
P4Visor: Lightweight Virtualization and Composition Primitives
for Building and Testing Modular Programs

Peng Zheng

Xi’an Jiaotong University and

Brown University

zeepean@gmail.com

Theophilus Benson

Brown University

theophilus_benson@brown.edu

Chengchen Hu

Xi’an Jiaotong University

huc@ieee.org

ABSTRACT
Programmable data planes, PDPs, enable an unprecedented level of

flexibility and have emerged as a promising alternative to existing

data planes. Despite the rapid development and prototyping cycles

that PDPs promote, the existing PDP ecosystem lacks appropri-

ate abstractions and algorithms to support these rapid testing and

deployment life-cycles. In this paper, we propose P4Visor, a light-

weight virtualization abstraction that provides testing primitives as

a first-order citizen of the PDP ecosystem. P4Visor can efficiently

support multiple PDP programs through a combination of compiler

optimizations and program analysis-based algorithms. P4Visor’s al-

gorithm improves over state-of-the-art techniques by significantly

reducing the resource overheads associated with embedding numer-

ous versions of a PDP program into hardware. To demonstrate the

efficiency and viability of P4Visor, we implemented and evaluated

P4Visor on both a software switch and an FPGA-based hardware

switch using fourteen different PDP programs. Our results demon-

strate that P4Visor introduces minimal overheads (less than 1%)

and is one order of magnitude more efficient than existing PDPs

primitives for concurrently supporting multiple programs.

CCS CONCEPTS
• Networks → Programmable networks; • Software and its
engineering → Software testing and debugging;

KEYWORDS
Programmable Data Plane, Code Merge, Testing

ACM Reference Format:
Peng Zheng, Theophilus Benson, and Chengchen Hu. 2018. P4Visor: Light-

weight Virtualization and Composition Primitives for Building and Testing

Modular Programs. In CoNEXT ’18: International Conference on emerging Net-
working EXperiments and Technologies, December 4–7, 2018, Heraklion, Greece.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3281411.3281436

1 INTRODUCTION
Programmable data planes [10, 39, 41] (PDPs), e.g., Tofino [39], have

emerged as a promising alternative to traditional data planes. These

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6080-7/18/12. . . $15.00

https://doi.org/10.1145/3281411.3281436

PDPs enable an unprecedented level of flexibility: they provide ab-

stractions and language frameworks that simplify the development

of stateful network functionality which operates at line rate. This

flexibility enables rapid development and prototyping of novel func-

tionality and use cases.

Despite these rapid development and prototyping cycles, the ex-

isting PDP ecosystem lacks appropriate primitives and algorithms to

support rapid testing and deployment. At a high level, many testing

paradigms [31, 52, 59], e.g., canary testing used in Google’s [20, 46]

networks, require running new versions of a program alongside

stable versions. Traffic is split across all versions and the output

is compared. Orthogonally, supporting agile development requires

composing and merging modular programs together.

The key challenges to enabling these techniques in today’s

PDP networks lie in efficiently supporting multiple PDP programs

and providing flexible operators for the broad range of poten-

tial paradigms. Hardware PDP devices include limited physical

resources which restrict the size of the PDP programs that can

be supported, and enabling multiple versions of a PDP programs

on a resource constraint device requires effective algorithms for

minimizing resource footprints. Additionally, PDP language ab-

stractions, e.g., P4, provide a limited set of primitives, e.g., P4 does

not support loops, and the language restrictions complicate the

process of developing general primitives to support a broad range

of scenarios. Specifically, in this paper, we focus on one of the most

popular and promising data plane programming languages – P4.
1

In this paper, we present P4Visor, an abstraction layer and com-

position primitives, which addresses the above challenges to make

testing and development primitives first-order citizens of the PDP

ecosystem. The key insight behind P4Visor is that the different

versions of a P4 program will share significant code fragments (i.e.,

tables, parse graph states and action primitives) and thus we can

reduce the resource overheads by merging the P4 programs and

thus eliminating redundancy. In this way, an administrator can run

multiple P4 programs concurrently in the data plane.

P4Visor achieves this through a combination of program analy-

sis to identify potential program overlaps and compiler optimiza-

tions to merge the P4 programs and reduce resource footprints.

To flexibly support different testing paradigms, P4Visor includes

domain-specific comparator operators that provide building blocks

for composing new testing paradigms.

Today, the prevalent approach for supporting multiple P4 pro-

grams is to virtualize the data plane [22, 56], e.g., Hyper4 [22],

HyperV [56], and host different programs atop the virtualization

layer. Unfortunately, these approaches [22, 56] require significant

1
The PDP Programs in the following sections refer to P4 programs unless otherwise

stated.

98

https://doi.org/10.1145/3281411.3281436
https://doi.org/10.1145/3281411.3281436
https://www.acm.org/publications/policies/artifact-review-badging/#available

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece Peng Zheng, Theophilus Benson and Chengchen Hu

resources and are often slow or unscalable [22] because they pro-

vide Full-Virtualization which uses software to emulate hardware.

Rather than providing virtualization and modularity primitives,

at the software layer, we aim to provide these primitives at the

compilation layer which enables us to explore tradeoffs between

flexibility and efficiency. In particular, our design choices allow us

to trade off a modest amount of flexibility for a significant increase

in efficiency.

Logically, P4Visor operates between the PDP programs and the

PDP hardware providing resource management between differ-

ent PDP programs and merge capabilities to the PDP Programs.

It provides virtualization primitives required for supporting con-

current testing in production networks. P4Visor’s goals include

security isolation between the management functionality provided

by P4Visor’s interfaces and data plane functions running on the

PDPs devices; efficient resource utilization and management; and,

flexible support over arbitrary PDPs targets.

We make the following contributions:

• Virtualization Abstractions: We provide an abstraction for

seamlessly merging two programs to tackle the resource man-

agement and indirection challenges that arise from merging and

composing programs (Section 3).

• Composition Operators: We introduce several composition

operators for merging P4 programs to support a range of testing

paradigms (Section 3.2).

• Merge Algorithm:We present a first look at the code-merging

problem for P4 programs. We build a model to theoretically iden-

tify the key issues behind merging P4 programs and demonstrate

the hardness of the problem — it is NP-Complete. As a result, we

propose a heuristic to solve it effectively (Section 4 & Section 5).

• Prototype Implementation and Evaluation:We implement

a prototype of P4Visor’s framework and merging algorithms. Us-

ing this prototype, we demonstrate the flexibility and efficiency

of P4Visor by testing it across multiple P4 Programs (Section 6

& Section 7).

2 MOTIVATION
In this section, we describe several well-understood principles used

within production networks (e.g., Google and Facebook) to ensure

highly-available networks (Section 2.1), and present a new PDP

primitive for effectively supporting these principles in PDP devices

(Section 2.2 and Section 2.3).

2.1 Rapid Development in Large Networks
We briefly describe several techniques which large-scale network-

ing infrastructures employ to ensure that their networks remain

highly-available in the face of changes.

Canary Testing (A-B Testing [3, 52, 59]) Canary testing, well

documented by Google’s [20, 46, 59] and Facebook’s [52] network-

ing and infrastructure teams, requires running multiple versions of

a program alongside each other. Canarying (or A-B Testing) tests

new code by sending a subset of traffic through the code (e.g., 1% of

traffic) and, if nothing “bad” happens, slowly increases the subset

of traffic using the test code until all traffic is using the test code.

1 2 3 4 5 6 7

Number of stages

1

10

100

1000

R
es

ou
rc

e
O

ve
rh

ea
d

(N
um

be
ro

ft
ab

le
s)

P4Visor
HyperV
Hyper4

Figure 1: Comparison of virtualization overheads.

Fault Tolerance (Data-Diversity [25, 31]) To improve secu-

rity and availability, certain networks run multiple instances of

their control plane, perturb the instances with some randomness,

and then compare the outputs from these versions. The system uses

the most popular output. This approach directly tackles bugs and

overcomes intruders. Facebook [25] runs four control planes and

compares the output between these control planes.

Modular Code Extensive work in the software engineering com-

munity [42] and recently validated by large software engineering

firms (e.g., Facebook [51, 52]) have demonstrated that the key to

successfully supporting rapid prototyping and deployment of com-

plex functionality is modularity (code-reuse). Yet, today program-

mers are forced to write monolithic P4 programs. Missing from

the ecosystem is a framework for effectively supporting multiple

modular PDP Programs – similar to processes – and composing

them together.

2.2 Novel PDP Primitives: Code Merge
Today, the most direct approach for supporting the aforementioned

testing techniques is to use virtualization, e.g., HyperV and Hyper4.

Unfortunately, HyperV and Hyper4 incur significant performance

and resource overheads. In Figure 1, we present the memory over-

heads of using these different virtualization techniques with an

emphasis on the number of tables used. The overheads grow lin-

early with the size of the program because both techniques declare

a fixed number of additional tables to emulate each of the P4 pro-

gram’s stages and primitive actions – their hypervisors have to

use these tables to record the runtime states for each program. For

example, to run a P4 program with two pipeline stages, HyperV and

Hyper4 have to declare at least 53 and 191 tables respectively which

limits the number of primitive actions supported to 9 and prevents

HyperV and Hyper4 from supporting Switch.P4 [14] which has 19

primitive actions.

Motivated by the inefficiencies of existing virtualization primi-

tives, in this paper we aim to answer the following question.

Is it possible to have a framework for supporting multiple versions
without incurring the overheads of full virtualization?

To answer this question, we investigate the design of a light-

weight virtualization based on a source code merging primitive.

The merge primitive takes as input N P4 programs and creates as

output one P4 program that combines all input P4 programs but

retains the functionality of each of the original P4 programs. As

an example shown in Figure 3, our new primitive takes, as input,

99

P4Visor: Lightweight Virtualization and Composition Primitives ... CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

.P4

P4
Vi

so
r

In
te

rfa
ce P4Visor

Controller
Application

P4Visor
Compiler

Network
Administrator

…

Runtime
Configuration

.P4

Compile Time
Configuration

Merged Pipeline

PVM

Figure 2: P4Visor workflow.

the abstract representations of two P4 programs (Production and

Testing P4 control programs in Figure 3) and combines them into

one (Figure 3 (a)). Central to providing this primitive is ensuring

that during the merge, P4-specific correctness constraints (e.g., ta-
ble dependencies) are maintained while efficiency is maximized

through resource reuse.

Themerged P4 program should give each P4 program the illusion

of sole occupancy on the hardware. Our approach differs from

full virtualization in several ways: first, while full virtualization

provides virtualization through a special P4 program, we provide

virtualization through the P4 program compiler. Our approach

offers one key benefit: whereas full virtualization needs to allocate

resources to support any potential P4 program, we only need to

allocate resources to support the P4 programs being compiled. This

specialization minimizes the number of additional tables required

to support the combined program. Second, full virtualization does

not explicitly support modularity and composition of multiple P4

programs into one, whereas, we can directly support these use

cases.

