov Chain[19]) to
determine whether an instance is anomalous.

Boundary detection: An anomaly is raised when an ob-
servation deviates from benign clusters. Given cluster heads
and training dataset, we compute the 97.5th percentile as a
boundary for each cluster. Therefore, anomalies observed out-
side these boundaries are alarmed – this may lead to a minor
detection of benign traffic as anomaly (false positive alarm).

Markov Chain: This technique flags anomalous instances
that belong to one of expected clusters but their sequence
of transition from the previous cluster (i.e., state) is not nor-
mal. For this technique, we develop a Markov Chain for
each worker capturing states transition across normal clus-
ters. Fig 5(b) illustrates an example of Markov Chain for one
worker of TP-Link smart plug – these 8 states correspond to
clusters of worker “a” in Table 2. Any transition outside of
this chain will be raised as anomaly.
4 ATTACK TOOL & DATA COLLECTION
In this section we explain our attack scenarios, tool, testbed
and dataset (benign and attack traffic) collected in our lab.

Attack Types and Scenarios: We design two types of
attacks namely, (a) direct and (b) reflection. Our direct at-
tacks include ARP spoofing, TCP SYN flooding, Fraggle
(UDP flooding), and Ping of Death. Reflective attacks include
SNMP, SSDP, TCP SYN, and Smurf. IoT devices (e.g. WeMo

switch and WeMo motion) have limited processing capabil-
ity and become non-functional when they receive a relatively
high rate traffic – the actual value of a “high” rate traffic varies
across devices from WeMo motion to Amazon Echo. Also,
for reflective attacks, it is important to keep the traffic rate
low, ensuring the device remains functional during attack and
reflects the attack traffic to the victim – for example, WeMo
switch becomes non-functional under high rate attack traffic,
and thus makes the intended attack unsuccessful. Due to these
reasons and also to show the ability of our detection method,
we use low-rate and high-rate attacks in our experiments. As
depicted in Table 3, we launched various types of attacks at
different rates, i.e., low: 1 packet-per-second (pps), medium:
10 pps, and high: 100 pps, and with diversity of location for
both attackers and victims being either from Internet (i.e., I)
or local (i.e., L). All of our attacks sustained for 10 minutes. In
total, we have launched 200 attacks, each lasts for 10 minutes.

We designed these specific attacks to analyze how different
rates of attack would impact the traffic in various protocols
including ARP, TCP, UDP, and ICMP – application layer
attacks (e.g., HTTP, HTTPS, DNS, and SMTP) will also
impact these protocols. Our intention was to launch attacks (to
the device or Internet servers) without being detected by the
specification-based intrusion detector, meaning conforming
to MUD profile. Furthermore these attacks were sourced from
within the local network as well as from the Internet. For
Internet sourced attacks, we had enabled port forwarding
(emulating a malware behavior) on the gateway [35]. For local
attacks we employed IP and port spoofing, and for Internet
attacks we employed DNS spoofing followed by IP and port
spoofing.

Tool: Our modular tool, written in Python, comprises a
suite of attacks specific to several real consumer IoT devices.
Our tool automatically identifies vulnerabilities of a device
(i.e., SSDP, SNMP, exposed ports, weak encryption or unen-
crypted communication) via launching various tests against
the device on the local network. Once vulnerabilities identi-
fied, our tool launches pertinent attacks. During attacks, the
tool generates appropriate annotations including the victim IP,
the attacker host informations, start-time, end-time, bitrate,
attack protocol, and attack port number.

Testbed: The lower section of Fig. 6 shows our testbed
comprising a TPLink gateway with OpenWrt firmware that
serves a number of IoT devices including one unit of WeMo
switch, WeMo motion sensor, Samsung smart-camera, TP-
Link smart plug, Netatmo camera, Chromecast Ultra, Amazon
Echo, LiFX bulb, Phillips Hue bulb and iHome Smart plug.
We also consider two attackers in our testbed; locally (inside
LAN) and remotely (on the Internet) with two victims – both
attackers are able to attack both victims.

We connected a 1 TB external hard disk to the gateway to
store packet trace (i.e., pcap files) of all network traffic (i.e.,

6

Detecting Volumetric Attacks on IoT Devices SOSR ’19, April 3–4, 2019, San Jose, CA, USA

Table 3: Attacks launched against our IoT devices. (L:local, d:device, I:Internet)
Maximum packet rate Device label Attack scenario

Attacks 1 pps 10 pps 100 pps WM WS SC TP NC CU AE PH IH LX L→d L→d→L L→d→I I→d→I I→d

Reflection

SNMP ✓ ✓ ✓ ✓ ✓ ✓ ✓
SSDP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

TCP SYN ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Smurf ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Direct

TCP SYN ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Fraggle ✓ ✓ ✓ ✓ ✓ ✓ ✓
Fraggle ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ping of Death ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
ARP Spoof ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 4: Size of our dataset.
Device # train

inst.(min)
test
inst.(min)

attack
inst(min)

Device
label

WeMo motion 15000 55400 300 WM
WeMo switch 15000 55361 180 WS
Samsung smartcam 15000 55364 357 SC
TP-Link smart plug 15000 55372 178 TP
Netatmo camera 15000 55359 147 NC
Chromecast Ultra 15000 28730 252 CU
Amazon Echo 15000 28730 79 AE
Phillips Hue bulb 15000 28730 297 PH
iHome Smart plug 15000 28730 30 IH
LiFX bulb 15000 28730 150 LX

locally and remotely) using tcpdump tool. We had collected
packet traces of benign and attack traffic from our testbed
for a period of 16 days – given known attackers/victims we
annotated the attack traffic in our dataset. Table 4, lists our
dataset. Interestingly we found that there were other attacks
launched from the Internet (i.e., wild attacks explained in
§5.6) as we enabled port forwarding. In order to capture
benign behaviour of IoT devices in our testbed, we installed
a touch replay tool on a Samsung galaxy tab recording all
possible user interactions (e.g., turning on/off lightbulb, or
streaming video from camera) with individual IoTs – each
device has a limited number of functions available. We then
replayed recorded interactions (spread randomly over hour
and day) emulating a real personal activity. For Amazon Echo
specifically, we used a simple text-to-speech program that
randomly picks a statement from a pre-configured list (e.g.,
“Alexa! How is the weather today?", “Alexa! Sing X", etc).

