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ABSTRACT
Over the last few years, we have experienced a massive transfor-
mation of the Software Defined Networking ecosystem with the
development of SDNEnhancements, e.g., Statesman, ESPRES, Pane,
and Pyretic, to provide better composability, better utilization of
TCAM, consistent network updates, or congestion free updates. The
end-result of this organic evolution is a disconnect between the SDN
applications and the data-plane. A disconnect which can impact an
SDN application’s performance and efficacy.

In this paper, we present the first systematic study of the inter-
actions between SDNEnhancements and SDN applications – we
show that an SDN application’s performance can be significantly
impacted by these SDNEnhancements: for example, we observed
that the efficiency of a traffic engineering SDN application was re-
duced by 24.8%. Motivated by these insights, we present, Mozart,
a redesigned SDN controller centered around mitigating and reduc-
ing the impact of these SDNEnhancements. Using two prototypes
interoperating with seven SDN applications and two SDNEnhance-
ments, we demonstrate that our abstractions require minimal changes
and can restore an SDN application’s performance. We analyzed
Mozart’s scalability and overhead using large scale simulations of
modern cloud networks and observed them to be negligible.

CCS CONCEPTS
• Networks → Programmable networks; Network management.

KEYWORDS
Software Defined Networks, Composition, Compilers

ACM Reference Format:
Zhenyu Zhou and Theophilus A. Benson. 2019. Composing SDN Controller
Enhancements with Mozart. In SoCC ’19: ACM Symposium of Cloud Com-
puting conference, Nov 20–23, 2019, Santa Cruz, CA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3357223.3362712

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SoCC ’19, November 20-23, Santa Cruz, CA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6973-2/19/11. . . $15.00
https://doi.org/10.1145/3357223.3362712

1 INTRODUCTION
“The art of simplicity is a puzzle of complexity.”

—Douglas Horton.

Cloud providers employ Software Defined Networking (SDN) to
simplify network management and amongst other things to expedite
virtual network provisioning [13, 15, 16, 30]. With SDNs, providers
can now configure their networking infrastructure using higher level
abstractions provided by SDN Applications (SDNApps) rather than
through low-level commands provided by device vendors.

To enable innovation, SDN-developers often decouple the cre-
ation and design of individual networking functionality (encapsu-
lated in SDNApps) from global network-wide optimizations (en-
capsulated in SDNEnhancements). Unlike SDNApps which provide
specific network functionality (e.g., traffic engineering or network
virtualization), SDNEnhancements are designed to address deficien-
cies in the SDN ecosystem and provide general optimizations for
SDNApps (e.g., better utilization of TCAM; consistent network
updates – a more exhaustive list is provided in Table 1).

Class of
SDNEnhancement Example Description

Conflict-Resolver [14, 48]
Enforces resource allocation
to different SDNApps

TCAM-Optimizer [25, 51]
Minimizes switch memory
(TCAM) utilization

Consistent Update [33, 40, 45]
Updates network paths in
a consistent manner

Invariant Checker [27, 28]
Checks to see if a network
invariant holds (e.g. no cycles)

SDNApp Composition [5, 35, 37]
Combines rules from
different SDNApps

Fault Tolerance Path [44]
Automatically creates backup
paths to overcome link failure

Table 1: Taxonomy of SDNEnhancements.

These SDNEnhancements have evolved organically in response
to the recent issues network administrators faced while deploying
SDNs. For example, the controller’s inability to perform congestion-
free network updates [33, 45] which results in network performance
anomalies or deficiencies within the data-plane update mechanisms,
e.i., consistent update problems [45] (Section 2).

As a result of this organic evolution, today many SDNEnhance-
ments have adhoc designs. In particular, SDNEnhancements are
either co-designed with SDNApps which limits their generality or
SDNEnhancements are inserted transparently into the SDN ecosys-
tem which, while improving generality, hurts the SDNApp’s per-
formance. The latter impacts performance because it creates a dis-
connect between the SDNApp’s view of the network and the actual
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network state: a disconnect between the control messages (forward-
ing rules) generated by an SDNApp and the forwarding rules stored
in the data-plane which can impact an SDNApp’s performance by
as much as 28% (Section 3).

In this paper, we take a step back and ask more fundamental
questions:

“What is the right interface for enabling principled interactions
between SDNApps and SDNEnhancements? What abstractions are
required to systematically include SDNEnhancements into the SDN

ecosystem?”

To answer these questions, we take inspiration from the compiler
community and their toolchain design where (1) compiler optimiza-
tions are explicitly configured by a developer, (2) flags are used to
express hints that ensure that the optimizations do not impact pro-
gram intent, and (3) optimizations are treated as transformations on
an intermediate representation which allows for more systematic rea-
soning of their implications. Motivated by these insights, we argue
for designing an intermediate representation of the SDNApp control
messages, a representation that is amendable to both principled analy-
sis and modifications by SDNEnhancements. Furthermore, we argue
that SDNEnhancements should be more systematically included
into the SDN environment but treated as black box transformation
engines that operate on intermediate representation and create inter-
mediate representation as output. Given this model, administrators
can control transformations with SDN-Flags.

Current solutions to SDN composition fail to answer our original
questions. First, traditional SDNApp composition (e.g. Pyretic [37])
focuses on safely combining multiple SDNApps and tackling the
complexity arising from sharing network resources. Instead, we fo-
cus on the SDNEnhancements applied to the resulting composed
rules. Second, novel interfaces between the SDNApp and SDNEn-
hancements, e.g., Athens [5], require the SDNApp developers to
write code that analyzes and evaluates the transformations made
by SDNEnhancements. Unfortunately, this interface requires the
SDNApp to understand the implications of all potential SDNEn-
hancements. We argue that developers should simply specify the
class of transformations that are tolerable, or not, without needing to
understand or evaluate the multitude of SDNEnhancements (or their
combined transformations).

In this paper, we propose Mozart, a novel controller framework
that introduces, a simple but powerful interface that standardizes
interactions between controllers and the SDNEnhancements thus
enabling us to systematically reason about SDNEnhancements: to
mitigate the implications of SDNEnhancements on SDNApps we
propose a set of SDN-Flags, akin to compiler flags, that lets SD-
NApps specify the class of transformations that impact correctness
or efficiency. While we have implemented our abstractions with two
popular controllers, we believe that our abstractions can be easily
incorporated into emerging research prototypes, e.g., SoL [18] and
YANC [36].

In summary, we make the following contributions:

• Systematic Study of Complexity: We present a systematic
study of the implications of applying realistic SDNEnhance-
ments to SDNApps and show that an SDNApp’s performance
can be reduced by as much as 24.8% (Section 3).

• SDN Abstractions: We describe a set of interfaces and ab-
stractions for mitigating and reducing the impact of these
SDNEnhancements on SDNApps (Section 4).

• Implementation & Evaluation: We build a working proto-
type implementation of Mozart on two controllers (Flood-
light [2] and Ryu [1]) and demonstrate the benefits of our
primitives with seven SDNApps and two SDNEnhancements
(Section 7). Our evaluations demonstrate that our prototype
can minimize the impact of these SDNEnhancements. More-
over, we show that our abstractions are non-invasive and
require as little as 18 lines of code changes to the SDNApps
(Section 7).