2.3 P4Visor Workflow
Next, we present the workflow of P4Visor to illustrate P4Visor’s

components and how theywork together. To support the envisioned

testing paradigms, the network operators must provide P4Visor

with (1) the different P4 programs to merge, (2) the type of testing

composition operators to implement (e.g., A-B testing or Differ-

ential testing) – the composition operator determines the policy

for splitting and comparing traffic, (3) the amount of traffic used

for testing, e.g., test X% of the traffic, and (4) the traffic sampling

granularity, e.g., all packets of a flow should be consistently tested,

test any packet of any flow, or just test flows within a specific sub-

net. Network administrators configure these settings using either a

simple command line or a configuration file. Given such a testing

specification, P4Visor installs code at edge switches to consistently

tag packets for testing and to remove the tags before the packets

exit the network. Tagging at the edge enables P4Visor to ensure

that the different switches consistently test the same packets and

that we can perform end-to-end tests across the whole network.

During the merge, P4Visor adds tables to compare the output from

the different program and generate packets to the controller when

these results differ. These packets allow operators to reason about

the implications of the new code. In Figure 2, we present P4Visor’s

workflow.

To support this workflow, P4Visor requires (1) a domain-specific

configuration language for configuring the testing paradigms (the

P4Visor interface), (2) a merge algorithm (discussed in Section 4 and

A:200

C:60

B:60

D:100

D:100

C:60B:60

A:100

C:60

B:60

D:200

C:60

A:100

B:60

A:100

B:120

D:100

D:100

A:100

(a) Merge B, C (b) Merge A (c) Merge D

Resource-sharing table

C:120 B:60
C:60

B:60
A:200

D:200

(d) Invalid merge A,D

C:60

(e) Naive merge

start

end

A:100

C:60

B:60

C:60

A:100

B:60

D:100

D:100

Production control flow graph Testing control flow graph

A:100 C:60

B:60

D:100
D:100

C:60
A:100

B:60

Figure 3: Illustrates various approaches for merging of two
P4 programs: (a) demonstrates an intelligentmergewith two
share tables; (b) and (c) are two possible merges with one
shared table; (d) is an invalid merge; and (e) demonstrates
a simple combination of two programs which doubles the
resources.

Section 5), (3) a framework for implementing the merge and sup-

porting the indirection required to support the merge (discussed in

Section 3), (4) techniques for enabling comparisons and techniques

for tagging/untagging the packets.

3 DESIGN OF P4VISOR
In this section, we provide an overview of P4Visor’s architecture

(Section 3.1), the currently supported composition operators (Sec-

tion 3.2 & 3.3), and P4Visor’s compiler design (Section 3.4).

3.1 Overview
In Figure 4, we present the architecture for P4Visor. At a high-level,

P4Visor is composed of four components: the P4Visor Compiler

(PVC), P4Visor Management agent (PVM), the P4Visor controller

Application (PVA), and P4Visor Interface (PVI).

P4Visor Interface (PVI): PVI runs on a server and provides the

management interface for the network administrator (or develop-

ers) to use to control the composition of different P4 programs. In

our current prototype, we implemented two operators: A-B Testing
and Differential Testing (described in Section 3.2). As part of future

work, wewill explore othermerge operators that aremore amenable

to modularization (e.g., Parallel composition [38], Sequential com-

position [38]) and availability (e.g., Data-deduplication [31]).

P4Visor Compiler (PVC): PVC takes, as input the P4 programs,

from the PVI, and returns, as output, a merged P4 program. The

PVC analyzes the parse graphs, tables and control flows of the

input P4 programs and merges them. The key to the PVC is the P4

program-merge algorithm (Section 4 & Section 5), which identifies

the data plane resources within all input P4 programs that can be

“safely” merged while maintaining the semantics and dependencies

of each P4 program.

As a result of the merge process, P4Visor creates a new P4 pro-

gram, which is a normal P4 program that can be run through a

standard PDP compiler. Additionally, P4Visor creates a P4Visor-

specific file, called the P4VisorConfiguration, which provides a

100

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece Peng Zheng, Theophilus Benson and Chengchen Hu

Runtime
Configuration

C
om

pi
le

 T
im

e
C

on
fig

ur
at

io
n

P4Visor Compiler (PVC)

Local control plane

Programmable data planes

P4Visor Management agent (PVM)

ControllerP4Visor Controller
Application (PVA) AppsProduction.P4 Testing.P4

…

Merged.P4

Standard P4 Compiler

A C
B

D D C A
B

…
 P4 P4

P4Visor Interface (PVI) (A-B testing, Differential testing…)

A D

D A

C

B
TTC CM

Merged
Control

Flow
Merged data plane

Merged
Parsers

Testing
Traffic

Control

Compa-
rator

Network
Administrator

P4VisorConfiguration

Pipeline configurations

Figure 4: P4Visor overview.

mapping between the resources of each input P4 program and

the merged P4 programs. Recall, each P4 program uses unique

IDs to identify tables, and during the merge, these IDs may be

modified. The P4VisorConfiguration provides a mapping between

the original ID and the modified IDs: this file allows P4Visor to

transparently rewrite all calls between the control and data plane

that use these IDs. For example, when the controller sends a flow

entry installation message to the switch to add a new entry to a

resource-sharing table, PVM will modify the table IDs according

to the P4VisorConfiguration to ensure that the entry is installed

correctly.

P4Visor Management agent (PVM): PVM runs on the PDP

devices, i.e., programmable switch, intercepts messages between

the control plane (controllers) and the merged P4 Program and

uses the P4VisorConfiguration to determine how to appropriately

modify the messages. Essentially, the agent multiplexes and demul-

tiplexes messages between the different controllers and the merged

P4 program.

P4Visor controller Application (PVA): PVA runs on the con-

troller with a global view of the network, providing runtime control

over the testing operators. For example, in A-B Testing, the PVA

populates the testing traffic control tables (Section 3.3) for all the

edge switches, identifies testing traffic.

3.2 Composition Operators
To illustrate the flexibility of our merge algorithm, we use it to

implement two distinct testing composition operators.

A-B Testing Operator: This operator allows multiple programs

to run side by side in a production network with a subset of traffic

siphoned to the testing version, as shown in Figure 5 (a). To support,

our A-B Testing composition, P4Visor must securely and flexibly

manage traffic among multiple versions. To ensure security, i.e.,
production traffic will not be processed by the testing programs,

P4Visor adds/removes a special flag (TFlag) to packets at edge

switches when traffic enters and leaves the network.

Differential Testing Operator: The key difference between

the A-B Testing and Differential Testing operators is that: while

the A-B Testing operator is mutually exclusive, i.e., traffic either

goes to the production or the test P4 program, for the Differential

Testing operator, the test packets must be copied and send through

both programs, with outputs compared at the end of the pipeline.

The packet life-cycle is shown in Figure 5 (b).

3.3 Primitives for Composition Operators
To support these two operators, P4Visor must provide a flexible

primitive for controlling traffic and, specifically, for Differential

Testing, P4Visor must provide primitives for performing compar-

isons.

Flexible Control: To ensure flexibility, a traffic management

module, called Testing Traffic Control (TTC in Figure 5), is devel-

oped and inserted into the merged pipeline to identify a packet as

either “test” or “production” traffic and guide the packets along

the appropriate pipeline. As shown in Figure 5, the TTC module

is instantiated within the first table that all packets encounter and

affixes the TFlag header to the packet once the packet is identified

as the testing packet.

The TTC contains a set of stateful registers and flow tables, which

are configurable using the P4Visor Interface. Using the P4Visor

interface, network operators can configure the TTC to configure

how traffic is sampled for testing:

• Random sampling: Operators can specify which percentage

of traffic is randomly selected and piped through the testing

“pipeline” and which percentage of traffic goes through the

production “pipeline”, e.g., randomly sample 1% of the total

traffic for testing.

• Flow based sampling: Alternatively, operators can specify the

exact flows that should be sampled by specifying a flowspect,

e.g., traffic from subnet “10.10.10.0/24” should be sampled.

The Comparison Primitive: To enable comparisons, a special

table, called an output record table, is added at the end of each

program’s pipelines. This table’s fields are configurable through the

P4Visor interface. Specifically, we need to clone the packets and, in

turn, compare their outputs at each switch.

To clone packets, we leverage the recirculate primitive, which

recirculates a packet and allows the packet to be processed multiple

times by the switch. We recirculate once for each version we want

to test – during recirculation, we also recirculate the metadata

fields. At the end of the pipeline, the packet is processed by the

Comparator Module (the CM in Figure 5), which compares the

output of the different versions. The comparator reports to the

controller, via a message, when the compared packets and metadata

fields are different.
2

Using the P4Visor Interface, a network administrator can 1)

specify which outputs should be compared; 2) configure how to

process the differences detected by the Comparator. In general, the

Comparator can support two kinds of comparisons either on packet

header fields or on metadata fields.

2
To control the overheads associated with recirculating packets, the operators can

fine-tune the number of packets sampled to ensure the system provides acceptable

performance.

101

P4Visor: Lightweight Virtualization and Composition Primitives ... CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

Merged pipeline

Merged

Parser

Testing
Pipeline

Production
Pipeline

Testing Traffic

Control (TTC)

Merged

Deparser

Testing packet
Production packet

(a) A-B testing.

Comparator

Module (CM)

Merged pipeline

Merged

Parser

Testing
Pipeline

Production
Pipeline

Testing Traffic

Control (TTC)

Merged

Deparser

Output Record

Table (ORT)

Recirculate

Differential Testing specific module

(b) Differential testing.

Figure 5: Life-cycle of a packet in P4Visor (under our two
composition operators).

3.4 P4Visor Compiler
P4Visor merges PDP programs by merging their parse graphs and

their control flow graphs:

Merging Parse Graphs: A naive approach for merging the

parse graphs of two programs is to emulate the merge process

by resubmitting packets into the pipeline multiple times; once for

each of the states in both parge graphs (this is the approach taken by

Hyper4 [22]). Unfortunately, this incurs a significant performance

overhead — each time a packet is recirculated, throughput is cut

and packet processing latency is increased.

Instead, we merge the two parse graphs into one and use a tag

(i.e., TFlag) to disambiguate and break conflicts in the merged parse

graph. Figure 6 presents an example of two parse graphs being

merged. Recall, each parse graph is a finite state machine (FSM)

with each state representing the bit offsets of each header type.