Dataset: We collected two datasets namely raw packet
traces and derived flow counters. We release our datasets
(spanning one month period of benign and attack traffic re-
lating to ten IoT devices and annotation of those attacks) via
[31]. The released dataset contains 30 pcap files and each file
corresponds to a trace collected over a day. Note that there are
17 other IoT devices (e.g., TPLink camera, DLink camera) in
our testbed that are not studied or experimented in this work
but the benign data of these devices are included in our traces
– we only focused on selected devices with more complex
behavior. There are two annotation files comprising: (a) start
time, end time, flows that are influenced during the attack, at-
tack type, bitrate of attack; and (b) pcap file number, attacker,
and victim IP address; that will be released along with the
dataset. Our derived dataset contains counters of flows (com-
puted over a minute) for 10 IoT devices listed in Table 4. The
second column shows the number of training instances (i.e.,
minutely count of packets and bytes per flow rule) for each
device. Our training instances only contain benign traffic. For
testing phase, we collected more than 28,730 instances for
each device containing both benign and attack traffic. Out of
these many testing instances, the number of attack instances
is shown in the fourth column.
5 PROTOTYPE AND EVALUATION
We prototyped our scheme in a small testbed, depicted in
Fig. 6. The objectives of this experimental setup are to demon-
strate the feasibility of our scheme with real equipment and

traffic, and to evaluate the efficacy of anomaly detection and
identification.
5.1 Prototype Implementation
For our system we have developed an application on top of
the Ryu along with the Faucet/Gauge [27] SDN controllers,
the MUD policy engine, the MUD collector, and implemented
the NATS messaging system and used the InfluxDB and H2
databases. Each of these components operates on a separate
docker container over an Ubuntu 16.04 server. In addition, the
MUD file server is a repository of MUD profiles (obtained
from [7]) that runs as an HTTP server on a separate VM in
our University cloud [4]. We release our prototype as open
source [32].

SDN controllers and application: We used open-source
SDN controllers Faucet, Gauge and Ryu in our prototype:
Faucet is used for inserting proactive flows via its config-
uration file; Ryu is used for inserting reactive flows that
are dynamic with idle-timeout (60 minutes); Gauge is used
for collecting flows counters. The configuration file of the
Faucet consists of a set of access control rule that are gener-
ated/augmented by the MUD policy engine (explained next).
Ryu exposes a REST API for insertion of reactive flows that
is convenient to use. But this allows any application to ma-
nipulate flow tables that may cause conflict – both Faucet
and Ryu controllers manipulate the flow-tables. Therefore,
we developed a Python application in Ryu that subscribes to
a specific channel of NATS broker (listening for reactive flow
messages), enforces them into table-0 with high priority (i.e.,
15000 in our prototype) inside the switch. We developed an
application that listens to Faucet Unix data-stream, retrieves
newly discovered device details (including the device MAC,
the switch dpid, VLAN id), and publishes them into the NATS
– this channel is listened by the MUD engine. We also con-
figured Gauge to collect flow counters every minute from the
switch and thereafter writes into the InfluxDB.

SDN switch: We installed OpenWrt firmware (v18.06) and
OVS (v2.8.2) on a TP-Link Archer C7 gateway for our SDN
switch and default gateway. Our switch is configured with
three OpenFlow controllers, as explained above. We created
a VX-LAN tunnel interface between the switch and MUD
policy engine to mirror selected packets that requires further
inspection.

MUD policy engine: We built the MUD policy engine in
Java. It inspects incoming packets from the VX-LAN tunnel

7

SOSR ’19, April 3–4, 2019, San Jose, CA, USA A. Hamza, H. Habibi Gharakheili, T. A. Benson, and V. Sivaraman

Internet

Netatmo
camera TP Link

switch

Trace
Storage

Belkin
motion
sensor

MUD Policy
Engine

MUD Collector

SDN Controller

MUD File
Server

MUD Profile

Samsung
smart

camera

Wemo
switch

attacker

attacker

victim

victim

Port-1

Port-3Po
rt
-2

log device
discovered

GET new device id
And profile

Get IoT MUD
Profile

GET device
Flow counters

device
details

reactive
flows

M
irr

or
ed

 tr
af

fic

Faucet configuration

Log flow counters

Testbed

vxlan tunnel

Prototype

device
details

reactive
flows

Ryu

Lifx
bulb

Phillips
hue

Chromecast
ultra

iHome
Smart plug

Amazon
echo

Figure 6: Our system prototype and testbed.
interface. We developed our asynchronous and non-blocking
packet listener using netty [36]. The engine is responsi-
ble for various tasks including generating/augmenting Faucet
configuration file (based on device MUD profile) upon dis-
covery of a new device, publishing reactive flow rule based on
run-time DNS bindings, and detecting non-compliant traffic
(i.e., specification-based intrusion detector).

We note that the Faucet configuration directory is shared
by both the Faucet controller and the MUD engine. We de-
signed 3 hierarchical levels of configurations file: (a) switch
configuration (i.e., faucet.yaml) – this contains a default
access control rule for each port of the switch, mirroring all
DHCP packets to the MUD policy engine. This configuration
file is generated manually by the network admin who has
prior knowledge of switch, ports, and VLANs; (b) VLAN
configuration (e.g., switch-mac.yaml) that lists all de-
vices against each VLAN – in our testbed all devices belong
to one VLAN for simplicity; (c) device configuration (e.g.,
device-mac.yaml) that lists ACEs for a given device, as
described in §3.3. Once Faucet configuration file is updated,
the MUD policy engine writes the device MAC and its MUD
profile into an H2 [30] database, informing the MUD col-
lector about the newly connected device, thus enabling it to
compute required features for the new device.