Roadmap. In Section 2, we describe the structure of modern
SDNApps and highlight problems in SDNEnhancements. Then, in
Section 3, we study the implications of applying SDNEnhancements
to SDNApps. In Sections 4 and 5, we present our abstractions and
models. In Sections 6 and 7, we present our prototype and its evalua-
tion. We present discussions and related works in Section 8 and 9.
Section 10 concludes with final remarks.

2 MOTIVATION
In this section, we describe the fundamental structure of an SDNApp,
present the simplifying assumptions that SDNApps make about the
networks, and conclude by discussing a subset of SDNEnhance-
ments that have been developed to correct the implications of these
assumptions.

2.1 The Case for SDNEnhancements
SDNApps encapsulate control-plane functionality (network policies)
and are designed to be event-driven. They interact with the data-plane
by generating SDN control messages, e.g., OpenFlow messages
(forwarding rules). We illustrate the need for SDNEnhancements by
examining a canonical traffic engineering SDNApp, e.g., Hedera [4],
and analyzing its interactions with the network. Hedera, Algorithm 1,
aims to improve data center performance by detecting elephant
flows and load balancing them on distinct paths. Hedera does this in
three steps: (1) monitoring the network and collecting statistics, (2)
detecting elephant flows and calculating new paths to ensure load
is balanced, and (3) configuring new paths into the network with
OpenFlow control messages.

SDNApps are written using one of two well-established patterns:
proactive [4, 8, 9, 20, 22] and reactive [41, 42]. The fundamen-
tal difference between the two patterns is that the event loops for
proactive SDNApps, e.g., Hedera, is triggered by a timer whereas
reactive SDNApps are triggered purely by the arrival of network
events, e.g., Packet-In events. The discussion below applies equally
to both classes of SDNApps. In applying these control messages
to the network, SDNApps, including Hedera, make the following
assumptions about the network:

Instantaneous Updates: SDNApps assume that the SDN con-
trollers instantaneously apply OpenFlow rules to the network de-
vices. However, network latency between the controller and devices
leads to out of order or delayed updates. A class of SDNEnhance-
ments [33, 45], Consistent-Update, have been developed to ensure
atomic and consistent updates.
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1 while true do

/* Get Network Input */

2 foreach device in Network do
3 Counters .Append(device .GetStatistics())

4 end

/* Control Function */

5 Rules = BinPackinдHeuristic(Counters)

/* Send Output to Network */

6 foreach device in Network do
7 device .installRules(Rules)

8 end

9 Sleep100msecs

10 end
Algorithm 1: Pseudocode for Hedera, An SDN Application
for Traffic Engineering in Data Centers.

Implication on SDNApps: The SDNEnhancements introduce con-
sistency by employing techniques motivated by 2-phase commit or
causal consistency. The implication of these SDNEnhancements is a
temporary duplication of rules: the old and the new. This essentially
transforms the OpenFlow-message into two duplicate messages. Un-
fortunately, the SDNApps are unaware of the old rules and will
subsequently ignore them and their associated metadata. For exam-
ple, Hedera installs rules as output but also collect the metadata from
these rules as input. Unfortunately, Hedera will only ask for meta-
data for the rules it is aware of – assuming that the old rules have
been deleted the Hedera will ignore them. Lacking such metadata
may reduce the efficiency or accuracy of the control functions of
SDNApps such as Hedera.

Infinite Hardware Resources: SDNApps assume an infinite amount
of device memory (TCAM); However, TCAM space is limited in
existing switches. Most can support ∼ 1K rules. The design choice
of abstracting out details and limitations of the physical hardware
is a common system design principles (e.g., an OS provides virtual
memory). However, unlike an operating system which provides ade-
quate abstractions to support this, an SDN controller does not. Thus
to overcome this limitation, a class of SDNEnhancements [25, 51],
TCAM-Optimizers, have been developed to provide the illusion of
infinite memory.
Impact on SDNApps: These SDNEnhancements create optimized-
rules that efficiently utilize switch TCAM by merging, moving or
splitting the rules generated by the SDNApp: essentially transform-
ing an OpenFlow-message into Coarser Granularity or Finer Gran-
ularity messages. Unfortunately, certain SDNApps install rules of
a certain granularity under the assumption that these rules can be
used to collect metadata of flows at the pre-specified granularity. The
implication of these coarser granularity rules is that metadata can
only be collected at that coarser granularity. For Hedera, a direct im-
plication is that the control function may be unable to load-balance
at a finer-granularity thus impacting Hedera’s effectiveness (we em-
pirically quantify this impact in Section 3).

Unmodified Actions: SDNApps assume that the network receives
and faithfully enforces the actions associated with the rules it in-
stalls.
Impact on SDNApps: In addition to modifying an OpenFlow-rule’s
match by making it coarser or finer, SDNEnhancements may also
change the OpenFlow-rule’s actions. For example, DiFane [51], a
TCAM optimizing SDNEnhancement alters paths and uses detours
to minimize the number of TCAM entries. In general, SDNEnhance-
ments may transform actions in one of the following ways: (1)
changing the network path by altering the interface associated with
an action, (2) changing the reachability by changing the action, or
(3) changing the QoS disciplines by changing the queues associated
with the action. For Hedera, a direct implication of path changes
(detours) is that large flows explicitly being isolated may be placed
on identical links resulting in congestion. This would minimize
Hedera’s effectiveness.

2.2 SDNEnhancement Definition
An SDNEnhancement is a controller add-on which augments con-
troller’s base functionality by providing additional properties to the
applications beyond simple demultiplexing and multiplexing of the
control messages. Given this definition, the fundamental distinction
between SDNApps and SDNEnhancements lies in where network
control and management policies lie. The SDNApps encapsulate
and contain the management policies – the OpenFlow messages that
they generate reflect these policies. On the other hand, SDNEnhance-
ments take in the OpenFlow rules (or policies) created by SDNApps
and perform some optimizations (e.g., TCAM optimizers) or sanity
checks (e.g., conflict resolvers or consistent updates). In general, SD-
NEnhancements do not themselves contain any network policies and
by themselves. In short, SDNEnhancements cannot run or control
the network.

2.3 SDNEnhancement Deployment Scenarios
These SDNEnhancements are often bundled as a part of the con-
troller and in a few cases they are deployed as a proxy service
between the controller and the data-plane. In both situations, the
SDNEnhancements and the transformations that they perform are
hidden from the SDNApps.

Takeaways. Current SDN controllers lack appropriate primitives
to enable higher level SDNApps to efficiently and safely utilize
switch’s hardware. While many SDNEnhancements have been de-
veloped to provide these primitives to SDNApps, transparently ap-
plying SDNEnhancements to unsuspecting SDNApps can result in
disastrous consequences, e.g., correctness violations, compromised
accuracy, or reduced reactiveness. In this section, we present a rep-
resentative set of SDNEnhancements and SDNApps and use them
to illustrate the dangers of naively interposing SDNEnhancements
between SDNApps and the data-plane.