In merging these parse graphs, we align the parse graphs’ FSMs

and merge identical states.
3
In Figure 6 (c), the merged states are

in orange with solid line. We observe that Ethernet and IPv4 are

both identical and thus can be merged. There is ambiguity about

when to parse the VLAN and the IPv6 headers, and we break this

ambiguity by introducing the TFlag state: packets with the TFlag,

i.e., test packets, should parse the IPv6 header type, whereas only

packets without the TFlag, i.e., non-test packets, should parse the

VLAN header type. Note: we need only insert one such state for

the TFlag, and this state can disambiguate all potential ambiguities

in all merged states.

MergingControl FlowGraphs: P4Visor analyzes the pipelines

of all P4 programs to be merged and identifies the tables to be

merged using the algorithms presented in Section 4. Given this

information, P4Visor merges the P4 programs by:

(1) rewriting the Table IDs – to avoid conflicting IDs
4
,

(2) rewriting “GoTo” statements for all tables except the merged

tables to reflect the new Table IDs,

3
Since we focus on merging different versions of the same program, and we anticipate

a high degree of overlap between the parse graphs of the different programs.

4
While each program may have unique Table IDs, multiple programs may reuse the

same Table IDs which will create problems during compilations

+
Ethernet

IPv4 VLAN

0x81000x800

Start

Ethernet

IPv4 IPv6

0x86dd0x800

Start
Ethernet

IPv4 IPv6

0x86dd
0x800

Start

VLAN

0x8100 TFlag
0xfff

0x800

(a) Production parser (b) Testing parser (c) Merged parser

TCP UDP TCP UDP

0x6 0x11 0x110x6

Figure 6: Merging two parse graphs.

(3) for merged tables, P4Visor does one of two things: if the

merged table leads to one table, then rewriting is obviously

just rewriting the existing “GoTo” to use the appropriate ID;

However, if a merged table leads to more than one table,

e.g., table “B” or “C” in Figure 3 (a), then P4Visor will add

multiple “GoTo” statements, one for each branch.

Recall the above example, Figure 3, in the production control

flow graph the next-hop for “C” is “D”, in the merged graph, table

“C” will retain “D” as its default next-hop table modulo rewriting

IDs to reflect D’s new ID; however, P4Visor will also add a “GoTo”

that matches on the TFlag for testing control program and uses “A”

as the next-hop for packets with the TFlag tag.

Preserving Traffic Isolation: Our framework must be able to

offer isolation whenever it is required. Wherein, we define isolation

as the following property: if two PDP Programs, P1, and P2, are iso-
lated, then traffic for P1 is never processed by resources exclusively

dedicated to P2. Additionally, table entries controlled by one are

never modified by the other. To enable isolation, we introduce an

ACL-Bit (attached to tables) that provides access control overflow

entries in the resource-sharing tables.

Observe that each table in the original P4 programs will map

to exactly one table in the merged P4 program, while each table

in the merged P4 program may correspond to one or more tables.

We label all tables in the merged P4 Program that correspond to

multiple tables in the original programs as resource-sharing tables.

In Figure 3 (a), nodes C and B are both resource-sharing tables. For

the resource-sharing tables, the P4Visor compiler will add the ACL-

Bit to the table entries to provide traffic isolation for P4 programs.

Combined with the TFlag which identify the packet as test packet,

this ACL-Bit provides traffic isolation by allowing packets to match

entries in the shared table only when packets match both the TFlag

and the ACL-Bit. While the TFlag and ACL-Bit ensure isolation

within resource-sharing tables, the TFlag alone ensures isolation

between non-resource-sharing tables.

In addition to isolating the packet processing, the ACL-Bit also

enables P4Visor to separate control over entries in the flow tables:

The control plane for a P4 program can only modify the entries

with the appropriate ACL-Bit value. Given this ACL-Bit, each P4

program can update the shared table correctly without side effects

to the other P4 programs.

4 MERGING P4 PROGRAMS
In this section, we provide an overview of PDP-based resource

constraints (Section 4.1), present the design of P4Visor’s source code

merge model (Section 4.2), and conclude by theoretically analyzing

the complexity and hardness of the problem (Section 4.3).

102

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece Peng Zheng, Theophilus Benson and Chengchen Hu

4.1 Background on P4 Compiler Constraints
In general, there are two kinds of constraints on a P4 program.

These constraints are either placed on the compiler by the language

(hardware target independent) or placed on the compiler by the

hardware architecture (target-dependent). An example of a target-

independent constraint is that there can be no loops in the control

flow graph; hence, it needs to be a DAG. This constraint is invariant

across all targets. However, the target-dependent constraints vary

dramatically from target to target and are especially hard to enforce

without intimate knowledge of the target hardware’s proprietary

details. For example, RMT [7] has 32 stages in its pipeline while

Intel’s FlexPipe [41] has 5 stages with different memory constraints

for each stage.

To tackle these two constraints, P4 compilers are split into two

components: a target-independent compiler (front-end compiler)

and a target-dependent compiler (back-end compiler).

Prior work [27] has identified table size, program control flow,

and hardware memory restrictions as the key issues faced by the

P4 compiler.

In this paper, we focus on the design of target-independentmerge

optimizations. We aim to, first, provide a general optimization that

benefits all hardware-targets. Our target independent optimization

builds on the insight that merging different tables results in sig-

nificant savings across all hardware targets for multiple reasons:

merging tables reduces overheads associated with instantiating

tables and merging tables results in large tables which take advan-

tage of various hardware optimizations (we elaborate on this in

Section 7). As part of future work, we will explore target-dependent

optimizations.

4.2 Merging Optimization
Merging two P4 Programs is fundamentally equivalent to merging

two weighted DAGs into a single weighted DAG with the added

objective of minimizing space (i.e., the # of nodes). To the best of our
knowledge, no existing work has explored this problem: specifically,

merging two weighted DAGs into one while maximizing overlap.

The most closely related works [8, 43] provide suboptimal results,

we elaborate on them in Section 9. Next, we more formally describe

the problem.

We model a program’s control flow using a Table Dependency

Graph (TDG) [27] G = (T ,E) where vertices T = {t1, t2, ..., tn }
5

and edges E = {(ti , tj) | ti , tj ∈ T } map to the tables and the table

dependency, respectively. Each table ti ∈ T has three attributes:

(1) the program id, ti .pid , reflects the P4 program in which the

table resides;

(2) table ID, ti .tid , reflects the table’s ID and helps to differenti-

ate tables; and,

(3) table size, ti .size , reflects the memory footprint of the table

(size is a function of width and number of entries defined).

Given G, we can compute the dependency matrix, D, of the graph
as: D[ti , tj] = 1 if there is a dependency path from ti to tj and

D[ti , tj] = 0 otherwise
6
.

5n is the total number of tables in the pipeline.

6D[ti , ti] = 0 because P4 programs are generally acyclic graphs.

For simplicity, we formalize the PDP-merge problem for two P4

programs, but the problem formulation and analysis generalizes to

cases with more than two P4 programs.

Objective: Our goal is to merge two programs – a production

version denoted as Gr = (Tr ,Er) with the dependency matrix Dr
and a testing versionGs = (Ts ,Es) with the dependency matrix Ds
into a single program Gm = (Tm ,Em) with the dependency matrix

Dm , while minimizing the total resources required. In this paper,

we only focus on table memory resources. Restated, our object is

maximizing sharing resources:

max

|Tm |∑
i=1

wi (1)

wherewi is the weighted contribution of reducing the resources in

Gm used by table ti ∈ Tm .

We define the set of resource-sharing tables, Tms , as a subset

of tables in the merged TDG Gm : these tables in Tms are merged

from multiple tables in the original programs, which satisfy the

following constraints: equivalence, correctness, and loop-freedom.

For each table vi ∈ Tms ,wi captures both the memory type and

table size. Currently, the memory size is calculated as a function of

the number of entries and the width of each entry:

wi = ci · leni · widthi

where leni andwidthi are the number of entries and width of an en-

try in table ti respectively. ci is a configurable weighted coefficient

that allows an administrator to guide our optimization algorithm

to merge tables that the administrator cares about. For example, if

an administrator only cares about the TCAM tables, she can set the

table weights of all non-TCAM types to 0. As a preprocessing step,

P4Visor setswi = 0 for each table vi < Tms which shares no table

resources with other tables because these tables cannot be merged.

Note that when the weights for all tables Tms are equal, the

objective function (1) leads to a merged TDG that minimizes the

total number of tables.

Target-Independent Constraints: Two tables, tri ∈ Tr and

tsj ∈ Ts , can be merged if and only if three constraints are satisfied:

(i) Equivalence: The two tables are structurally equivalent (same

actions and match fields but they can vary in the number

of declared entries). Here the equivalent tables are assigned

the same id, that is tri .tid = tsj .tid .
(ii) Correctness: the table dependencies of both tables are main-

tained – correctness is preserved.{
Dm [tri , tr j] = Dr [tri , tr j], ∀tri , tr j ∈ Tr

Dm [tsi , tsj] = Ds [tsi , tsj], ∀tsi , tsj ∈ Ts
(2)

(iii) Loop-free: the resulting graph is loop free, that is, the depen-

dency matrix of Gm satisfies ∀ti , tj ∈ Tm ,

Dm [ti , tj] · Dm [tj , ti] = 0 (3)

Target-Dependent Constraints: While this work focuses on

target-independent constraints, here, we briefly sketch out how

target-dependent constraints can be introduced into our problem

formulation.

103

P4Visor: Lightweight Virtualization and Composition Primitives ... CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

Abstractly, we can introduce target-dependent constraints by

introducing hardware information. One constraint placed by hard-

ware is the number of physical stages. For example, RMT [7] has 32

stages, and thus RMT can only support P4 programs whose crucial

dependency path length is no more than 32. To overcome this limi-

tation, we can add a constraint that limits the merged TDG’s critical

path length to less than 32. This may force our algorithm to ex-

plore solutions that create merged programs that do not maximize

overlaps, but that ensure shorter critical dependency paths.

As part of future work, we will study the constraints of dominant

PDP hardware targets and incorporate them into our algorithm.

4.3 Complexity Analysis
Our TDG merging problem can be reduced to and from the Maxi-

mumWeighted Independent Set (MWIS) problem: a problem which

has been proven to be NP-Complete [18]. In this section, we pro-

vide a sketch of how to reduce our problem to and from the MWIS

problem.

We define a function v(m, i) which returns the table from TDG

Gm whose table ID is i , thus, v(m, i) = tmi and tmi .tid = i . To do

this reduction, we define a merge candidate set, Tp , as the set of
all tables in Gr and Gs that satisfy the equivalence requirement

defined in constraint (i).

By definition of constraints (i) to (iii) in Section 4.2, all the tables

in production and testing programs follow the Lemma 4.1 (proved

in the appendix).