MUD Collector: MUD collector periodically (every minute)
polls the H2 to check whether a new device is discovered, if so
then the device MUD profile will be fetched and interpreted
to identify the required features of that specific device. There-
after, the collector will poll (every minute) the InfluxDB for
the device flows counters, compute the features, and writes
feature into a device-specific CSV file. Note that we replay
these features into our anomaly detectors.

Anomaly detector: We developed our attack detection
application using R [39] and Weka [13] tools. PCA library is
available in R, and therefore we implemented our boundary
detection in R. We employed X-means package of Weka
for clustering and used RWeka extension of R to interface
with Weka. We replayed (streamed) the CSV outputs of the
MUD collector into our anomaly detection application. We
then correlated our attack annotation log with the result of
the anomaly detection to compute the performance of our
scheme.

5.2 Feature Analysis
We now evaluate the importance of features in performance of
our anomaly detection. As explained in §3.3.3, we collect flow
statistics every minute and construct attributes using these
statistics in three possible scenarios: (a) feature-set-1 (FS1):
only total count over sliding windows,(e.g., for window size
of 2 min., features are 1-min and 2-min total count of flow
bytes and packets), (b) feature-set-2 (FS2): total count for
the last one minute, and mean and standard deviation over
the window (e.g., for a 2 min. window size, features are 1-
min total count, 2-min mean and 2-min standard deviation of
byte/packet counts), and (c) feature-set-3 (FS3): a combina-
tion of FS1 and FS2. Note that for a 1 min. sliding window
all FS1, FS2, and FS3 correspond to the same set of features.
In Fig. 7, we plot F-score (i.e., a measure of accuracy in bi-
nary classification), True Positive rate (TPR), False Positive
rate (FPR) for each of these feature sets when sliding win-
dow varies from 1 to 8 minutes. This figure also illustrates
the performance of two anomaly detection techniques: only
boundary detection (BD) and combination of BD and Markov
Chain.

Impact of window size: According to Fig. 7(a), for BD
only, as the window size increases the performance is im-
proved steadily, with FS3 outperforming FS1 and FS2. Note
FS1 performs better in smaller windows sizes, since mean/
standard deviation would not give extra information for small
number of data points. Looking into Figures 7(b) and 7(c), we
observe that a larger window size results in high rate of true
positive and false positive. In order to detect low rate attacks,
we need to choose a larger window size. It is also important
to note that a larger window imposes computation cost and
demand a higher memory to compute features.

Impact on detection: Use of just Markov Chain (without
boundary) results in 54.55% of TPR and 0.69% of FPR with
1 minute window for FS1 – a significant portion of attacks are
missed. Applying just boundary, instead, gives a high TPR
81.05%. Combining both boundary detection and Markov
Chain gives 87.40% of TPR (with 1 min window) – 5 attacks
(from a total of 200) that are low rate get missed. The TPR
can be further improved to 90.80% by incorporating a richer
feature set FS3 and increasing the sliding window to 4 min

8

Detecting Volumetric Attacks on IoT Devices SOSR ’19, April 3–4, 2019, San Jose, CA, USA

2 4 6 8

sliding window (min)

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

F
sc

or
e

BD: total (FS1)

BD: mean & std. (FS2)

BD: total, mean & std. (FS3)

BD & Markov Chain: total, mean & std. (FS3)

(a) F-Score

1 2 3 4 5 6 7 8

sliding window (min)

80

85

90

95

100

TP
 ra

te
 (%

)

BD: total (FS1)

BD: mean & std. (FS2)

BD: sum, mean & std. (FS3)

BD & Markov Chain: total, mean & std. (FS3)

(b) True Positive rate

1 2 3 4 5 6 7 8

sliding window (min)

0

2

4

6

8

10

FP
 ra

te
 (%

)

BD: total (FS1)

BD: mean & std. (FS2)

BD: total, mean & std. (FS3)

BD & Markov Chain: total, mean & std. (FS3)

(c) False Positive rate

Figure 7: Impact of various features on performance of anomaly detection. (BD: boundary detection)

(all low-rate attacks get detected) – this is gained at the cost of
higher FPR in Fig. 7(c). We note that this TPR can be achieved
by use of just boundary detection with FS3 and window size of
4 min (as shown by red lines with square markers in Fig. 7(b)).
This shows that traffic characteristics captured by the Markov
Chain can be captured by the boundary detection but over a
larger window.

Summary: If low-rate attacks are not of interest to the
network operator then a small window size with FS1 using
both boundary detection and Markov Chain is recommended
(lower cost and better FPR). If the operator wants to detect all
possible attacks (both low-rate and high-rate), a large window
size with FS3 (using only boundary detection) would be an
efficient approach – note that use of a larger window comes
with the cost of maintaining states for computing features
and results in a slightly higher false positive rate. In next,
we will employ the latter approach to detect all attacks and
operate over the sliding window of 4 minutes – going beyond
4 minutes does not significantly change both TP and FP rates,
but it requires double the amount of states. Note that this does
not affect the responsiveness of our detection method – it still
responds every one minute.

5.3 Attack Detection
We start with performance evaluation of our attack detector
when considering IoT devices all together as well as individ-
ually. The result is illustrated in Table 5. Each row shows
the performance results for various combinations of anomaly
detectors shown in Fig. 3.