Moreover, our observations extend to other SDNEnhancements
not discussed here, such as, Invariant-Checkers [27, 28], which have
similar problems as Conflict-Resolver SDNEnhancements [14, 48].
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3 UNDERSTANDING SDN-ENHANCEMENT
We now present empirical data to quantify the impact of SDNEn-
hancements on SDNApps: we focus on the TE-SDNApp discussed
in Section 2 (Hedera) and analyze reduction in aggregate bandwidth
(efficiency) which allows us to understand the immediate danger of
using SDNEnhancements.

3.1 Experiment Setup
We begin by describing the workloads and topologies used in our
study. We conduct our study in Mininet [32] (an emulator) using
a k = 4 Fat-Tree data center topology [3]. We investigate the SD-
NApps and SDNEnhancements under both realistic [7] and synthetic
workloads (described in [3]). We performed our tests on a 2.80GHz
quad core Intel Xeon PC with 16GB of memory running Ubuntu
14.04.

SDNEnhancements. We studied two different and representative
SDNEnhancements:

• TCAMOptimizer: an SDNEnhancement that aims to maxi-
mize TCAM utilization. This SDNEnhancement is modeled
after the optimizations discussed in [25].

• ConflictResolver: a canonical conflict resolving and resource
management SDNEnhancement modeled after Statesman [48].

3.2 Implications of SDNEnhancements
In our study, we compare the aggregate network bandwidth under
several different scenarios: None, no traffic engineering (provides us
with a lower bound on performance); Hedera, the traffic-engineering
SDNApp is used with no SDNEnhancements (provides us with
an upper-bound on performance); TCAMOptimizer, Hedera is run
with the TCAMOptimizer; ConflictResolver, Hedera is run with the
ConflictResolver; ALL, Hedera is run with both SDNEnhancements.

SDNApp Efficiency: In Figure 1, we compare the aggregate net-
work bandwidth against the number of TCAM entries used by Hed-
era. Recall, the goal of the SDNApp is to maximize network band-
width utilization while the goal of the TCAMOptimizer is to mini-
mize memory utilization. We observe that applying TCAMOptimizer
reduces TCAM utilization by 57.5% but at the cost of performance
(24.8% reduction in aggregate bandwidth). This reduction in band-
width occurs because TCAMOptimizer substitutes fine-grained rules
for coarse-grained rules which prevents Hedera from identifying
some elephant flows. Similarly, we observe a decrease in aggregate
bandwidth when ConflictResolver is used because Hedera’s reaction
latency increases thus prolonging periods of congestion and reducing
bandwidth for congested flows.

4 RETHINKING CONTROLLER
ARCHITECTURES

The last two sections highlight several alarming problems: first,
modern controllers lack appropriate primitives to support SDNApps,
and second, adhoc integration of SDNEnhancements, which provide
these missing primitives, can result in catastrophic consequences.
Existing design choices for attacking these problems broadly fall
into three categories.

First, introducing new abstractions that empower SDNApps and
SDNEnhancements to detect and react to each other (e.g., Athens [5]).
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Figure 1: Aggregate Bandwidth and TCAM Usage.

This approach is prone to oscillations and convergence issues [5].
Furthermore, it unnecessarily burdens SDNApp developers to write
code for conflict detection and resolution. Second, developing new
controllers that allow SDNApps and SDNEnhancements to directly
specify their internal constraints and objectives; the controller then
solves an optimization problem to automatically arrive at an op-
timal solution (e.g., extending SoL [18] to support composition).
This approach requires SDNApp developers to agree on a com-
mon meta-objective on which the controllers can optimize and to
transform their internal objectives into this meta-objective. Finally,
forcing developers to write monolithic SDNApp that include SD-
NEnhancements, e.g., Niagara [24] which combines TE with TCAM
optimizations. Unfortunately, this does not scale and increases the
barrier for developing new SDNApps or SDNEnhancements. These
three alternatives all place unnecessary burdens on the SDNApp
developers countering one of the motivating factors of SDNs: ease
of developing custom SDNApps.

Instead, we take inspiration from the compiler community and ar-
gue that SDN controllers, SDNEnhancements, and SDNApps should
be redesigned to mirror the interactions between compilers, compiler
optimizations, and developers. Specifically, the compiler subsumes
and controls all optimizers and uses a set of compiler-flags to deter-
mine the set of optimizations to perform and how to perform them:
the flags are, in turn, controlled by the developer. For example, de-
velopers can specify “-01” to turn off all optimizations and improve
compilation speed, or specify “-fno-elide-constructors” to turn off
a specific optimization. Similarly, the controller should subsume
and control, rather than be disjointed from, the SDNEnhancements
and the controller should leverage SDN-Flags from the SDNApps to
determine how to apply the SDNEnhancements to the SDNApps.

Our compiler-inspired approach explores a point in the spectrum
of available design choices, alternatively we could raise the level
of abstraction, by introducing a higher-level language [37, 44, 49]
for programming SDNApps – this interface shifts the burden from
the developer to the runtime which automatically infers the set of
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transformations that are allowable. Unfortunately, higher-level pro-
gramming APIs have received little adoption from the industry due
to the overheads required to train developers to learn the new lan-
guage. Motivated by our desire to integrate into currently deployed
controllers, e.g., ONOS, Floodlight, FAUCET and OpenDaylight,
we choose the former approach of enriching the current abstractions
and, thus, we apply a paradigm intimately that the developers are
familiar with – compiler optimizations.

4.1 Compilers for SDNs
Next, we show how interactions within the SDN ecosystem can be
represented within a compiler-style abstraction. We focus on the
SDN control messages, on policies and SDNEnhancements.

At a high level, a traditional compiler takes in source code, trans-
forms it into an intermediate representation (a more general instruc-
tion set). In the intermediate form, code is grouped into blocks and a
DAG is created capturing the control flow between blocks. The com-
piler applies a set of local and global optimizations (transformations)
to the resulting DAG. The local optimizations focus on a block of
code, whereas global optimizations operate across blocks of code.

Next, we show how we map concepts within the SDN ecosystem
into the traditional compiler scenarios. We focus on (1) the individual
control messages that make up the SDN assembly code, (2) a novel
abstraction for capturing logical blocks of messages, (3) a method
for inferring control flow (and dependencies) between blocks, and
(4) a novel set of SDN-Flags.

SDN Instruction Set: In SDN, the controller configures the net-
work using a set of low-level control messages discussed earlier
(Section 2) – OpenFlow uses rules (a pair of match and action tu-
ples). These are akin to low level assembly code. SDNEnhancements
transform these control messages into control messages, e.g., local
SDNEnhancements transform messages by changing the match or ac-
tion attributes and global SDNEnhancements transform messages by
changing their temporal ordering or spatial location in the network.

Transactional Policy: Unlike compilers which translate high-
level source to low-level assembly, the controller accepts low-level
commands from SDNApps and directly installs them into the net-
work. These low-level commands have forced SDNEnhancements
to generate different meta-abstractions for capturing higher-level
intent on which to perform optimizations, e.g., “proposed state” by
Statesman [48] or “Transactions” by STN [10] and ESPRES [40].

To address this lack of abstractions, we define a uniform abstrac-
tion on which all SDNEnhancements can operate. To do this, we
select the lowest common denominator: a network path.