Lemma 4.1. ∀ti , tj ∈ Tms , v(s,j) and v(s,i) have

Dr [v(r , i),v(r , j)] · Ds [v(s, j),v(s, i)] = 0 (4)

Next, let us construct a new undirected graph Gp = (Tp ,Ep)
where the vertex set of the graph isTp and the edge set of the graph

is Ep . Given this definition, we define ∀ti , tj ∈ Tp ,

Ep [ti , tj] =


1 Dr [v(r , i),v(r , j)] · Ds [v(s, j),v(s, i)] = 1

or Dr [v(r , j),v(r , i)] · Ds [v(s, i),v(s, j)] = 1

0 Otherwise

(5)

Taken together, formulas (4) and (5) provide us with a way

to formally reason about the relationship between Tms and Gp .

Lemma 4.2 (proved in the appendix) provides this relationship.

Lemma 4.2. The set of resource-sharing tables Tms is a subset of
vertices in graph Gp , no two of which are adjacent, that is, ∀ti , tj ∈
Tms ,

Ep [ti , tj] = 0 (6)

Reducing PDP-Merge to MWIS: Lemma 4.2 restated shows

that analyzing graph Gp to identify the set of tables Tms can be

reduced to the independent set problem in polynomial time of

O(|Tp |
2). Essentially, in constructing Gp , we only keep the depen-

dencies in both Dr and Ds that provide the forward and reverse

direction between two nodes. Take nodes A, D in Figure 3 as an

example, there is a dependency from node A to D in one program

as well as a dependency path from D to A in another program.

We keep these types of forward and reverse dependencies when

creating Gp and delete all others dependencies.

To satisfy our objective of maximizing the shared table resources,

we need to find the maximum weighted independent set in graph

Gp , known as MWIS problem, an NP-Complete problem [18].

ReducingMWIS to PDP-Merge: Next, we show how to reduce

a given MWIS problem to our merging problem. The key lies in

transforming a given weighted undirected graph Gp = (Tp ,Ep)
in the MWIS problem to two weighted DAGs, Gr and Gs , to be

merged with the objective of maximizing the weights of the final

DAG. More specifically, we can construct the dependencies matrix

of two DAGs from Gp as follows:

Dr [i, j] =

{
Ep [i, j] i f i > j

0 Otherwise
(7)

Ds [i, j] =

{
Ep [i, j] i f i < j

0 Otherwise
(8)

where i, j = 0, 1, 2, ..., |Tp | are the indices of the nodes in graph

Gp . We set Tms as a feasible independent set of Gp . Similarly, with

lemma 4.2, we know that Tms is a feasible set of resource-sharing
tables when merging two constructed DAGsGr andGs . Further, as

each node has a weight, solving the maximum weighted indepen-

dent set of Gp is equal to the identification of the set of tables with

maximum shared resource when merging Gr and Gs .

Thus, the maximum weighted independent set (MWIS) problem,

an NP-Complete problem [18], can be reduced to our problem in

polynomial time O(|Tp |
2). That is to say, merging two weighted

DAGs into one weighted DAG with the objective of maximizing

weights is an NP-Complete problem.

5 EFFICIENCY
Next, we design a heuristic to efficiently solve the problem in real

time (Section 5.1) and discuss a systematic approach for configuring

resource sharing of entries within the merged tables (Section 5.2).

5.1 P4Visor Heuristic Merging
A naive approach for solving the “merge” problem is to perform

a brute-force search through all potential combinations in Gm to

find the solution which provides the maximum overlap: the best-

known optimal algorithm for solving the maximum independent

set problem is Bron-Kerbosch. We implemented the extended Bron-

Kerbosch [24] and observed that it can only handle small graphs

and was unable to scale to large graphs (i.e., greater than 80 nodes):

In particular, given a 7-day time limit, we were unable to solve

the Bron-Kerbosch algorithm for graphs with over 80 nodes. Thus,

Bron-Kerboschwas unable to process the largest DAG in our dataset

(Switch.P4 which has over 120 tables). Motivated by the inadequa-

cies with Bron-Kerbosch, we designed a new heuristic to solve the

merge problem.

Heuristic Our heuristic is based on simulated annealing (SA)

which has proven effective in solving the MWIS problem [1].

In our heuristic, each state of the search space is defined as a

subsetVsub of the vertex set of graphVp and every vertex inVsub is

nonadjacent to the other vertices. Motivated by prior work [4, 40],

our heuristic generates neighboring states to explore using one of

the following two procedures:

104

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece Peng Zheng, Theophilus Benson and Chengchen Hu

A D

D A

C

B
TTC CM

Merged pipeline

+
Production table Testing table Resource-sharing table

!" !" ⟹ +
! " #$

! " #$

Figure 7: Controlling Resource Sharing

(1) adding one vertexvi ∈ Vp \Vsub toVsub and deleting all the

vertices,vj in Vsub , that are adjacent to vi .
(2) adding two nonadjacent vertices vi ,vj ∈ Vp \Vsub to Vsub

and deleting one vertex from Vsub that is adjacent to both

vi and vj .

The energy function, or evaluation function, of our heuristic is de-

fined as the total weight, E(V) =
∑
vi ∈V weiдht(vi), of the vertices

in current search state, V , whereweiдht(vi) is the weight of each
vertex vi ∈ Vsub . A new state will be accepted if its energy, i.e.,
E(Vn+1), is larger than the current state’s energy E(Vn); otherwise

we accept the new state with probability of e−
∆E
t . The temperature,

t is initially set to 100 initial and decreases linearly to 1 at each

iteration based on this equation t(n+ 1) = t(n) ∗ 0.99. We terminate

the search when the temperature decreases to 1.

Awell known problem of simulated annealing-based heuristics is

that they can often get stuck in local optimas. To avoid this problem,

we run the simulated annealing process many times which increases

coverage over the search space and introduces more randomness.

The increased randomness and larger coverage over the search

space, enables our heuristic to avoid local optimas.

5.2 Controlling Resource Sharing
In general, merging the control flow graphs of two P4 programs

consists of two major steps. The first is to identify the tables to

be merged in both P4 programs, Gr and Gs , that satisfy the “cor-

rectness” constraints. The second step is to merge the control flow

according to the identified tables.

In merging two tables, tri and tsj , the resulting table, tmx , can

vary in size, # of entries, ranging frommax(tri .size, tsj .size) (the
merged tables reuse 100% of their resources) to tri .size + tsj .size
(the merged tables do not reuse any resources and the logical size

of the merged table is equivalent to the sum of the original tables).

At both extremes, P4Visor provides benefits. At the extreme

where no table entries are shared, i.e., tmx .size = tri .size + tsj .size ,
the merge provides benefits because it enables Gm to fit within

smaller memory by reducing the overheads associated with in-

stantiating individual tables in hardware, e.g., in Xilinx’s Virtex-7

FPGAs [55] instantiating a TCAM table with 64 bits width × 256

bits depth consumes 2 RAM blocks but instantiating TCAM tables

with 4 times (128 bits width × 512 bits depth) or 16 times (256 bits

width × 1024 bits depth) more memory consumes only 3 or 5 RAM

blocks respectively. Thus, merging would save resources, even if the

merged table contains the same number of entries as the original

tables combined.

At the other extreme, where switch memory is reused, that is,

tmx .size = max(tri .size, tsj .size), then precious switch memory

is being saved by sharing resources across tables. This savings is

in addition to the savings of overheads described earlier. At this

extreme, the table resources are shared proportionally between the

different programs based on the fraction of traffic allocated to each

program.

To explore this trade-off, P4Visor exposes a parameter, k , to the

operator through the P4Visor Interface. This parameter allows the

operator to control the amount of sharing: k = 1 means no sharing

while a k = 0 means proportional sharing. Figure 7 demonstrates

the controlling resource sharing.

6 P4VISOR IMPLEMENTATION
Wehave implemented the P4Visor compiler in 3000+ lines of Python

code and 800+ lines of C++ code. The controller application, P4Visor

interface and P4Visor management agent are all developed with

Python in over 100+ LoCs. The P4Visor compiler takes as input

the high-level intermediate representations of P4 programs (i.e.,

HLIR) and merges them into one program. Merging the high-level

IR allows us to operate at a platform independent level while main-

taining the complete semantics of the P4 language. Currently, we

only support merging of P414 programs. As part of future work,

we will extend P4Visor to support P416 programs. P4Visor’s source

code is online in our Github repository [6].

6.1 Supporting Flexible Testing Operators
We now discuss, the implementation details of several interesting

components: specifically, the Differential Testing specific module.

In this discussion, we also, demonstrate the flexibility of the testing

operators provided by P4Visor.

Testing Traffic Control (TTC): In Figure 8, we present a code

excerpt from our implementation of the TTC component. Recall, the

key goal of the TTC is to provide flexible control over the sampling

and selection of traffic for testing. P4Visor provides both runtime

and compile-time control which allows the administrator to alter

sampling configuration program: at compile time the administrator

can configure more static aspects of the flow spec to match on and

at runtime, the administrator can specify the exact values to sample

on.

The control flow of TTC is implemented in table testing_traffic_

control (Lines #11-14), the TTC uses the set_testingbit variable

to determine if a packet should use the testing pipeline or the pro-

duction pipeline.

Run Time Configuration: The administrator can control the sam-

pling rate (by changing the registers (Line #1)) and the subnets to

be sampled (by modifying the entries in testing_traffic_identify

table (Line #8)). The sampling frequency is implemented as a special

action, sample_testing_pkt (in Lines #2-5), which uses two regis-

ters, cnt and Rate, to determine the sampling rate, e.g., sample one

packet in every R packets.
7
The subnet sampling is performed by

comparing the addresses in the packet against the entries in table

testing_traffic_identify (Line #8).

7
Due to limited arithmetic operations supported by P4, the TTC can only support the

sample ratio of 1/R (R = 1, 2, 3...).

105

P4Visor: Lightweight Virtualization and Composition Primitives ... CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

Compile Time Configuration: Additionally, the structure of table
testing_traffic_identify can be altered, through the PVI, to re-

configure the TTC and allow the TTC tomatch packets for sampling

based on other aspects of the FlowSpec beyond subnet.

1 registers cnt , Rate
2 action sample_testing_pkt () {
3 register_write(cnt , 0, cnt +1);
4 modify_field(testing_meta.testingbit ,cnt%Rate);
5 }
6 table testing_traffic_identify {
7 // fields are configurable using P4Visor Interface
8 reads {ipv4.dstAddr : lpm;}
9 actions {sample_testing_pkt; set_testingbit ;}

10 }
11 table testing_traffic_control {
12 reads {testing_meta.testingbit : exact ;}
13 actions {goto_test_pipe; goto_prod_pipe}
14 }

Figure 8: Code Excerpt from our TTC Implementation.