Accuracy and False-Positive Rate: Focusing on aggre-
gate of all devices, it is seen that the combination of stage-1
and stage-2 workers (i.e., full structure) gives the highest ac-
curacy of 94.9% (i.e., the percentage of correctly classified
benign and attack instances). We are able to detect 89.7% of
all attacks (TPR: true positive rate) across all IoT devices,
when two-stage anomaly detection is employed. As we ex-
pect, in this situation the lowest false positive rate (i.e., FPR
5.1%) is achieved. Even this rate of false positive may not be
very attractive for real network settings with a large number
of connected devices. To reduce FPR a time-based filtering
can be employed. We use a simple threshold for raising alarm
if the anomaly detection is triggered continuously for more

than “t” minutes. As shown in the second row of Table 5,
having a 2-minute filter reduces the FPR to 2.4%. However,
the TPR is also reduced to 72.3% – because attacks were not
detected for their first two minutes due to time-based alarm
filtering. Increasing this time threshold would enhance the
FPR but it is detrimental to detection responsiveness.

Unsurprisingly, when workers of only stage-1 or stage-2
are used, the overall accuracy drops. We note that stage-2
workers perform slightly better than stage-1 workers – each
stage has its own specialty. Stage-1 deals with coarse-grained
device-level activity whereas stage-2 deals with fine-grained
flow-level activity. Thus, combination of these stages provides
better accuracy and false-positive.

We now consider per-device performance of anomaly detec-
tion. The bottom two rows in Table 5 show the performance,
when local and Internet attacks are separately considered.
For the local detector, the lowest true positive rate (i.e., TPR
80.7%) is achieved for Chromecast Ultra (i.e., device label
“CU”). We found that some of our reflection attacks origi-
nated from local attacker to external victim (i.e., L→d→I)
are missed by this worker, meaning that local traffic features
are not impacted sufficiently to raise an attack alarm. However,
these reflection attack instances are detected by the Internet
worker. Similarly, we observe that the Internet detector for
Amazon Echo (i.e., device label “AE”) suffers from a fairly
low TPR of 68.4% – only a few instances for 1pps and 10pps
TCP SYN attack from Internet were missed, but ultimately
both the attacks were detected over time. Overall, our ma-
chine successfully detected all types (high-, med-, low-rate)
of attacks.

Another interesting observation is that for the stage-1 de-
tector of Samsung camera(i.e., device “SC”), the false posi-
tive is very high (30.5%) however when it is combined with
stage-2 then the false positive drops to 3.1%. This shows that
the coarse-grained behavior (i.e., aggregate of flows) of this
device was not fully learned by our training dataset but flow-
level behavior was well captured and learned.

Detecting Various Attack Types: In Table 6 we show the
number of detected attack instances for each IoT device per
attack type – each instance is one minute worth of traffic.
For example in the first row, we launched 30 instances of
TCP SYN remote reflection attacks (i.e., L→d→L) to device

9

SOSR ’19, April 3–4, 2019, San Jose, CA, USA A. Hamza, H. Habibi Gharakheili, T. A. Benson, and V. Sivaraman

Table 5: Performance of our anomaly detectors.
Anomaly Detectors All devices WM TP SC NC CU AE

A
cc

ur
ac

y
(%

)

T
PR

(%
)

FP
R

(%
)

T
PR

(%
)

FP
R

(%
)

T
PR

(%
)

FP
R

(%
)

T
PR

(%
)

FP
R

(%
)

T
PR

(%
)

FP
R

(%
)

T
PR

(%
)

FP
R

(%
)

T
PR

(%
)

FP
R

(%
)

Stage-1 and Stage-2 combined 94.9 89.7 5.1 95.7 5 95.7 2.3 93.8 3.1 80.3 4.2 79.8 19.7 83.5 3.8
Stage-1 & -2 combined (2-min filtering) 97.5 72.3 2.4 77.7 2.4 76 1 75.6 0.9 71.4 2.1 63.1 13.2 67.1 0.6
Only Stage-2 detector 89.1 92 10.9 96 11.3 96.2 3.4 94.1 6.5 83.7 6.1 86.1 52.3 91.1 16.3
Only Stage-1 detector 85.7 93.7 14.4 97 14.8 96.2 3.9 98.3 30.5 88.4 8.7 88.9 27.7 93.7 23.5
Only Local detector 90.6 91.5 9.4 87.1 8.6 96 2.2 96.2 28.4 94.3 1.5 80.7 7.1 93.3 15.9
Only Internet detector 93.9 88.5 6.1 95 7.2 93.2 2.1 94 3.3 75 8 84.8 23.2 68.4 9.2

Table 6: Detected attacks for individual devices. (L:local, d:device, I:Internet)

Attack Type Attack Scenario All device WM TP SC NC CU

L
au

nc
he

d

D
et

ec
te

d

Id
en

tifi
ed

L
au

nc
he

d

D
et

ec
te

d

Id
en

tifi
ed

L
au

nc
he

d

D
et

ec
te

d

Id
en

tifi
ed

L
au

nc
he

d

D
et

ec
te

d

Id
en

tifi
ed

L
au

nc
he

d

D
et

ec
te

d

Id
en

tifi
ed

L
au

nc
he

d

D
et

ec
te

d

Id
en

tifi
ed

TCP SYN reflection L→d→L 208 198 178 30 30 21 29 28 28 30 29 20 30 29 28 30 29 28
TCP SYN reflection I→d→I 221 186 177 30 28 28 30 29 28 30 28 27 30 20 17 41 24 21
SSDP reflection L→d→L 90 63 18 30 26 18 30 12 0
SSDP reflection I→d→I 91 89 85 30 29 29 31 31 27
SSDP reflection L→d→I 89 85 76 30 29 29 30 28 19
SNMP reflection L→d→L 27 22 0 27 22 0
SNMP reflection I→d→I 30 28 28 30 28 28
SNMP reflection L→d→I 30 29 29 30 29 29
Smurf L→d→L 120 102 97 30 27 27 30 28 27
Fraggle L→d 120 110 109 30 29 29 30 28 28
Fraggle I→d 108 85 79 30 29 29
TCP SYN L→d 210 203 184 30 30 21 30 30 30 30 29 20 30 28 28 30 30 29
TCP SYN I→d 179 145 139 30 29 28 29 27 26 30 28 27 30 16 14 30 18 16
Arp Spoof L→d 297 282 276 30 29 29 30 28 28 30 28 28 27 25 24 30 29 28
Ping of death L→d 180 167 158 30 28 28 30 30 30 30 29 29

label “A” that 30 of them are detected. Our anomaly detection
machine was able to detect all of these 30 attacks just one
minute after their commencement. Results shown in Table 6
highlight the fact that our method is able to detect volumetric
attacks of all types during their lifetime (i.e., 10 minutes or
more).