More formally, a transactional policy, txi ,yi = {mi
1,m

i
2, ...}, is

akin to a “code block” and is a group of SDN instructions required to
configure a network policy between two hosts xi and yi (or groups
of hosts)1.

Thus, we formalize interactions between an SDNApp and the
network (and, in turn, the SDNEnhancements) as a policy set, T ,
where T is:

T = {tx1,y1 , tx2,y2 , ...}

1This path level abstraction echoes recent efforts in SDNs to build optimization-based
and monitoring-focused frameworks predicated on network paths.

Given this definition, an SDNEnhancement is a function, E, that
transforms one transactional policy, tx ,y , into an “optimized” trans-
action policy t ′x ,y :

t ′x ,y = E(tx ,y )

With these definitions in mind, we can also formalize situations
where SDN-Flags are required by analyzing the interactions between
policies and packets in the data-plane. Specifically, we can examine
a set of packets:

P = {p1,p2, ...}

where each packet, pi , represents traffic between xi and yi that
will be processed by policy txi ,yi . By applying the transactional poli-
ciesT , a packet pi would gain a set of decisions di = T (pi ), including
the routing path, dropping decision, queuing time, e.t.c. We com-
pare the decisions before and after applying the SDNEnhancement
function E:

T (P) = {d1,d2, ...}

(E ◦T )(P) = {d ′1,d
′
2, ...}

and
N = |{i |di , d

′
i }|

When there is a difference in behavior, then there is potentially
a need for SDN-Flags. Depending on the sources of and the cause
of these behavioral differences, the developers can employ different
SDN-Flags to eliminate or minimize the differences. In Section 4.2,
we characterize these SDN-Flags and discuss how developers can
introduce them.

Transactional Dependencies & Intermediate Representation:
This paper does not explicitly tackle conflicts between SDNEnhance-
ments or verification of SDNEnhancements. Instead, we present a
high-level description of ongoing efforts to do this. Conflict detec-
tion and verification requires an intermediate representation that
abstracts syntactic details and a notion of dependencies that formal-
izes conflicts.

We infer dependencies between transaction by building on the
definitions provided in SDNRacer [34] and LegoSDN [12]. For in-
termediate representation, we use Header Space Analysis which cap-
tures the reachability policies and augments it to include QoS-based
policies. Coupled with dependencies, the intermediate representation
enables us to reason about conflicts between SDNEnhancements and
verify policies.

4.2 Modeling Optimization Flags
SDN-Flags, like compiler flags, are designed to allow developers
(and consequently the SDNApps) to limit the class of transforma-
tions that can be applied rather than the set of SDNEnhancements:
the SDN-Flags (flags) do not specify specific SDNEnhancements
(optimizations) only transformations. This level of indirection frees
the SDNApp developer from having to understand the SDNEnhance-
ments that will be run in the network.

In modeling SDN-Flags, we aim to support a large variety of
operational networks. Thus, we study the OpenFlow specification
to understand the space of potential transformations that can be
performed, independent of any specific SDNEnhancements. In Ta-
ble 2, we present an exhaustive list of these transformations and a
representative list of SDNEnhancements that employ them (when
available). Transformations can be classified along four dimensions:
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modifications to the rule’s match field (e.g., merging, duplicating,
or splitting rules); modifications to the rule’s actions (e.g., changing
ports); modifications to the rule’s temporal property (e.g., reordering
or delaying rules); and modifications to the rule’s spatial properties
(e.g., changing the switch that a rule is installed in).

Dimension of Type of Example SDN- SDN
Transformation Transformation Enhancement Flags

Match Fields
Merges Rules [46]

{IO}
Splits/Duplicates Rules [45]

Action List
Adds Actions None

{AD}Reorders Actions None
Deletes Actions None

Spatial Changes Destination
[25, 51] {LS}

(Location) Switch to Install Rules

Temporal Re-Orders Rules [40]
{PF}

(Ordering) Delays Rules [14, 48]

NULL Deletes SDN Message(s)

Table 2: List of Potential Transformations Made by SDNEn-
hancements and the SDN-Flags Specified by SDNApps.

Controlling SDNEnhancements with SDN-Flags: In Table 2
(column 4), we present SDN-Flags that SDNApps can use to control
transformations that violate correctness or efficiency. We note that
the current SDN-Flags are both general and simultaneously specific
because the control interface between the control plane and the for-
warding tables in both OpenFlow and P4 switches are limited and
narrow. Thus, the set of potential transformations that any SDNEn-
hancements may perform is finite and extremely limited. Next, we
elaborate on how these SDN-Flags can be used to address the issues
presented in Section 2:

• Input-Output dependence {IO}: specifies that the SDNApp’s
inputs are a function of the rules installed in the network (the
SDNApp’s output). This SDN-Flag allows the controller to
ensure the correctness of the SDNApps by circumventing
SDNEnhancements whose transformations lead to coarser
granularity rules. For SDNEnhancements whose transforma-
tions result in other or no transformations, the controller sim-
ply ensures that information for the finer-granularity rules
are coalesced (nothing is done or required for rules which
result in equivalent granularity). For example, if a controller
applies a TCAM-Optimizer SDNEnhancement that merges
rules into coarser granularity rules to the TE-App, which
has an Input-Output dependence, then Mozart may bypass
the SDNEnhancement for such SDNApps (or perform some
other operation) which would preserve the Input-Output de-
pendence.

• Action-Dependence {AD}: specifies that the SDNApp’s func-
tionality and correctness are tied to the actions created and
inserted into the FlowMods.

• Location-Specific {LS}: specifies that the SDNApp’s func-
tionality and correctness are tied to the specific switches
selected for the path.

• Push-Flag {PF}: When reacting to a failed link or an in-
truder, it is imperative to react first and to optimize second.

Figure 2: Re-Designed SDN Controller.

For these use-cases, we provide SDNApps with a Push-Flag
that signifies urgency. This SDN-Flag allows the controller
to directly perform the SDNApp’s proposed changes into the
network while simultaneously applying the SDNEnhance-
ments to these actions. When the SDNEnhancement returns
the optimized (transformed) rules, the controller replaces the
SDNApp rules with the optimized version.

Takeaways. SDNApps encapsulate a rather simple control loop
with a limited number of variations (Section 2). Through an examina-
tion of the specification, we observe that the space of transformations
is limited (Table 2). The implication of these insights is that a lim-
ited set of SDN-Flags will cover a dominant number of SDNApps.
Additionally, this constrained transformation space and our formal-
izations provide the groundwork for a system that automatically
generates SDN-Flag for SDNApps – a system we plan to explore in
the future.

5 MOZART
In Figure 2, we present Mozart a redesign of the modern controller
architecture that applies compiler-optimizations philosophies to SD-
NEnhancements. Mozart exposes a novel interface to the SDNApps
which enables these SDNApps to bundle SDN commands into trans-
actional policies (Section 4.1) and to annotate the transactions with
SDN-Flags (Section 4.2). The controller includes an Orchestrator,
similar to compiler tools, that orchestrates SDNEnhancements, ap-
plies them to SDNApps, and ensures that SDN-Flags are respected.
In Mozart, SDNEnhancements are integrated into the controller as
isolated modules within the Orchestrator and communication be-
tween them is through function calls.