Comparator: In Figure 9, we present an puesdocode for the

Comparator Module. The Comparator is implemented using a set

of flow tables with compound actions.The output of each version

of the program are recorded in a set of metadata (i.e., meta_p)
and then compared by the Comparator (Line #2) to determine if

the versions are different. If a difference is detected, the action

diff_procedure is used to create a packet to send to the controller.

To overcome a limitation of our target platforms, we create a new

packet by multicasting the original packet and sending a version to

the controller (Line #6-9).

1 // compare the outputs
2 if(testing_meta.meta_p != testing_meta.meta_t){
3 apply(diff_procedure);
4 }
5 //an example procedure configuration
6 action diff_procedure(testing_meta , mcast_group) {
7 update_fields(testing_tag , testing_meta);
8 set_output_mcg(mcast_group);
9 }

Figure 9: Pseudocode for Comparator.

6.2 Limitation of Existing PDP Targets
PDPs are expected to provide a rich set of packet processing features,

e.g., the action primitives defined in P4. However, current PDP

targets, e.g., software switch Bmv2 [13] or FPGA-based hardware

from Xilinx SDNet [54], can only support a limited set of P4’s

features. Several of the key P4 features required to enable P4Visor

include (1) stateful registers; (2) packet cloning, for creatingmultiple

copies of a packet to be processed by different programs; and (3)

in-switch packet generator, for generating and sending a packet

to the controller that summarizes differences between the two P4

programs.

• While packet cloning primitives are defined in the P4 specifi-

cation, the clone feature is not supported by the Bmv2 target.

We address this problem by attaching attributes of the packet

to the metadata and recirculating the packet and metadata

through the pipeline for processing by the alternative pro-

grams. Thus, by recirculating the packet, multiple versions of

a PDP Program can independently process the same packet.

• In-switch packet generator is not supported by either the

Bmv2 or FPGA targets (Xilinx SDNet). To send the outcome

of testing to the controller, P4Visor adds those fields to the

pre-configured TFlag, inserts the TFlag to a copy of the packet,

and then sends a copy of the packet out to the controller.
8

• Our hardware target is even less flexible than the Bmv2 due to

the limitation of the current development toolchain (SDNet).

Specifically, SDNet does not support stateful register which

impacts our design of the comparator and limits the set of

programs we can deploy. To support P4Visor on our FPGA-

based hardware target, we have implemented those primitives

in low-level hardware (i.e., the Testing Traffic Control module

is implemented with 1000+ lines of Verilog code). We believe

these hardware limitations will be addressedwith the evolution

of the SDNet toolchain.

7 EVALUATION
7.1 Experiment Setup
We have evaluated P4Visor on both a software (Bmv2 [13]) and a

hardware (ONetSwitch [23]) programmable data plane.

Software PDP: On the Bmv2 target, we analyzed the following

programs: Reference Switch.P4 [14], L2 switch, Simple Router, NAT,

VLAN and Arp-Proxy, Flowletting [15], and Heavy Hitters [48]. The

Bmv2 runs in mininet with a single switch, two hosts for testing,

and a third host for running the controller. Before testing, we install

flow entries into the tables so that the two end hosts can ping each

other.

Hardware PDP: On the ONetSwitch target, we were only able

to evaluate the following programs: L2 Switch, Simple Router, and

VLAN. We were limited in the set of programs evaluated because

ONetSwitch builds on Xilinx’s Zynq SoC [23] which only supports

a subset of P4’s language features (see Section 6.2). To test the

performance of the switch, we connect two PCs with 10G NIC to

the ONetSwitch45 switch, due to NIC limitations, the maximum

achievable throughput for our servers is 5Gbps. We used iPerf to

generate traffic between the hosts and similarly crafted rules to

force traffic through as many tables as possible.

7.2 Performance Benefits and Overheads
Here, we evaluate the overheads of P4Visor and analyze the practi-

cal benefits of source code merging as a lightweight virtualization

primitive.

7.2.1 Benefits of Resource Sharing. To understand and quan-

tify the benefits of resource sharing, we have compared P4Visor’s

merge algorithm against a Naive merge algorithm [44], which is a

greedy algorithm for MWIS problem. When solving the problem,

Naive merge selects a vertex of minimum degree, removes it and its

neighbors from the graph until no vertex available.

Our results show that merging introduces significant benefits

for three distinct reasons: First, instantiating a table into hardware

incurs some overheads. Thus by having two programs sharing a

table, we ameliorate the associated overheads and this translates

8
Recall, the TFlag is removed at the edge switch and thus the endhosts never receive

the TFlag.

106

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece Peng Zheng, Theophilus Benson and Chengchen Hu

LUT LUTRAM FF BRAM
0

5

10

15

20

O
n-

ch
ip

re
so

ur
ce

ut
ili

za
tio

n
(%

)

P4Visor
Naive merge

Figure 10: Impact of program merging approaches on mem-
ory utilization.

into memory savings. For example, while multiple tables may use

the same actions, these actions need to be independently stored

for each table and by merging tables, we reduce the number of

instances of these actions. Second, as tables grow in size, several

of the resources increase in a sub-linear fashion due to hardware-

specific optimizations, e.g., the BRAM memory in Xilinx includes

optimizations that result in sub-linear growth. Third, when we

modify the parameter k which impacts the amount of sharing,

we reduce the total number of entries. This introduces yet more

savings.

To illustrate the first two points, we analyze a simple P4 program

(the router program [5]) consisting of two tables: a TCAM IPv4 rout-

ing table (32 bits width, 256 entries) and an exact match IPv6 routing

table (128 bits width, 256 entries); each table has two actions. For

this analysis, we set k = 1 which means both the P4Visor-merged

and the naive-merged programs will have the same number of en-

tries. We merge two router programs into one and then compile the

merged programs to the ONetSwitch45. In our analysis, we focus on

the four different kinds of memory resources of the Xilinx chipset:

LUT, LUTRAM, FF, and BRAM.
9
Figure 10 illustrates our first point

– our heuristic merging with P4Visor results in a 32% to 49% sav-

ings in resources compared with the naive merging algorithm. To

illustrate the second point, we analyze the amount of resources

required to support tables of varying sizes. We observe that while

most resources grow linearly with the size of the tables, the BRAM

grows sub-linearly (figure omitted due to space limitations).

Takeaway. Intelligently merging tables leads to tremendous

resource savings. We anticipate these savings to only grow as P4

programs become even more complex.

7.2.2 Performance Overheads. To evaluate the performance over-

heads of P4Visor, we randomly select two of the evaluated PDP

programs, i.e., L2switch, Router, VLAN, NAT, and Flowleting (only

the first three for hardware switch), merge them with P4Visor,

and compare the throughput/latency of running traffic through

the merged program against that of running traffic through the

unmodified programs – we compare the merged program against

the better performing of the two original PDP programs.

Our experiments, not shown due to space constriants, demon-

strate that P4Visor introduces minimal overheads. Specifically, the

TTC and the Comparator modules which add tags to packets and

perform comparisons introduce minimal overheads. In the software

switch, the throughput decreases by less than 1.5% and the delay

9
The LUT, LUTRAM, and BRAM are mainly used to store Table structures — with

BRAM used to store large TCAM tables. The FF, is however, mainly used to store

timing and control signals.

V1+V2
V1+V3

V1+V4
V2+V3

V2+V4
V3+V4

Merged programs

10−1

100

101

102

103

104

M
er

ge
tim

e
(s

)

Optimal
P4Visor
Naive merge

(a) Real P4 Programs

102 103

Program size (# of nodes)

10−2

10−1

100

101

102

103

104

105

106

M
er

ge
tim

e
(s

)

Optimal
P4Visor
Naive merge

(b) Synthetic P4 Programs.

Figure 11: Runtime of program merging approaches.

penalty is less than 3%. For the hardware switch, the overhead is

much smaller, both the throughput and delay overheads are less

than 1%.

Takeaway. P4Visor introduces several tables and actions to

support the different testing paradigms; however, these constructs

introduce minimal performance overheads to the network (less

than 1% in hardware) making them highly desirable for today’s

networks.

7.3 Analytical Evaluation of the Heuristic
To evaluate the efficiency and accuracy of our heuristic, we compare

our heuristic with the optimal solution (Bron-Kerbosch) and a naive

greedy merge [44]. Note: we were unable to evaluate the optimal

approach on programs with over 80 nodes because the optimal

algorithm failed to provide a solution. In these evaluations, we

focus on two kinds of P4 programs:

First, real P4 programs, is based on the reference Switch.P4 [14],

which contain 82 tables in the ingress pipeline and 41 nodes in the

egress pipeline. As Switch.P4 is built in a configurable fashion, we

create different versions by turning on or off specific functionality.

Specifically, we created the following four versions:

• Switch.P4-V1: by turning on the OpenFlow processing module.

It has 84 ingress nodes and 53 egress nodes.

• Switch.P4-V2: by turning off the Tunnel processing module. It

has 66 ingress nodes and 30 egress nodes.

• Switch.P4-V3: by turning off the ACL processingmodule (MAC,

IPv4, IPv6, RACL/PBR). It has 76 ingress nodes and 37 egress

nodes.

• Switch.P4-V4: by turning off the Multicast processing module.

It has 73 ingress nodes and 39 egress nodes.

Second, synthetic P4 programs, which enable us to systematically

evaluate the accuracy and efficiency of our heuristic at scale –

larger than the largest known P4 program (Switch.P4). We generate

synthetic programs ranging in size from 30 to 1000 tables with

randomly generated dependencies (edges) – we generate the edges

to ensure that the graph maintains a graph density of 0.4.

Efficiency To evaluate the efficiency of our heuristic, we mea-

sure the time it takes to merge two randomly selected P4 programs.

Figure 11(a) presents the runtimes for merging real P4 programs.

We observe that our heuristic and the naive algorithm consistently

take a similar amount of time (0.1 seconds) and both are consid-

erably faster than the optimal algorithm. Figure 11(b) presents the

107

P4Visor: Lightweight Virtualization and Composition Primitives ... CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

30 40 50 60 70 80

Program size (# of nodes)

0.0

20.0

40.0

60.0

80.0

100.0

A
cc

ur
ac

y Optimal
P4Visor
Naive merge

(a) Synthetic programs.

1 0.9 0.8 0.7 0.6
Overlap ratio

0

20

40

60

80

100

A
cc

ur
ac

y

30 Nodes
50 Nodes
80 Nodes

(b) Impact of overlap ratios.

Figure 12: Accuracy of program merging approaches.

runtimes for merging synthetic P4 programs: this figure highlights

the relationship between the runtime of the three approaches and

P4 programs size (in # of nodes): the optimal algorithm shows an

exponential growth, while both our heuristic and the greedy ap-

proach show a linear growth as a function of program size. With

the larger graphs, we observe that while our heuristic performs

slower than greedy, it’s performance is still acceptable.