We note that our scheme may miss certain types of reflec-
tion attacks within the local network (i.e., L→d→L) those
that are broadcast with the source address spoofed as a lo-
cal victim. For this specific type, the original attack traffic
does not match on any device-specific flow rule (e.g., SNMP
reflection attack for Samsung camera and SSDP reflection
for Chromecast Ultra) since we only capture incoming traffic
for the local network (as explained in §3). But, the reflected
traffic may (may not) hit one of the device flows. For example,
we found that the local SSDP reflection attack on WeMo mo-
tion was detected. This is because for this attack the reflected
packets happened to match on one flow of the WeMo motion.
But if the victim is an IoT device, even the local broadcast
reflection attack will be detected by the victims machines.

We also see a low detection, shown by red text in Ta-
ble 6, for SSDP reflection (L→d→L) and TCP SYN (I→d)
in Chromecast Ultra(i.e., device “CU”) , and TCP SYN reflec-
tion (I→d→I) and TCP SYN (L→d) in Netatmo camera (i.e.,
device “NC”). We emphasize that these undetected attack
instances in fact correspond to only the beginning (i.e., first
few minutes) of low-rate attacks from their 10-minute total
duration. This means that for low-rate attacks, our scheme

0 2 4 6 8 10

Training instances (day)

0

20

40

60

80

100

P
er

fo
rm

ac
e

(%
)

accuracy

TPR

FPR

Rand Index

(a) perofrmance vs. training.

0 20 40 60 80 100 120

time (min)

0

10

100

1000

P
ac

ke
t c

ou
nt

ARP
spoof

TCP SYN
TCP SYN
Reflection

Ping of
Death

Benign

Attack

(b) ARP profile.

Figure 8: (a) Performance of anomaly detection for Sam-
sung camera, (b) ARP traffic profile for TP-Link smart
plug (benign versus local attack).

is able to flag them if they last for long duration (e.g., more
than four minutes) which is typically the intention of the
attacker. In other words, all of our attacks were ultimately
detected (i.e., on average after 1.92 minutes from the attack
commencement).

Impact of Training on Performance: The accuracy of
our attack detection highly depends on the benign states that
are learned during the training phase. We see in Fig. 8(a) that
the overall accuracy for Samsung camera is less than 50%
when the machine is trained by only 2-day worth of data, and
it steeply rises to 96.08% when machines are introduced by
instances from one additional day that contain new benign
(expected) states. Instead, the TPR rate is consistently high
(i.e., above 80%) as all attack instances (including low rate
ones) deviate from limited number of trained states. Therefore
it is essential to capture all benign states (i.e., normal) of each
device during the training phase.

10

Detecting Volumetric Attacks on IoT Devices SOSR ’19, April 3–4, 2019, San Jose, CA, USA

We use “Rand index” [16] (a measure of the similarity
between two data clusters) to identify the minimum amount
of training dataset (in terms of number of days) for building
a well-trained model. It is shown by dashed pink lines with
cross markers in Fig. 8(a). A consistently high Rand index
indicates that the training data is sufficient. We can see that
4 days of training instances would result 91% of Rand index
and will relatively persist with more instances trained. This
metric can be used to determine if a model generated from
an environment is deployable for other environments – such
exercise is beyond the scope of this paper.

5.4 Attack Flow Identification
We now look at the performance of our scheme in identify-
ing attack flow. In Table 6, the “Identified” column under
each device shows the number attack instances in which the
contributing flow was correctly identified. It can be seen that
for TCP SYN local reflections (L→d→L) in the first row,
there were 30 attack instances launched on WeMo motion of
which all 30 instances were detected but only in 21 of those
the attack flow was identified correctly. In the remaining 9
instances the ARP flow was only flagged – however our attack
was not launched over ARP. We found that the ARP anomaly
worker is sensitive to (i.e., raises alarms for) most of local
attacks, highlighted by bold blue text under the WeMo motion
in Table 6, while the actual contributing flow was not identi-
fied for some instances. In Fraggle and Ping-of-death, instead,
the attack flow was flagged by the respective worker along
with the ARP worker. We note that it is essential to identify
the attack flow for blocking purpose – attack mitigation is out
of the scope of this work.

Correctness of Flow Alarms: We now look into the per-
formance of individual flow workers (i.e., in our stage-2 anom-
aly detectors). Table 7 lists detected attacks and corresponding
flows identified for the TP-Link smart plug. The “Malicious
Flow” column shows the flow (from Table 1) that we used in
our attack. For TCP SYN reflection (L→d→L), we used TCP
port 9999 (flow i). It is seen that 28 out of 29 attack instances
were correctly detected and all true alarms flagged the correct
flow i, though ARP flow (i.e., flow h) is also flagged in 28
alarms. Such high rate of incorrect ARP alarms is seen for
local TCP SYN, Smurf, Ping-of-Death, highlighted in red text.
In order to better understand the reason for ARP alarms, we
plot in Fig. 8(b) the profile of ARP flow in benign (shown by
solid blue line) versus local attack (shown by dashed red line)
traffic from our training dataset. It is clearly seen that ARP
profile is deviated from its normal pattern even for attacks
that are not directly related to this flow. We note that during
Internet attacks the device ARP profile does not get impacted
significantly to raise alarms.