Interfaces: Mozart defines well-specified interfaces for how SD-
NApps should interact with the controller and for smoothly integrat-
ing the SDNEnhancements into the Orchestrator.

The SDNApp interface, Figure 3, specifies a call that Mozart
exposes to all SDNApps: apply(). Using apply(), an SDNApp
can specify a Transaction, i.e., a bundle of SDN instructions, to
apply to the network rather than individual instructions (or messages).
Furthermore, SDNApps may annotate transactions with SDN-Flags
either one SDN-Flag for the entire transaction or an SDN-Flag for
each instruction in the transaction.

The SDNEnhancement-interface, Figure 4, enables the Orches-
trator to manage SDNEnhancements and promotes interoperability
between SDNEnhancements. To this end, the interfaces specify the
set of functions that each SDNEnhancement must implement.
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p u b l i c i n t e r f a c e Mozart {
C l a s s T r a n s a c t i o n {

Map <SDNMessage , SDNHint> bu nd l e ;
L i s t <SDNHint> g l o b a l ;

}

p u b l i c vo id a p p l y ( L i s t < T r a n s a c t i o n > ) ;
}

Figure 3: Interface Exposed to SDNApps by Mozart.

Each SDNEnhancement must implement the following functions:
init(), process_transaction(), and configure().
process_transaction() takes a list of transactions as input
and optionally returns a list of (zero or more) transactions.

p u b l i c i n t e r f a c e Enhancement {
p u b l i c L i s t < T r a n s a c t i o n > p r o c e s s _ t r a n s a c t i o n
( L i s t < T r a n s a c t i o n > ) ;
p u b l i c vo id i n i t ( ) ;
p u b l i c vo id c o n f i g u r e (Map < S t r i n g , S t r i n g > ) ;

}

Figure 4: Interface for SDNEnhancements.

When the Orchestrator initializes a new SDNEnhancement, due
to a new DAG or modifications to an existing DAG, it calls the
SDNEnhancement’s init() function. As network administrators
modify configurations for an SDNEnhancement, the Orchestrator
calls configure() to reconfigure the SDNEnhancement. When
an SDNApp calls apply(), the Orchestrator accepts the transac-
tion and passes it through the set of SDNEnhancements listed in the
DAG: then process_transaction() is called for each SDN-
Enhancement – the output of one process_transaction() is
used as input for the next process_transaction().

Orchestrator: Runs within the controller and accepts an administrator-
defined configuration: a linear DAG of SDNEnhancements to apply
to each SDNApp. The Orchestrator accepts a transaction from an
SDNApp, through the apply(), determines the DAG for the SDN-
App, and propagates the transaction through SDNEnhancements in
the DAG. The output of the final SDNEnhancement (in the DAG)
is fed to the Checker which compares the transformed transactions
against the original transactions to ensure that the transformations
are valid with respect to the specified SDN-Flags.

At a high level, the Checker verifies that for each SDN-Flag
specified none of the violating transformations (in Table 2) are
applied to the transaction. For example, when the {IO} SDN-Flag
is specified, the Checker verifies that “merge rule” transformations
are not applied – if applied, the Checker reverts the transaction to
the original transaction. When the {PF} SDN-Flag is specified, the
Orchestrator monitors the chain of SDNEnhancements and if they
take longer than a predefined timeout, δ , to process the transaction,
then the Orchestrator directly applies the original transaction to the

network and subsequently updates the network with the optimized
(transformed) transaction after the SDNEnhancements are done.

5.1 Using Mozart
In Mozart, the network operator specifies a linear DAG of SDNEn-
hancements to apply to each SDNApp – the Orchestrator uses this
DAG to determine orchestration. The operators also specify a list
of SDNEnhancements that cannot be avoided, e.g., a security SDN-
Enhancement should have priority over SDN-Flags specified by any
SDNApps.

The developer writes SDNApps to leverage the interface and
employs SDN-Flags when necessary. There are several options for
the developer:

• Fine Granularity Use of SDN-Flags: Either rewrite the SDN-
App to integrate SDN-Flags at a fine granularity, e.g., an
SDN-Flag for each transaction, similar to how pragmas and
annotations are included in programs to aid optimizers.

• Coarse Granularity Use of SDN-Flags: Or, specify the SDN-
Flags at a coarser granularity, e.g., specific SDN-Flags for
edge devices and different SDN-Flags for core devices. This
direction eliminates the burden of rewriting the SDNApp
while providing the developer with the ability to benefit from
our system. These SDN-Flags can be specified either through
command line arguments (or in a configuration file). More
concretely, the SDNApp developer can specify the set of
SDN-Flags to apply to different function calls, e.g., for edge
devices versus for core devices.

• Automated SDN-Flag Generation: We could develop a sim-
ulation framework that enables Mozart to automatically learn
the appropriate SDN-Flags based on operators specified in-
variants on packets and data-plane behavior (e.g., SDNEn-
hancements should not impact performance by more thanX%,
or SDNEnhancements should not consume more than Y% of
the network’s resources). Given these invariants, Mozart can
use a simulator to compare the performance of SDNApps
with and without SDNEnhancements and explore the dif-
ferent SDN-Flags using a greedy heuristic (e.g., Simulated
Annealing) to effectively discover the appropriate SDN-Flags.

Employing SDN-Flags requires administrators to explore a trade-
off between invasiveness and resolution; the finer the granularity, the
more involved the changes are to existing SDNApps. Whereas with
more automated insertion of SDN-Flags, naturally the administrators
lose control over precise SDNApp behavior. We show in Section 7,
there are significant benefits when SDN-Flags are applied at a coarse
granularity.

6 PROTOTYPE
We developed prototypes of Mozart by integrating our designs
into two production quality controllers – one used at Google (i.e.,
FAUCET [6] a fork of RYU). Our SDNApps mirror crucial proper-
ties of production SDNApps, e.g., Hedera’s control loop is philosoph-
ically similar to Microsoft’s-SWAN [20] and Google’s-B4 [22] both
of which feed switch statistics into the traffic-engineering algorithm.

Mozart’s design differs from a traditional controller in two ways:
it exposes an interface for applications to utilize our primitives
and it explicitly incorporates SDNEnhancements functionality. We
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Figure 5: (a) {PF} SDN-Flags’ Impact on Transaction Processing Time. (b) {PF} SDN-Flags’ Impact with Multiple Simultaneous
SDNApps.

Class of Code Modified Instances LoC

SDNEnhancements
ConflictResolvers 134 (20%)
TCAMOptimizer 119 (11.4%)

SDNApps

Hedera 18 (0.4%)
Forwarding 33 (1.7%)
Load Balancer 13 (0.4%)
NAT 18 (1.5%)
Route Manager 19 (1.1%)
Five versions of Learning Switch 18 (1.2%)
Route Flow 13 (0.3%)

Controller
Floodlight 1326 (1.5%)
Ryu 116 (0.6%)

Table 3: Lines of Code Changed.

chose to explicitly incorporate SDNEnhancement functionality as a
module as this allows us to explicitly inform an SDNEnhancement
of the primitives used by each SDNApp. Moreover, we modified
the controller to monitor and log the transformations made by the
SDNEnhancements for debugging purposes. Our prototypes are built
atop the Floodlight controller in 1326 Lines of Code (LoC) and Ryu
controller in 116 LoC. Mozart interacts with the SDNEnhancements
using functions calls. The SDNEnhancements and the SDNApps
have been modified to generate SDN-Flags and to use SDN-Flags
respectively.