Accuracy Next, we analyze the accuracy of the different ap-

proaches to understand the cost of the performance improvements.

To evaluate the accuracy, we compare the solutions generated by

the different approaches against the optimal solution. Within the

real programs (not shown due to space constraints), we observed

that both the greedy approach and our heuristic achieved 100% ac-

curacy; however, for the synthetic programs (Shown in Figure 12(a))

we observed that the greedy approach achieved an average accu-

racy of 30% while our heuristic was able to achieve 100% in all

situations.

Upon further analysis, we observed that the accuracy of the

greedy heuristic is a function of the ratio of overlap between the

different programs. Recall, the real programs are all variants of

Switch.P4 thus we expect there to be significant overlaps. If the

overlap is extremely high, as it is common when minor changes

are made, then the greedy heuristic performs well; however if the

overlap is low, e.g., when significant changes are made, then accu-

racy drops. To illustrate this point, in Figure 12(b) we explore the

impact of overlap ratio on accuracy. From this figure, we observe

that for the greedy approach, the amount of overlap has a large

impact on its accuracy.

Takeaway. While our heuristic is slower than the greedy ap-

proach, our heuristic scales linearly and provides better accuracy

across a broader set of scenarios. In short, our heuristic is fast and

accurate.

7.4 Use Case: Testing P4 Programs
In section 6.1, we showed how to flexibly configure the fields to be

tested and actions to be performed using P4Visor interface. In this

section, we demonstrate the use of P4Visor to perform testing and

illustrate how these interfaces may be configured. Specifically, we

use P4Visor to perform Differential Testing to test the behaviors

of two versions of the P4 Router program. Unlike the previous

sections which focus on overheads and accuracy, here we explore

the operational interactions involved with using P4Visor.

Testing Setup: To use P4Visor, we (1) configured P4Visor to

record and compare the 32-bits next-hop metadata fields of the

programs. To handle the detected differences, (2) configured the

Comparator to send the packets along with the outputs from two

programs to the controller (the same as the configuration in Fig-

ure 9), and (3) fed the configuration files and the two P4 programs

into P4Visor’s interface to produce the merged program.

Testing results: We evaluated the merged program on the Bmv2

target. At runtime, we control the routing tables of the two pro-

grams with two different routing applications. We observed that

the P4Visor application can detect differences, via the P4Visor-

generated messages, within milliseconds once the control planes

install different routing entries for the same flow. With the help of

the outputs stored in the messages, an administrator can further

debug and analyze the behavior of the tested programs.

8 RELATEDWORKS
Themost closely related work [30] explore source codemerging as a

method for providing virtualization. We explore a similar approach

but in the P4 domain and tackle a host of domain-specific issues.

Moreover, we prove the complexity of the merge problem. Below

we explore related works on SDN composition, DAG-Merging, and

other recent work on programmable data planes.

PDP: Many have explored virtualization [2, 26, 45], update [29,

35, 37], and state-management [50, 58] techniques for traditional

SDNs. Despite the growing emergence of PDP-based architectures

and solutions, to-date, there are few principled approaches for

supporting testing P4 Programs.

Most work focus on applications of PDPs [11, 16, 32, 36] or

developing interfaces and primitives to enrich existing PDPs envi-

ronment [7, 34, 47]. Our work falls in the latter class and argues

for a principled extension of PDPs to include interfaces, abstrac-

tions, and primitives to enable testing — in short, to support rapid

prototyping.

PDP Compiler: Several works [19, 27, 53, 54] have explored

challenges associated with compiling P4 programs to various hard-

ware targets, e.g. FPGA [53, 54] or RMT [19, 27]. Our work can

benefit from these approaches by using these approaches within

the back-end compiler – note: in this paper, we focus our emphasis

on front-end optimizations.

PDP Virtualization: While related work [22, 56, 57] proposed

a general virtualization primitive for P4, P4Visor provides lighter

weight virtualization primitive for testing based on code merging.

SDN Composition: Orthogonal work on composition and mod-

ularity in SDNs [9, 17, 21, 26, 38] focus on SDN rules and not on

P4 program’s source code. Concurrent work on composition [49]

aims to support orthogonal composition operators. In this work,

we present the first attempt to formalize the problem and present a

framework with supporting algorithms and abstractions to enable

composition within PDPs.

DAG-Merging: The problem of merging two DAGs has been

explored by several others [8, 28, 43]. At a high level, our work

differs in two ways: first, we investigate a different formulation

108

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece Peng Zheng, Theophilus Benson and Chengchen Hu

objective and second, we prove the complexity of the DAG merge

problem and provide a more efficient heuristic based on simulated

annealing. Below, we elaborate on these differences.

OpenBox [8] and SNF [28] merge processing graphs for network

functions (NFs) with the objective of minimizing the path length (re-

ducing packet processing latency in the merged processing graph).

Our goal differs from prior work because we aim to maximize the

number of merged nodes (minimizing the resources used by the

merged graph). A significant implication of this difference between

our objectives is that while our heuristic always reduces the size of

the merged graph, the algorithms presented by OpenBox and SNF

may increase the number of nodes in an attempt to minimize path

lengths.

Saha et al.[43] provide a sub-optimal heuristic for merging two

unweighted DAGs into one unweighted DAG with the objective of

minimizing the number of vertices in the final DAG. Our objective

varies: we want to simultaneously decrease the number of vertices

while maximizing the magnitude of overlap since the vertices in our

problem are weighted. Saha et al. show that merging DAGs is the

dual of finding the maximum length longest common subsequence

between pairs of topological sorted DAGs. Unfortunately, while this

problem can be solved in O(V 2) time, the efficiency of the solution

is highly dependent on the topological sort of the DAG and can be

highly ineffective. Instead, we present an efficient greedy heuristic

based on simulated annealing.

9 DISCUSSION

Control Plane Overheads. In addition to the data plane over-

heads, P4Visor introduces overheads to the control plane. For ex-

ample, the P4Visor agents running on the controller and the switch

PDP devices, have to multiplex and demultiplex messages between

the controller to the local P4 programs. This translation introduces

processing overheads and also memory overheads because the

agents need to maintain a mapping and perform the translations.

Additionally, re-using the control channel between the controller

and switches to transfer packets summarizing the result of the tests

reduces the available bandwidth on the control channel. As part of

future work, we plan to explore approaches, e.g., SwitchVisor [12],

to effectively share and partition these control plane resources.

Target Dependent Optimizations As discussed in Section 4,

our current efforts focus on target-independent optimizations (i.e.,

front-end compiler), as part of future work we will extend our for-

mulation to tackle the back-end compiler by introducing constraints

and objectives specific to the hardware targets.

Seamless Reconfiguration While full virtualization provides

support for headless updates (reconfiguring the data planewithout a

reboot), our approach requires a reboot after every reconfiguration.

As part of future work, we plan to tackle issues related to these

reboots by intelligently migrating state, e.g., with SwingState [34],

and reconfiguring paths, e.g., with zUpdates [33], during the reboot

to eliminate disruption.

Composition Operators This work has focused on supporting

testing-specific composition operators; however, as part of on-going

work we are exploring composition operators for enabling code

modularity, e.g., parallel and sequential composition. Supporting

these operators requires extending our current formulations to

account for operator specific constraints.

10 CONCLUSION
In this paper, we propose a lightweight virtualization primitive

for testing P4 programs through code merging. To support this

primitive, we present a framework, called P4Visor, which uses

compiler optimizations and program analysis to achieve efficient

source code merging. We evaluate the theoretical complexity of the

merging algorithm and present an efficient greedy heuristic. Our

work opens up space for implementing a wide range of composition

operators and frameworks for P4 programs.

ACKNOWLEDGMENTS
We thank our shepherd Eric Keller, and the anonymous CoNEXT

reviewers for their invaluable comments. This work is supported

in part by the National Key Research and Development Program of

China (2017YFB0801703), the National Science Foundation (through

grants CNS-1749785 and CNS-1819109), and the NSFC (61672425,

61702407).

A APPENDIX
A.1 Proof of Lemma 4.1
We can proof lemma 4.1 by contradiction. Let us assume that

∃ ti , tj ∈ Tm so that

Dr [v(t , i),v(t , j)] · Ds [v(s, j),v(s, i)] = 1

then we know Dr [v(t , i),v(t , j)] = 1 and Ds [v(s, j),v(s, i)] = 1. As

i, j are the ids of the merged tables satisfying the table dependency

consistency, according to Rule1 we have

Dm [v(m, i),v(m, j)] = Dr [v(t , i),v(t , j)] = 1

Dm [v(m, j),v(m, i)] = Ds [v(s, j),v(s, i)] = 1

which means the merging of tables v(t , i),v(s, i) and the merging

of v(t , j),v(s, j) introduce a dependency loop to the merged graph

Dm . By Rule2, Dm is loop free. This is a contradiction. QED.

A.2 Proof of Lemma 4.2
We can proof lemma 4.2 by contradiction similar with the proof

of lemma 4.1. Assume that ∃ ti , tj ∈ Tm so that Ep [ti , tj] = 1,

then according to equation (5) we can get Dr [v(t , i),v(t , j)] = 1

and Ds [v(s, j),v(s, i)] = 1. This will lead to the same contradiction

shown in the proof of lemma 4.1. Hence, we have ∀ti , tj ∈ Tm ,

Ep [ti , tj] = 0. QED.

REFERENCES
[1] Emile Aarts and Jan Korst. 1989. Simulated Annealing and Boltzmann Machines: A

Stochastic Approach to Combinatorial Optimization and Neural Computing. John
Wiley & Sons, Inc., New York, NY, USA.

[2] Ali Al-Shabibi, Marc De Leenheer, Matteo Gerola, Ayaka Koshibe, Guru Parulkar,

Elio Salvadori, and Bill Snow. 2014. OpenVirteX: Make Your Virtual SDNs

Programmable. In Proceedings of the Third Workshop on Hot Topics in Software
Defined Networking (HotSDN ’14). ACM, New York, NY, USA, 25–30. https:

//doi.org/10.1145/2620728.2620741

[3] Richard Alimi, Ye Wang, and Y. Richard Yang. 2008. Shadow Configuration As

a Network Management Primitive. In Proceedings of the ACM SIGCOMM 2008
Conference on Data Communication (SIGCOMM ’08). ACM, New York, NY, USA,

111–122. https://doi.org/10.1145/1402958.1402972

109

https://doi.org/10.1145/2620728.2620741
https://doi.org/10.1145/2620728.2620741
https://doi.org/10.1145/1402958.1402972

P4Visor: Lightweight Virtualization and Composition Primitives ... CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

[4] Diogo V. Andrade, Mauricio G. C. Resende, and Renato F. Werneck. 2012. Fast

local search for the maximum independent set problem. Journal of Heuristics 18,
4 (01 Aug 2012), 525–547. https://doi.org/10.1007/s10732-012-9196-4

[5] The Authors. 2018. The P4 Router Programs. https://github.com/Brown-NSG/

P4Visor/tree/master/FPGAtarget/p4program. (2018).