Another interesting observation is when the ARP spoofing
attack is launched (the last row in Table 7). We see 15 and 12

alarms respectively for DNS (flow f) and local ICMP (flow
j). We note that the ARP spoof causes all victim traffic to
be redirected to the attacker (instead of expected gateway).
Since the TP-Link smart plug was communicating ICMP and
DNS during the ARP spoof attack, as a result the anomaly
was detected by respective flow workers.

These observations can help us determine a weight for
individual workers when identifying attack flow(s). For exam-
ple, if ARP and local TCP port 80 workers flag an anomaly
simultaneously, then we may want to start investigating bidi-
rectional TCP flows to/from port 80 – deprioritizing alarms
form the ARP worker.

5.5 Processing Cost
We now quantify the system performance in terms of process-
ing cost of our packet inspection (done by the MUD policy
engine) to extract DNS bindings, time taken to train anom-
aly detection, storage size of training dataset, size of trained
model, memory demand of features computed at runtime and
time taken for a prediction. The results are listed in Table 8.

Packets inspection is only used for tightening up flow en-
tries inserted into the switch. It is also used for further investi-
gation when an anomalous traffic is flagged – attack analysis
is beyond the scope of this paper. We record the total fraction
of inspected packets measured over a 16-day period in the
second column of Table 8. It is seen that a small fraction
of packets (i.e., less than 1.16%) is mirrored to the inspec-
tion engine (averaged across all devices) – this promises the
scalability of our SDN-based approach.

We note that IoT devices (as opposed to typical computers
or phones) generate limited number of flows and use them
frequently (i.e., MUD profile). As explained in §3, some of
these frequent flows are captured (right after their occurrence)
by reactive flow rules inserted by our system, and therefore
subsequent packets don’t need to be inspected, resulting a
minimal load on engine. It is seen that the fraction inspected
packets is the highest (i.e., . 1.61%) in Table 8 for the WeMo
motion. Interestingly, we found that 99.5% of inspected pack-
ets were DNS responses, with an average rate of 3.13 packets
per minute.

In terms of training time, it took less than 7 minutes for a
given device (the longest time observed for Samsung camera)
to train the entire model set in sequence – training a single
flow-level model took less than 50 seconds. We used Intel
Core CPU 3.1 GHz laptop with 16GB of RAM running Mac
OSX. The size of the model for each device is 14.96 MB
on average. This can be significantly optimized if we use
other tools such as Scikit-learn[38], as R and Weka retain the
training data in the model itself. In the second last column of
Table 8, we record the memory requirement for computing
features of FS3 over a window of 4 minutes – this footprint
varies with different features sets and window sizes. Lastly,

11

SOSR ’19, April 3–4, 2019, San Jose, CA, USA A. Hamza, H. Habibi Gharakheili, T. A. Benson, and V. Sivaraman

Table 7: Identified malicious flow for TP-Link smart plug under attack.

Attack type Attack scenario Launched Detected Malicious flow Identified flows
a b d e f h i j

TCP SYN reflection L→d→L 29 28 i 0 0 0 0 0 28 28 0
TCP SYN reflection I→d→I 30 29 b 0 28 0 0 3 3 0 3
Smurf L→d→L 30 27 j 0 0 0 0 0 27 0 27
TCP SYN L→d 30 30 i 0 0 0 0 0 30 30 0
TCP SYN I→d 29 27 b 0 26 0 0 0 0 0 0
Ping of death L→d 30 30 e 0 0 0 30 0 26 0 0
ARP spoof L→d 30 28 h 0 0 0 0 15 28 0 12

Table 8: Performance metrics.

Io
T

de
vi

ce

in
sp

ec
te

d
pa

ck
et

s(
%

)

tim
e

ta
ke

n
fo

r
tr

ai
ni

ng
(s

)

tr
ai

ni
ng

in
st

an
ce

s(
M

B
)

m
od

el
si

ze
(M

B
)

ru
nt

im
e

fe
at

ur
es

si
ze

(K
B

)

m
od

el
re

sp
on

se
tim

e
(m

s)

WeMo motion 1.61 270 3.04 18.93 4.85 15.12
Samsung smartcam 0.07 419 4.14 29.75 5.68 26.68
All devices 0.92 221.9 2.26 14.96 3.56 13.04

Table 9: Comparison of attacks detection between our solution and Snort
IoT device Detected wild attackers (by our solution) Detected attacks (by Snort)
WM {107.170.227.13} {107.170.227.13}, SSDP reflection(I→d→I)
WS {107.170.228.161} {107.170.228.161}
SC {103.29.71.94, 45.55.2.34, 107.170.229.67,

45.55.14.102, 181.214.206.55, 216.98.153.254,
54.215.173.102, 14.134.5.4, 205.209.159.120}

{103.29.71.94, 45.55.2.34, 107.170.229.67,
45.55.14.102}, SNMP reflection(I→d→I)

TP {107.170.226.164, 185.170.42.66, 46.182.25.42,
45.227.254.243, 185.156.177.13, 17.136.0.172,
125.212.217.214, 107.170.225.175,
217.182.197.186}

{107.170.226.164, 185.170.42.66,
46.182.25.42, 45.227.254.243}

NC {58.182.245.89, 27.75.133.76, 14.234.90.16,
103.4.117.85, 177.74.184.229, 176.36.241.230,
81.17.18.221, 201.174.9.186, 194.208.107.25,
161.97.195.135, 189.165.40.237}

{58.182.245.89, 27.75.133.76, 14.234.90.16,
103.4.117.85}

CU, PH N/A
SSDP reflection(I→d→I)

AE, IH, LX N/A

Table 10: Performance of other anom-
aly detectors.