Changes to SDNEnhancements: We changed the TCAMOpti-
mizer, 119 LoC (11.4%), and the ConflictResolver, 134 LoC (20%),
to provide the functionality discussed in Section 5. Our modifications
to the SDNEnhancement, the SDNApp, the Floodlight controller
and the Ryu controller are detailed in Table 3.

Changes to SDNApps: We changed seven SDNApps to leverage
our SDN-Flags and Mozart’s interface. From Table 3, we observe
that the changes to the SDNApps were minimally invasive (generally
less than 2% of the codebase was modified). Note for Ryu, we had

five versions of the Learning Switch SDNApp, and we modified all
five versions.

7 EVALUATION
To understand Mozart’s effectiveness in maintaining application
performance in the face of SDNEnhancement transformations, we
evaluate Mozart against the SDNEnhancements and SDNApps dis-
cussed in Section 6. We investigate Mozart under a combination of
synthetic and realistic traces [7] and with a variety of data center
topologies. This diversity allows us to draw general conclusions
about our abstractions and their implications. In evaluating Mozart,
we aim to answer the following questions:

• Is Mozart able to effectively improve an SDNApp’s perfor-
mance? (§ 7.2)

• What fraction of Mozart’s benefits are achieved when Mozart
is applied in a backward compatible manner (requiring no
code changes to the SDNApps)? (§ 7.3)

• How much overhead does Mozart introduce? (§ 7.4)
• How much additional work does Mozart’s interface introduce

when SDNApps are updated? (§ 7.5)

7.1 Experiment Setup
We begin by describing the workloads, and the topologies used
in our evaluations. We conduct our experiments in an emulator,
Mininet [32], and with a simulator. The emulator allows us to un-
derstand the accuracy and efficacy of Mozart whereas the simulator
allows us to understand the scaling implications of Mozart. In both
our emulations and simulations, we consider the SDNApps and
SDNEnhancements discussed in Section 6. We consider a Fat-Tree
topology [3] and investigate both realistic and synthetic workloads.
For realistic workloads, we consider the traffic patterns for a medium
data center [7]. For the synthetic workloads, we consider the best
case (Random) and the worst case (Stride) traffic matrices used in
recent data center proposal [3, 4]. The stride pattern has multiple
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flows from the same source edge switch to the same destination edge
switch.

Simulator: In the absence of a large-scale testbed to study the
overheads and scaling implications of Mozart, we instead developed
a simulator to model the network. We simulate various network
events and the corresponding messages exchanged between the net-
work devices and the controller (e.g., the control messages sent
to the controller by the switches when statistics are requested or
when the switch is powered on/off). By simulating only network
events, our simulator is transparent to the SDNApps, the SDNEn-
hancements, and Mozart. This transparency allows them to operate
as usual ensuring that we can objectively evaluate the overheads of
Mozart. This approach allows us to focus on the performance of
Mozart in a large-scale setting while being unconstrained by the size
and topology of our local resources. In our simulations, the network
controller is deployed on a 2.80GHz quad core Intel Xeon PC with
16GB of memory running Ubuntu 14.04.

Unless explicitly specified, our default experiments are run on the
Fat-Tree topology, with 20 nodes, 16 hosts, 1Gbps links and with
the stride traffic pattern.

7.2 Implications of Mozart
We begin this section, by investigating the high-level impact of
Mozart on the broad set of SDNApps evaluated then we focus on
two specific SDNApps to understand SDNApp-specific performance:
in particular, to illustrate the interactions between Mozart and the
two classes of SDNApps, we focus on a proactive SDNApp and a
reactive SDNApp.

Broad Analysis: In Figures 5 and 6, we analyze the impact of two
specific flags on our SDNApps. In general, the flags have varying
benefits which are correlated to the functionality of the different
SDNApps.
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Figure 6: Number of TCAM Entries when {IO} is Enabled.

To better understand the impact of Mozart, we examined the av-
erage transaction processing time when {PF} is enabled. Figure 5
shows the transaction processing time with and without {PF} en-
abled for several SDNApps. We observe that {PF} does, in fact,
decrease processing time demonstrating the benefit of introducing
and using such a flag. Next, in Figure 6 we observe the impact of the
{IO} Flag on the number of TCAM rules in the network. We observe
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Figure 7: Aggregate Bandwidth and TCAM Usage.

that the flag does inflate the number of rules however this inflation
is modest and acceptable in light of the potential benefit: namely,
improved performance.

Proactive App (Hedera): Next, we drill into a proactive SDN-
App and compare the aggregate network bandwidth under sev-
eral different scenarios: None scenario, no traffic engineering pro-
vides us a lower bound on performance; Hedera scenario, Hed-
era traffic-engineering is used with no SDNEnhancements – this
provides us with an upper-bound on performance; TCAM-OPT,
Hedera is run with the TCAMOptimizer; CR, Hedera is run with
the ConflictResolver; TCAM-OPT/CR, Hedera is run with both
the ConflictResolver/TCAMOptimizer; TCAM-OPT+Mozart, Hed-
era is applied with the TCAMOptimizer and Mozart; CR+Mozart,
Hedera is applied with the ConflictResolver and Mozart; TCAM-
OPT/CR+Mozart, Hedera is applied with both ConflictResolver and
TCAMOptimizer and Mozart.

In Figure 7, we compare the aggregate network bandwidth against
the number of TCAM entries used by Hedera. We observe that apply-
ing the TCAMOptimizer, reduces TCAM utilization by 57.5% but at
the cost of performance (24.8% reduction in aggregate bandwidth).
This decrease occurs because the TCAMOptimizer eliminates Hed-
era’s ability to effectively determine which flows are elephants. Sim-
ilarly, we observe a decrease in aggregate bandwidth when Con-
flictResolver is used because Hedera’s reaction time is increased
thus prolonging periods of congestion and reducing bandwidth for
congested flows.

In applying Mozart, we observe that bandwidth is improved to
within the optimal solution. While Mozart drastically improves Hed-
era’s performance, we observe that the efficiency of the TCAMOp-
timizer is reduced – the TCAMOptimizer is only able to achieve
18.2% of TCAM usage saving (the fourth bar). This performance
to TCAMOptimizer trade-off occurs because Mozart improves per-
formance by limiting coalescing on certain OpenFlow entries. The
improvement over the ConflictResolver on the other hand occurs be-
cause Mozart temporarily ignores ConflictResolver and retroactively
applies the optimization of the impact of the SDNEnhancements.