[6] The Authors. 2018. The P4Visor Compiler for BMV2 target. https://github.com/

Brown-NSG/P4Visor. (2018).

[7] Pat Bosshart, GlenGibb, Hun-Seok Kim, George Varghese, NickMcKeown,Martin

Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding Metamorphosis:

Fast Programmable Match-action Processing in Hardware for SDN. SIGCOMM
Comput. Commun. Rev. 43, 4 (Aug. 2013), 99–110. https://doi.org/10.1145/2534169.
2486011

[8] Anat Bremler-Barr, Yotam Harchol, and David Hay. 2016. OpenBox: A Software-

Defined Framework for Developing, Deploying, and Managing Network Func-

tions. In Proceedings of the 2016 ACM SIGCOMMConference (SIGCOMM ’16). ACM,

New York, NY, USA, 511–524. https://doi.org/10.1145/2934872.2934875

[9] Marco Canini, Daniele De Cicco, Petr Kuznetsov, Dan Levin, Stefan Schmid,

Stefano Vissicchio, et al. 2014. STN: A robust and distributed SDN control plane.

Open Networking Summit 490 (2014).
[10] Inc. Cavium. 2018. XPliant Ethernet Switch Product Family. (2018). http://www.

cavium.com/XPliant-Ethernet-Switch-ProductFamily.html

[11] Ed Doe Changhoon Kim, Parag Bhide. 2016. In-band Network Telemetry (INT).

http://p4.org/wp-content/uploads/fixed/INT/INT-current-spec.pdf. (2016).

[12] Huan Chen and Theophilus Benson. 2017. Switch-visor: Towards Infrastructure-

level Virtualization of SDN Switches. In Proceedings of the 2Nd Workshop on
Cloud-Assisted Networking (CAN ’17). ACM, New York, NY, USA, 25–30. https:

//doi.org/10.1145/3155921.3158431

[13] P4 Language Consortium. 2017. P4 software switch (behavioral model) P4-bmv2.

(2017). https://github.com/p4lang/behavioral-model

[14] P4 Language Consortium. 2017. The reference P4 program switch.p4. (2017).

https://github.com/p4lang/switch

[15] P4 Language Consortium. 2017. The sample P4 programs. (2017). https://github.

com/p4lang/p4c-bm/tree/master/tests/p4_programs

[16] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone, and Robert

Soulé. 2015. NetPaxos: Consensus at Network Speed. In Proceedings of the 1st ACM
SIGCOMM Symposium on Software Defined Networking Research (SOSR ’15). ACM,

New York, NY, USA, Article 5, 7 pages. https://doi.org/10.1145/2774993.2774999

[17] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jennifer

Rexford, Alec Story, and David Walker. 2011. Frenetic: A Network Programming

Language. In Proceedings of the 16th ACM SIGPLAN International Conference on
Functional Programming (ICFP ’11). ACM, New York, NY, USA, 279–291. https:

//doi.org/10.1145/2034773.2034812

[18] Michael R. Garey and David S. Johnson. 1990. Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY,

USA.

[19] Glen Gibb, George Varghese, Mark Horowitz, and Nick McKeown. 2013. Design

Principles for Packet Parsers. In Proceedings of the Ninth ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (ANCS ’13). IEEE Press,

Piscataway, NJ, USA, 13–24. http://dl.acm.org/citation.cfm?id=2537857.2537860

[20] Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Koley, and Amin Vahdat.

2016. Evolve or Die: High-Availability Design Principles Drawn fromGoogles Net-

work Infrastructure. In Proceedings of the 2016 ACM SIGCOMM Conference (SIG-
COMM ’16). ACM, New York, NY, USA, 58–72. https://doi.org/10.1145/2934872.

2934891

[21] Arpit Gupta, Laurent Vanbever, Muhammad Shahbaz, Sean P. Donovan, Brandon

Schlinker, Nick Feamster, Jennifer Rexford, Scott Shenker, Russ Clark, and Ethan

Katz-Bassett. 2014. SDX: A Software Defined Internet Exchange. In Proceedings
of the 2014 ACM Conference on SIGCOMM (SIGCOMM ’14). ACM, New York, NY,

USA, 551–562. https://doi.org/10.1145/2619239.2626300

[22] David Hancock and Jacobus van der Merwe. 2016. HyPer4: Using P4 to Virtu-

alize the Programmable Data Plane. In Proceedings of the 12th International on
Conference on Emerging Networking EXperiments and Technologies (CoNEXT ’16).
ACM, New York, NY, USA, 35–49. https://doi.org/10.1145/2999572.2999607

[23] Chengchen Hu, Ji Yang, Hongbo Zhao, and Jiahua Lu. 2014. Design of All

Programable Innovation Platform for Software Defined Networking. In Pre-
sented as part of the Open Networking Summit 2014 (ONS 2014). USENIX, Santa
Clara, CA. https://www.usenix.org/conference/ons2014/technical-sessions/

presentation/hu-chengchen

[24] Brijnesh J. Jain and Klaus Obermayer. 2011. Extending Bron Kerbosch for

Solving the Maximum Weight Clique Problem. CoRR abs/1101.1266 (2011).

arXiv:1101.1266 http://arxiv.org/abs/1101.1266

[25] Mikel Jimenez and Henry Kwok. 2017. Building Express Backbone: Facebook’s

new long-haul network. https://code.facebook.com/posts/1782709872057497/

building-express-backbone-facebook-s-new-long-haul-network/. (2017).

[26] Xin Jin, Jennifer Gossels, Jennifer Rexford, and David Walker. 2015. CoVisor:

A Compositional Hypervisor for Software-defined Networks. In Proceedings of
the 12th USENIX Conference on Networked Systems Design and Implementation
(NSDI’15). USENIX Association, Berkeley, CA, USA, 87–101. http://dl.acm.org/

citation.cfm?id=2789770.2789777

[27] Lavanya Jose, Lisa Yan, George Varghese, and Nick McKeown. 2015. Compiling

Packet Programs to Reconfigurable Switches. In Proceedings of the 12th USENIX
Conference on Networked Systems Design and Implementation (NSDI’15). USENIX
Association, Berkeley, CA, USA, 103–115. http://dl.acm.org/citation.cfm?id=

2789770.2789778

[28] Georgios P. Katsikas, Marcel Enguehard, Maciej Kuźniar, Gerald Q. Maguire Jr,

and Dejan Kostić. 2016. SNF: synthesizing high performance NFV service chains.

PeerJ Computer Science 2 (Nov. 2016), e98. https://doi.org/10.7717/peerj-cs.98
[29] Naga Praveen Katta, Jennifer Rexford, and David Walker. 2013. Incremental

Consistent Updates. In Proceedings of the Second ACM SIGCOMMWorkshop on
Hot Topics in Software Defined Networking (HotSDN ’13). ACM, New York, NY,

USA, 49–54. https://doi.org/10.1145/2491185.2491191

[30] Eric Keller and Evan Green. 2008. Virtualizing the Data Plane Through Source

Code Merging. In Proceedings of the ACM Workshop on Programmable Routers for
Extensible Services of Tomorrow (PRESTO ’08). ACM, New York, NY, USA, 9–14.

https://doi.org/10.1145/1397718.1397721

[31] Eric Keller, Minlan Yu, Matthew Caesar, and Jennifer Rexford. 2009. Virtually

Eliminating Router Bugs. In Proceedings of the 5th International Conference on
Emerging Networking Experiments and Technologies (CoNEXT ’09). ACM, New

York, NY, USA, 13–24. https://doi.org/10.1145/1658939.1658942

[32] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang Xiong, Andrew

Putnam, Enhong Chen, and Lintao Zhang. 2017. KV-Direct: High-Performance

In-Memory Key-Value Store with Programmable NIC. In Proceedings of the 26th
Symposium on Operating Systems Principles (SOSP ’17). ACM, New York, NY, USA,

137–152. https://doi.org/10.1145/3132747.3132756

[33] Hongqiang Harry Liu, Xin Wu, Ming Zhang, Lihua Yuan, Roger Wattenhofer, and

David Maltz. 2013. zUpdate: Updating Data Center Networks with Zero Loss. In

Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM (SIGCOMM ’13).
ACM, New York, NY, USA, 411–422. https://doi.org/10.1145/2486001.2486005

[34] Shouxi Luo, Hongfang Yu, and Laurent Vanbever. 2017. Swing State: Consis-

tent Updates for Stateful and Programmable Data Planes. In Proceedings of the
Symposium on SDN Research (SOSR ’17). ACM, New York, NY, USA, 115–121.

https://doi.org/10.1145/3050220.3050233

[35] Ratul Mahajan and Roger Wattenhofer. 2013. On Consistent Updates in Software

Defined Networks. In Proceedings of the Twelfth ACM Workshop on Hot Topics
in Networks (HotNets-XII). ACM, New York, NY, USA, Article 20, 7 pages. https:

//doi.org/10.1145/2535771.2535791

[36] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017.

SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap Using Switch-

ing ASICs. In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication (SIGCOMM ’17). ACM, New York, NY, USA, 15–28.

https://doi.org/10.1145/3098822.3098824

[37] Tal Mizrahi, Efi Saat, and Yoram Moses. 2015. Timed Consistent Network Up-

dates. In Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined
Networking Research (SOSR ’15). ACM, New York, NY, USA, Article 21, 14 pages.

https://doi.org/10.1145/2774993.2775001

[38] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David

Walker. 2013. Composing Software Defined Networks. In 10th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 13). USENIX
Association, Lombard, IL, 1–13. https://www.usenix.org/conference/nsdi13/

technical-sessions/presentation/monsanto

[39] Barefoot Networks. 2016. Barefoot Whitepaper: The World’s Fastest and Most

Programmable Networks. (2016). https://barefootnetworks.com/resources/

worlds-fastest-most-programmable-networks/

[40] Bruno Nogueira, Rian G. S. Pinheiro, and Anand Subramanian. 2018. A hybrid iter-

ated local search heuristic for the maximumweight independent set problem. Op-
timization Letters 12, 3 (01 May 2018). https://doi.org/10.1007/s11590-017-1128-7

[41] Recep Ozdag. 2012. Intel® Ethernet Switch FM6000 Series-Software Defined

Networking. (2012).

[42] D. L. Parnas. 1972. On the Criteria to Be Used in Decomposing Systems into

Modules. Commun. ACM 15, 12 (Dec. 1972), 1053–1058. https://doi.org/10.1145/

361598.361623

[43] Dhrubajyoti Saha, Abhishek Samanta, and Smruti R Sarangi. 2009. Theoretical

framework for eliminating redundancy in workflows. In Services Computing, 2009.
SCC’09. IEEE International Conference on. IEEE, 41–48.