IoT device TPR (%) FPR (%)
WeMo motion 74.00 3.32
WeMo switch 60.55 1.10
Samsung smartcam 67.78 2.31
TP-Link smart plug 95.19 0.63
Netatmo camera 0.00 0.10
Chromecast Ultra 32.93 3.35
Amazon Echo 15.18 3.27
Phillips Hue bulb 19.86 3.26
iHome Smart plug 70.00 1.94
LiFX bulb 82.00 2.52

it takes on average 13 ms to get a response from the model
when both stage-1 and stage-2 are triggered, highlighting the
efficacy of our scheme in real-time.

5.6 Comparison with Existing Methods
Lastly, we compare the performance of our scheme with exist-
ing tools and proposals. We start with Snort [41], a widely de-
ployed, open-source, signature based IDS, and then reevaluate
our machines with the features proposed by other researchers.

Snort IDS: We configured Snort IDS with the commu-
nity rule-set [3] and replayed our packet traces to Snort IDS
using the tcpreplay tool. Table 9 lists the IP address of
endpoints on the Internet that attacked our testbed during the
experiments, and were detected by our specification-based in-
trusion detector – since these Internet endpoints were not spec-
ified by the MUD profile of respective devices. Note that these
wild attacks from the Internet were seen after port forwarding
was enabled on the gateway. According to AbuseIPDB[1],
most of these endpoints have been reported as abusive IP
addresses (e.g., 181.214.206.55 has a probability of 46% as
being an abusive IP address). We can see that the Snort detects
a subset of these attacks – attacks from IP addresses in red
text are not detected by the Snort. In addition, out of 40 types
of our own attacks, the Snort detected only two namely SSDP
reflection (I→d→I) to WeMo motion and SNMP reflection
(I→d→I) to Samsung camera, shown by blue text in Table 9.
These two types of attacks (detected by Snort) carry traffic
towards the local network and their signature was known to
Snort. While majority of our attacks were specifically de-
signed for IoT devices that Snort does not have the signature
for most of them.

Other machine learners: Works in [21, 24, 43, 44] also
use a machine learning based approach to detect anomalies.
However, the main issue of their approach is that their ma-
chines are based on binary classification and use both benign
and attack traffic for the training. This limits the scalability of
using such solution in an operational network. We note they
also employ packet/byte counters as the feature for their ma-
chines, but at device-level only (i.e., two features: aggregate
bytes and packets of all flows). We reevaluated our anomaly
detection algorithm with these two attributes for comparison
purpose. The results are illustrated in Table 10. We can see
that the overall performance (across 5 devices) is very poor
compared to our scheme, with no attacks detected for the
Netatmo as well as half of the attacks are missed for WeMo
motion and Samsung smartcam.
6 CONCLUSIONS
Vulnerable IoT devices are increasingly putting smart environ-
ments at risk by exposing their networks unprotected to cyber
attackers. MUD framework aims to reduce the attack surface
on IoTs by formally defining their expected network behavior.
In this paper, we have focused on detecting volumetric attacks
that are not prevented by the MUD profile. We developed
an SDN-based system empowered by machine learning to
monitor and learn behavioral pattern of MUD rules at coarse-
grained (per-device) and fine-grained (per-flow). We then
subjected real IoT devices to a range of volumteric attacks
(designed to conform to MUD profiles) in our lab, collected
and labeled our traffic traces. Lastly, we prototyped our sys-
tem, and quantified the efficacy of our scheme in detecting
volumetric attacks. We made our dataset and system available
to the public.

12

Detecting Volumetric Attacks on IoT Devices SOSR ’19, April 3–4, 2019, San Jose, CA, USA

REFERENCES
[1] 2018. AbuseIPDB. (2018). https://www.abuseipdb.com Accessed:

2018-06-05.
[2] 2018. Manufacturer Usage Description. (2018). https://developer.cisco.

com/site/mud/
[3] 2018. Snort. (2018). https://snort.org/
[4] 2018. UNSW MUD repository. (2018). https://iotanalytics.unsw.edu.

au/mudprofiles
[5] Cisco. 2018. Cisco 2018 Annual Cybersecurity Report. Technical

Report.
[6] daq 2018. Device Automated Qualification for IoT Devices. (2018).

https://github.com/faucetsdn/daq
[7] A. Hamza et al. 2018. Clear as MUD: Generating, Validating and

Applying IoT Behaviorial Profiles. In Proc. ACM Sigcomm workshop
on IoT S&P. Budapest, Hungary.

[8] A. Hamza et al. 2018. Combining MUD Policies with SDN for IoT
Intrusion Detection. In Proc. ACM Sigcomm workshop on IoT S&P.
Budapest, Hungary.

[9] A. Sivanathan et al. 2017. Characterizing and classifying IoT traffic
in smart cities and campuses. In Proc. IEEE INFOCOM workshop on
SmartCity. Atlanta, Georgia, USA.

[10] C. C Aggarwal et al. 2001. On the surprising behavior of distance
metrics in high dimensional spaces. In Proc ICDT. Springer, Berlin,
Heidelberg.

[11] C. Liu et al. 2017. Piggybacking Network Functions on SDN Reactive
Routing: A Feasibility Study. In Proc. ACM SOSR. Santa Clara, CA,
USA.

[12] D. Pelleg et al. 2000. X-means: Extending K-means with Efficient
Estimation of the Number of Clusters.. In Proc ICML. San Francisco,
CA, USA.

[13] E. Frank et al. 2016. The WEKA Workbench. Online Appendix for
Data Mining: Practical Machine Learning Tools and Techniques, 4th
edn. Morgan Kaufman, Burlington (2016).

[14] E. Lear et al. 2018. Manufacturer Usage Description Specification
(work in progress). Internet-Draft draft-ietf-opsawg-mud-25. IETF
Secretariat.

[15] H.F Kaiser et al. 1960. The application of electronic computers to factor
analysis. Educational and psychological measurement 20, 1 (1960),
141–151.