Reactive App (RtFlow): Lastly, we evaluate the impact of the
SDNEnhancements on a reactive SDNApp, we focus on the route-
setup. In this scenario, the TCAMOptimizer has no impact and
thus we exclude it and focus solely on these two scenarios: CR and
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CR+Mozart. We observe that ConflictResolver has a similar impact
in that it reduces the ability of the SDNApp to install paths and to
react to the injected failure events. In Figure 8, we present a time
series of the number of active flows within the network. We observe
that with CR during the initial 3.3 seconds there are no active flows
and that at the second 50 there is another dip in the number of
active flows when a link is deleted from the network. Unlike, CR, we
observe that CR+Mozart has a much lower initial ramp of phase and
time to recovery with CR+Mozart being 7.8 times and 44.8 times
faster than CR. This displayed the benefits of employing Mozart2.
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Figure 8: Ping Latency in Link Failure Experiment.

7.3 Resolution of Mozart
Fundamentally, Mozart introduces a set of abstractions that facilitate
exchange of information. As discussed in Section 4, these interfaces
can be used at a varying-resolutions:

• static, with the same SDN-Flags applied to all OpenFlow-
messages or at a fine-resolution,

• dynamic, the default behavior, with SDN-Flags judiciously
applied to each OpenFlow-message.

• static-dev, to support ease of integration, in Section 4, we
suggested that SDN-Flags be applied statically at the granu-
larity of function calls and device types. More concretely, the
SDNApp developer can specify the set of SDN-Flags to apply
for different function calls, for edge devices, and for core
devices. The decision to delineate device along the core-edge
boundaries builds on recent trends to separate the core from
the edge [11, 30, 43].

There is a trade-off between invasiveness and resolution; the finer
the granularity, the more involved the changes are to existing SD-
NApps. At one extreme, static requires absolutely no change and
at the other extreme dynamic requires changes to the SDNApp;
however, these changes are minimal. As a middle-ground option,
static-dev, requires a simple addition – the inclusion of a configura-
tion file.

2We note that while our implementation of ConflictResolver takes about 10 seconds to
process, the relative speeds are subject to change given different implementations of
ConflictResolver. Furthermore, while ConflictResolver potentially improves network
performance it can result in transient periods of conflicting resource allocations.

We observed that with static-dev the simple distinction between
core and edge is sufficient to maximize the trade-off between SDN-
App accuracy and SDNEnhancement efficiency. static-dev’s per-
formance and efficiency are close to dynamic without incurring the
overheads of re-writing the SDNApp. Intuitively, static-dev performs
close to dynamic because the information required to detect conges-
tion is present at the edge, and, additionally, most of the congestion
occurs within the edge. This result demonstrates the feasibility of
adopting Mozart without invasive modifications to the applications.
More generally, we believe that static-dev is broadly applicable to
other SDNApps because, in most SDNApps, there is a distinction in
the functionality applied at the core from that applied at the edge of
the network.

Orthogonally, with static, we observed that blindly applying the
same SDN-Flags impacts and hurts performance. Fortunately, we
believe that static-dev provides a promising and non-invasive step
forward for a broad set of SDNApps.

7.4 MicroBenchmarks
We examine the overhead of employing Mozart and investigate
how these overheads scale along two dimensions. First, in terms
of additional latency for the Orchestrator to compose services and
evaluate the SDN-Flags. Second, in terms of the throughput of the
controller. To do this, we evaluate Mozart using our simulator.

We examine the throughput and latency for processing OpenFlow-
messages on a number of topologies with varying sizes. In Figure 9,
we focus on the largest data center topology evaluated: Fat-tree with
2000 hosts and 500 network devices. From Figure 9, we make two ob-
servations: first, that the overheads imposed by Mozart are sub-linear
and second, the overheads imposed are minimal and acceptable with
additional SDNEnhancements imposing a 1.58% overhead to latency
and no observable overhead to throughput.
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Figure 9: (a) Relative Latency of Mozart Compared to No
Mozart in %. (b) Relative Throughput of Mozart Compared
to No Mozart in %.

7.5 Implication of SDN-Flags on SDNApp
Evolution

Finally, we conclude by examining the impact of Mozart on a devel-
oper’s ability to manage an evolving codebase. Here we focus on a
specific SDNApp on Ryu (Learning Switch). Currently, Ryu comes
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with five versions of this SDNApp – one for each of the different ver-
sions of the OpenFlow interface3. In Figure 10, we plot the number
of transactions required. We observe that the only change happens
between version 1.2 and 1.3 when an additional transaction is added
due to new feature in the specification (i.e., Table Miss).
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Learning Switch SDNApp.

8 DISCUSSION
Implications on security and other properties? We explored the
implications of SDNEnhancements on efficiency, complexity, and
fidelity. There are other dimensions along which SDNEnhancements
may impact an SDNApp. For example, security, network utilization,
performance, isolation, etc. As part of future work, we intend to
explore these dimensions. For example, we could integrate Mozart
with Rosemary [47], a security oriented controller architecture, to
analyze how SDNEnhancements impact security policies. Moreover,
we plan to more concretely explore the connection between SDNEn-
hancements and complexity in network management, by analyzing
how SDNEnhancements impact the ability of network operators to
debug networks using common tools [38, 39].

Does ignoring an SDNEnhancement obviate its benefits? The
single biggest limitation of Mozart is that, in certain situations,
Mozart acts in a binary fashion: a subset of SDN-Flags prevent
transformations which may render an SDNEnhancement ineffective.
Fortunately, we showed in Table 1 that multiple SDNEnhancements
can provide the same property, e.g., consistent-updates [33, 40, 45],
and one of these alternative SDNEnhancements may be able to
preserve the SDNApp’s correctness. As part of future work, we plan
to design a more flexible Orchestrator that automatically replaces
an SDNEnhancement rendered ineffective by SDN-Flags with an
equivalent one with appropriate transformations.

Do our abstractions provide complete coverage? As the SDN-
ecosystem becomes richer with more SDNApps and SDNEnhance-
ments, our abstractions will naturally have to evolve. However, we
note that since our abstractions are fundamentally tied to the core
properties of FlowTable entries, we expect our abstractions will
evolve at a significantly slower pace than that of the entire SDN-
ecosystem.
3They support different versions of OpenFlow from 1.0 to 1.5 (Ryu does not offer
built-in support for OpenFlow 1.1).

How do we handle interactions between multiple SDNApps?
Multiple SDNApps can read and modify the same OpenFlow rules,
this is akin to reading/writing to the same key-value stores. There are
two ways to deal with this, both using SDNExtensions. Either the
first writer wins approach taken by the Network-State management
service or the capability/priority approach taken by Participatory
Networking. Within our system, such conflicts can still exist and
the SDNExtensions are responsible for tackling such conflicts. The
existing conflict resolvers [14, 48] make two types of transforma-
tions: first, a null transformation which denies SDNApp and deletes
the transaction. Second, a temporal transformation which delays
transformations. Our system will not interfere with these resolvers.

How do we handle conflicts between SDNEnhancements? We
explore the interactions between SDNEnhancements and SDNApps.
Another more interesting set of interactions is that between a set
of SDNEnhancements. SDNEnhancements are bound to conflict
or to contradict each other. In this work, we do not explicitly ad-
dress these issues, instead we take the first step towards addressing
them by re-architecting controllers to explicitly include SDNEn-
hancements and explicitly compose SDNEnhancements. By making
SDNEnhancements a more explicit member of the SDN ecosystem,
conflicts can be readily detected, analyzed, and tackled. We plan to
design a simulator to empirically detect these conflicts.