[44] Shuichi Sakai, Mitsunori Togasaki, and Koichi Yamazaki. 2003. A note on greedy

algorithms for the maximum weighted independent set problem. Discrete Applied
Mathematics 126, 2 (2003), 313 – 322. https://doi.org/10.1016/S0166-218X(02)

00205-6

[45] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin Casado,

Nick McKeown, and Guru Parulkar. 2010. Can the Production Network Be the

Testbed?. In Proceedings of the 9th USENIX Conference on Operating Systems Design
and Implementation (OSDI’10). USENIX Association, Berkeley, CA, USA, 365–378.

http://dl.acm.org/citation.cfm?id=1924943.1924969

[46] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy

Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand Kana-

gala, Jeff Provost, Jason Simmons, Eiichi Tanda, JimWanderer, Urs Hölzle, Stephen

110

https://doi.org/10.1007/s10732-012-9196-4
https://github.com/Brown-NSG/P4Visor/tree/master/FPGAtarget/p4program
https://github.com/Brown-NSG/P4Visor/tree/master/FPGAtarget/p4program
https://github.com/Brown-NSG/P4Visor
https://github.com/Brown-NSG/P4Visor
https://doi.org/10.1145/2534169.2486011
https://doi.org/10.1145/2534169.2486011
https://doi.org/10.1145/2934872.2934875
http://www.cavium.com/XPliant-Ethernet-Switch-ProductFamily.html
http://www.cavium.com/XPliant-Ethernet-Switch-ProductFamily.html
http://p4.org/wp-content/uploads/fixed/INT/INT-current-spec.pdf
https://doi.org/10.1145/3155921.3158431
https://doi.org/10.1145/3155921.3158431
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/switch
https://github.com/p4lang/p4c-bm/tree/master/tests/p4_programs
https://github.com/p4lang/p4c-bm/tree/master/tests/p4_programs
https://doi.org/10.1145/2774993.2774999
https://doi.org/10.1145/2034773.2034812
https://doi.org/10.1145/2034773.2034812
http://dl.acm.org/citation.cfm?id=2537857.2537860
https://doi.org/10.1145/2934872.2934891
https://doi.org/10.1145/2934872.2934891
https://doi.org/10.1145/2619239.2626300
https://doi.org/10.1145/2999572.2999607
https://www.usenix.org/conference/ons2014/technical-sessions/presentation/hu-chengchen
https://www.usenix.org/conference/ons2014/technical-sessions/presentation/hu-chengchen
http://arxiv.org/abs/1101.1266
http://arxiv.org/abs/1101.1266
https://code.facebook.com/posts/1782709872057497/building-express-backbone-facebook-s-new-long-haul-network/
https://code.facebook.com/posts/1782709872057497/building-express-backbone-facebook-s-new-long-haul-network/
http://dl.acm.org/citation.cfm?id=2789770.2789777
http://dl.acm.org/citation.cfm?id=2789770.2789777
http://dl.acm.org/citation.cfm?id=2789770.2789778
http://dl.acm.org/citation.cfm?id=2789770.2789778
https://doi.org/10.7717/peerj-cs.98
https://doi.org/10.1145/2491185.2491191
https://doi.org/10.1145/1397718.1397721
https://doi.org/10.1145/1658939.1658942
https://doi.org/10.1145/3132747.3132756
https://doi.org/10.1145/2486001.2486005
https://doi.org/10.1145/3050220.3050233
https://doi.org/10.1145/2535771.2535791
https://doi.org/10.1145/2535771.2535791
https://doi.org/10.1145/3098822.3098824
https://doi.org/10.1145/2774993.2775001
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/monsanto
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/monsanto
https://barefootnetworks.com/resources/worlds-fastest-most-programmable-networks/
https://barefootnetworks.com/resources/worlds-fastest-most-programmable-networks/
https://doi.org/10.1007/s11590-017-1128-7
https://doi.org/10.1145/361598.361623
https://doi.org/10.1145/361598.361623
https://doi.org/10.1016/S0166-218X(02)00205-6
https://doi.org/10.1016/S0166-218X(02)00205-6
http://dl.acm.org/citation.cfm?id=1924943.1924969

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece Peng Zheng, Theophilus Benson and Chengchen Hu

Stuart, and Amin Vahdat. 2015. Jupiter Rising: A Decade of Clos Topologies and

Centralized Control in Google’s Datacenter Network. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication (SIGCOMM
’15). ACM, New York, NY, USA, 183–197. https://doi.org/10.1145/2785956.2787508

[47] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad

Alizadeh, Hari Balakrishnan, George Varghese, NickMcKeown, and Steve Licking.

2016. Packet Transactions: High-Level Programming for Line-Rate Switches. In

Proceedings of the 2016 ACM SIGCOMM Conference (SIGCOMM ’16). ACM, New

York, NY, USA, 15–28. https://doi.org/10.1145/2934872.2934900

[48] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S. Muthukrish-

nan, and Jennifer Rexford. 2017. Heavy-Hitter Detection Entirely in the Data

Plane. In Proceedings of the Symposium on SDN Research (SOSR ’17). ACM, New

York, NY, USA, 164–176. https://doi.org/10.1145/3050220.3063772

[49] Hardik Soni, Thierry Turletti, and Walid Dabbous. 2018. P4Bricks: Enabling

multiprocessing using Linker-based network data plane architecture. (Feb. 2018).

https://hal.inria.fr/hal-01632431 working paper.

[50] Peng Sun, Ratul Mahajan, Jennifer Rexford, Lihua Yuan, Ming Zhang, and Ahsan

Arefin. 2014. ANetwork-stateManagement Service. SIGCOMMComput. Commun.
Rev. 44, 4 (Aug. 2014), 563–574. https://doi.org/10.1145/2740070.2626298

[51] Yu-Wei Eric Sung, Xiaozheng Tie, Starsky H.Y. Wong, and Hongyi Zeng. 2016.

Robotron: Top-down Network Management at Facebook Scale. In Proceedings of
the 2016 ACM SIGCOMM Conference (SIGCOMM ’16). ACM, New York, NY, USA,

426–439. https://doi.org/10.1145/2934872.2934874

[52] Kaushik Veeraraghavan, Justin Meza, David Chou, Wonho Kim, Sonia Mar-

gulis, Scott Michelson, Rajesh Nishtala, Daniel Obenshain, Dmitri Perelman, and

Yee Jiun Song. 2016. Kraken: Leveraging Live Traffic Tests to Identify and Resolve

Resource Utilization Bottlenecks in Large Scale Web Services. In 12th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 16). USENIX
Association, Savannah, GA, 635–651. https://www.usenix.org/conference/osdi16/

technical-sessions/presentation/veeraraghavan

[53] Han Wang, Robert Soulé, Huynh Tu Dang, Ki Suh Lee, Vishal Shrivastav, Nate

Foster, and Hakim Weatherspoon. 2017. P4FPGA: A Rapid Prototyping Frame-

work for P4. In Proceedings of the Symposium on SDN Research (SOSR ’17). ACM,

New York, NY, USA, 122–135.

[54] Xilinx. 2014. SDNet. (2014). http://www.xilinx.com/products/design-tools/

software-zone/sdnet.html

[55] Xilinx. 2017. Ternary Content Addressable Memory (TCAM) Search IP for SDNet

SmartCORE IP Product Guide. (2017).

[56] Cheng Zhang, Jun Bi, Yu Zhou, Abdul Basit Dogar, and Jianping Wu. 2017.

HyperV: A High Performance Hypervisor for Virtualization of the Programmable

Data Plane. In 2017 26th International Conference on Computer Communication
and Networks (ICCCN). 1–9. https://doi.org/10.1109/ICCCN.2017.8038396

[57] Cheng Zhang, Jun Bi, Yu Zhou, Abdul Basit Dogar, and Jianping Wu. 2017.

MPVisor: A Modular Programmable Data Plane Hypervisor. In Proceedings of
the Symposium on SDN Research (SOSR ’17). ACM, New York, NY, USA, 179–180.

https://doi.org/10.1145/3050220.3060600

[58] Ying Zhang, Neda Beheshti, and Ravi Manghirmalani. 2014. NetRevert: Rollback

Recovery in SDN. In Proceedings of the Third Workshop on Hot Topics in Software
Defined Networking (HotSDN ’14). ACM, New York, NY, USA, 231–232. https:

//doi.org/10.1145/2620728.2620779

[59] Danyang Zhuo, Qiao Zhang, Xin Yang, and Vincent Liu. 2016. Canaries in the

Network. In Proceedings of the 15th ACM Workshop on Hot Topics in Networks
(HotNets ’16). ACM, New York, NY, USA, 36–42. https://doi.org/10.1145/3005745.

3005767

111

https://doi.org/10.1145/2785956.2787508
https://doi.org/10.1145/2934872.2934900
https://doi.org/10.1145/3050220.3063772
https://hal.inria.fr/hal-01632431
https://doi.org/10.1145/2740070.2626298
https://doi.org/10.1145/2934872.2934874
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/veeraraghavan
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/veeraraghavan
http://www.xilinx.com/products/design-tools/software-zone/sdnet.html
http://www.xilinx.com/products/design-tools/software-zone/sdnet.html
https://doi.org/10.1109/ICCCN.2017.8038396
https://doi.org/10.1145/3050220.3060600
https://doi.org/10.1145/2620728.2620779
https://doi.org/10.1145/2620728.2620779
https://doi.org/10.1145/3005745.3005767
https://doi.org/10.1145/3005745.3005767

	Abstract
	1 Introduction
	2 Motivation
	2.1 Rapid Development in Large Networks
	2.2 Novel PDP Primitives: Code Merge
	2.3 P4Visor Workflow

	3 Design of P4Visor
	3.1 Overview
	3.2 Composition Operators
	3.3 Primitives for Composition Operators
	3.4 P4Visor Compiler

	4 Merging P4 Programs
	4.1 Background on P4 Compiler Constraints
	4.2 Merging Optimization
	4.3 Complexity Analysis

	5 Efficiency
	5.1 P4Visor Heuristic Merging
	5.2 Controlling Resource Sharing

	6 P4Visor Implementation
	6.1 Supporting Flexible Testing Operators
	6.2 Limitation of Existing PDP Targets

	7 Evaluation
	7.1 Experiment Setup
	7.2 Performance Benefits and Overheads
	7.3 Analytical Evaluation of the Heuristic
	7.4 Use Case: Testing P4 Programs

	8 Related Works
	9 Discussion
	10 Conclusion
	Acknowledgments
	A appendix
	A.1 Proof of Lemma 4.1
	A.2 Proof of Lemma 4.2

	References