[16] H. Lawrence et al. 1985. Comparing partitions. Journal of classification
2, 1 (1985), 193–218.

[17] J. P. Amaral et al. 2014. Policy and network-based intrusion detec-
tion system for IPv6-enabled wireless sensor networks. In Proc. IEEE
International Conference on Communications (ICC). Sydney, NSW,
Australia, 1796–1801.

[18] M. Pimentel et al. 2014. A review of novelty detection. Signal Process-
ing 99 (2014), 215–249.

[19] P. Garcia-Teodoro et al. 2009. Anomaly-based network intrusion de-
tection: Techniques, systems and challenges. computers & security 28,
1-2 (2009), 18–28.

[20] P. Uppuluri et al. 2001. Experiences with Specification-Based Intrusion
Detection. In Proc. RAID. Davis, USA.

[21] R. Braga et al. 2010. Lightweight DDoS flooding attack detection using
NOX/OpenFlow. In Proc. IEEE LCN. Denver, CO, USA, 408–415.

[22] R. Doshi et al. 2018. Machine Learning DDoS Detection for Consumer
Internet of Things Devices. In Proc. IEEE S&P workshop on Deep
Learning and Security. San Francisco, USA.

[23] R Sommer et al. 2010. Outside the closed world: On using machine
learning for network intrusion detection. In Proc. IEEE Security and
Privacy (SP). Berkeley, CA, USA.

[24] S. Bhunia et al. 2017. Dynamic attack detection and mitigation in
IoT using SDN. In Telecommunication Networks and Applications
Conference (ITNAC), 2017 27th International. IEEE, 1–6.

[25] S. Boddy et al. 2017. The Hunt for IoT: The Rise of Thingbots. Technical
Report. F5 Labs.

[26] F. Loi et al. 2017. Systematically Evaluating Security and Privacy for
Consumer IoT Devices. In Proc. ACM CCS workshop on IoT S&P.
Dallas, Texas, USA.

[27] faucet 2018. Faucet. (2018). https://faucet.nz/
[28] P. García-Teodoro, J. Díaz-Verdejo, G. Maciá-Fernández, and E.

Vázquez. 2009. Anomaly-based Network Intrusion Detection: Tech-
niques, Systems and Challenges. Comput. Secur. 28, 1-2 (Feb. 2009),
18–28.

[29] H. Abdi et al. 2010. Principal component analysis. Wiley interdisci-
plinary reviews: computational statistics 2, 4 (2010), 433–459.

[30] h2 2018. H2 Database. (2018). http://www.h2database.com
[31] A. Hamza. 2018. Attack Data. (2018). https://iotanalytics.unsw.edu.

au/attack-data
[32] A. Hamza. 2018. MUD-ie. (2018). https://github.com/ayyoob/mud-ie
[33] Cisco Systems Inc. 2017. Midyear Cybersecurity Report. Technical

Report.
[34] K. Giotis et al. 2014. Combining OpenFlow and sFlow for an effective

and scalable anomaly detection and mitigation mechanism on SDN
environments. Computer Networks 62 (2014), 122–136.

[35] M. Lyu et al. 2017. Quantifying the Reflective DDoS Attack Capa-
bility of Household IoT Devices. In Proc. ACM WiSec. Boston, Mas-
sachusetts.

[36] netty 2018. Netty. (2018). https://netty.io/
[37] Vern Paxson. 1999. Bro: A System for Detecting Network Intruders in

Real-time. Comput. Netw. 31, 23-24 (Dec. 1999), 2435–2463.
[38] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.

Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
2011. Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research 12 (2011), 2825–2830.

[39] R Core Team. 2017. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria.
https://www.R-project.org/

[40] Martin Roesch. 1999. Snort - Lightweight Intrusion Detection for
Networks. In Proc. USENIX Conference on System Administration.
Seattle, Washington.

[41] M. Roesch. 1999. Snort - Lightweight Intrusion Detection for Net-
works. In Proc USENIX Conference on System Administration. Seattle,
Washington.

[42] S. A. Mehdi et al. 2011. Revisiting traffic anomaly detection using soft-
ware defined networking. In Proc. Springer RAID. Berlin, Heidelberg.

[43] T. Tang et al. 2016. Deep Learning Approach for Network Intrusion
Detection in Software Defined Networking. In Proc. IEEE WINCOM.
Fez, Morocco.

[44] Y. Cui et al. 2016. SD-Anti-DDoS: Fast and efficient DDoS defense in
software-defined networks. Journal of Network and Computer Applica-
tions 68 (2016), 65–79.

[45] Changhoon Yoon, Taejune Park, Seungsoo Lee, Heedo Kang, Seung-
won Shin, and Zonghua Zhang. 2015. Enabling Security Functions
with SDN. Comput. Netw. 85, C (July 2015), 19–35.

13

https://www.abuseipdb.com
https://developer.cisco.com/site/mud/
https://developer.cisco.com/site/mud/
https://snort.org/
https://iotanalytics.unsw.edu.au/mudprofiles
https://iotanalytics.unsw.edu.au/mudprofiles
https://github.com/faucetsdn/daq
https://faucet.nz/
http://www.h2database.com
https://iotanalytics.unsw.edu.au/attack-data
https://iotanalytics.unsw.edu.au/attack-data
https://github.com/ayyoob/mud-ie
https://netty.io/
https://www.R-project.org/

	Abstract
	1 Introduction
	2 Related Work
	3 Anomaly Detection using SDN
	3.1 MUD Profile
	3.2 SDN-Based System Architecture
	3.3 Anomaly Detection Method

	4 Attack Tool & Data Collection
	5 Prototype and Evaluation
	5.1 Prototype Implementation
	5.2 Feature Analysis
	5.3 Attack Detection
	5.4 Attack Flow Identification
	5.5 Processing Cost
	5.6 Comparison with Existing Methods

	6 Conclusions
	References