9 RELATED WORKS
Most notable work focus on re-architecting controllers to support
scalability [31, 50], security [47], and reliability [12]. These works
focus on improving the core architecture of the controller. Our ap-
proach is orthogonal and builds on them by proposing ways to extend
the controller and directly incorporating SDNEnhancements. The
most closely related work on SDN composition [14, 17, 23, 35, 37]
focuses on providing SDNEnhancements that promote principled
composition of SDNApps with different objectives [14, 35, 37] or
SDNApps running on different controllers [23]. Our work presents a
fundamental departure from existing work in the composition space,
rather than focusing on the SDNApps, we concentrate on the SD-
NEnhancements. Thus, allowing us to introduce a similar level of
rigor and understanding to SDNEnhancement-composition as we
currently have for SDNApp-composition. Essentially, related work
asks that each application should reimplement certain functionality,
whereas Mozart extracts and pushes the functionality down to a
lower and common layer: the controller. Furthermore, while related
works focus on ensuring cooperation between SDNApps, we focus
on ensuring cooperation between SDNApps and SDNEnhancements.

Additionally, unlike Mozart, Athens [5] and SOL [18] operate
at the level of paths which places a key limitation on them: they
can only detect harmful interactions between SDNApps and SD-
NEnhancements when the intersection of generated paths is empty.
In Section 2, we showed that even if paths remain the same (a
non-empty intersection), but other properties of rules are modified,
e.g., by merging, then violations will exist. Mozart offers a funda-
mental advantage over them because it operates at a lower level of
abstraction. SOL can not be easily modified to operate at this lower
level because the lower level negates existing scaling optimizations
forcing a fundamental redesign of its core algorithms. Athens can
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operate at this lower granularity; however, this change will signif-
icantly exacerbate Athens’ existing scaling and complexity issue.
Recall, Athens requires all SDNEnhancements and SDNApps to
understand each other’s logic and anticipate all interactions.

Our abstractions represent a natural extension of Operating Sys-
tem hints, such as X-tags [26], Intentional Networking [19] to the
SDN’s Network Operating System. Similarly, our SDN-Flags allow
the SDNApps to expose their internal objectives in a qualitative
manner without disclosing their internal structure. Unlike exist-
ing O.S. hints, our abstractions are motivated by domain-specific
knowledge of design patterns and structure of SDNApps and SD-
NEnhancements. The design of our composition operators and con-
figuration language are inspired by existing works on extensible
system [21, 29, 52].

10 CONCLUSION AND FUTURE WORK
In this paper, we make the first attempt towards understanding and
quantifying the implications of applying SDNEnhancements to SD-
NApps. We observe that SDN controllers are ill-equipped with poor
primitives for supporting SDNApps and abstractions for enabling
SDNEnhancements. Motivated by these observations, we argue for
the design of a more powerful interface between the SDNApps and
the SDN controllers – this interface allows for a systematic and
principled inclusion of SDNEnhancements into the SDN ecosystem.

Our design and prototype implementation of Mozart is the first
step towards a holistic controller architecture capable of supporting
SDNEnhancements in a manner that does not compromise the sim-
plicity promised by SDNs (or the performance, and efficiency of the
SDNApps). We believe this idea of a holistic controller architecture
capable of integrating and composing SDNEnhancements presents a
rich field of future research and will become only more important
as SDN deployments continue to grow. As part of future work, we
aim to expand on our flags and tackle problems related to detecting
conflicts between SDNEnhancements and verifying transformations
made by an SDNEnhancement.
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Easy Scheduling and Prioritization for SDN. In ONS.

[41] Philip Porras, Seungwon Shin, Vinod Yegneswaran, Martin Fong, Mabry Tyson,
and Guofei Gu. 2012. A Security Enforcement Kernel for OpenFlow Networks.
In HotSDN.

[42] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar, and
Minlan Yu. 2013. SIMPLE-fying Middlebox Policy Enforcement Using SDN. In
SIGCOMM.

[43] Barath Raghavan, Martín Casado, Teemu Koponen, Sylvia Ratnasamy, Ali Ghodsi,
and Scott Shenker. 2012. Software-Defined Internet Architecture: Decoupling
Architecture from Infrastructure. In HotNets.

[44] Mark Reitblatt, Marco Canini, Arjun Guha, and Nate Foster. 2013. Fattire: Declar-
ative Fault Tolerance for Software-Defined Networks. In HotSDN.

[45] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker.
2012. Abstractions for Network Update. In SIGCOMM.

[46] Myriana Rifai, Nicolas Huin, Christelle Caillouet, Frédéric Giroire, D Lopez-
Pacheco, Joanna Moulierac, and Guillaume Urvoy-Keller. 2015. Too Many SDN
Rules? Compress Them with MINNIE. In GLOBECOM.

[47] Seungwon Shin, Yongjoo Song, Taekyung Lee, Sangho Lee, Jaewoong Chung,
Phillip Porras, Vinod Yegneswaran, Jiseong Noh, and Brent Byunghoon Kang.
2014. Rosemary: A Robust, Secure, and High-performance Network Operating
System. In CCS.

[48] Peng Sun, Ratul Mahajan, Jennifer Rexford, Lihua Yuan, Ming Zhang, and Ahsan
Arefin. 2014. A Network-state Management Service. In SIGCOMM.

[49] Andreas Voellmy, Junchang Wang, Y Richard Yang, Bryan Ford, and Paul Hudak.
2013. Maple: Simplifying SDN Programming Using Algorithmic Policies. In
SIGCOMM.

[50] Soheil Hassas Yeganeh and Yashar Ganjali. 2014. Beehive: Towards A Simple
Abstraction for Scalable Software-Defined Networking. In HotNets.

[51] Minlan Yu, Jennifer Rexford, Michael J. Freedman, and Jia Wang. 2010. Scalable
Flow-Based Networking with DIFANE. In SIGCOMM.

[52] Erez Zadok and Jason Nieh. 2000. FiST: A Language for Stackable File Systems.
In USENIX ATC.

363


	Abstract
	1 Introduction
	2 Motivation
	2.1 The Case for SDNEnhancements
	2.2 SDNEnhancement Definition
	2.3 SDNEnhancement Deployment Scenarios

	3 Understanding SDN-Enhancement
	3.1 Experiment Setup
	3.2 Implications of SDNEnhancements

	4 Rethinking Controller Architectures
	4.1 Compilers for SDNs
	4.2 Modeling Optimization Flags

	5 Mozart
	5.1 Using Mozart

	6 Prototype
	7 Evaluation
	7.1 Experiment Setup
	7.2 Implications of Mozart
	7.3 Resolution of Mozart
	7.4 MicroBenchmarks
	7.5 Implication of SDN-Flags on SDNApp Evolution

	8 Discussion
	9 Related Works
	10 Conclusion and Future Work
	11 Acknowledgments
	References

