
Public Review for

Mobile Web Browsing Under Memory
Pressure

Ihsan Ayyub Qazi, Zafar Ayyub Qazi, Theophilus A. Benson, Ehsan
Latif, Abdul Manan, Ghulam Murtaza, Muhammad Abrar Tariq

Smartphones are today the primary web browsing and interaction point for
the majority of the Internet users. However, the increasing complexity of
webpages, and the large number of external elements and objects often lead
to major bottlenecks in mobile browsing, and for commercial reasons many
webpages do not offer a lean mobile version.
In this paper, the authors investigate the impact of memory usage on mobile
devices in the context of web browsing. Through a number of studies the
authors characterise the effects of items on the page, images, other apps,
and device specs on page load time. This is a rapidly changing space. The
work here presents a study using landing page loading time and memory
requirements for a number of Android-based smartphones using Chrome,
Firefox, Microsoft Edge and Brave. In addition , the paper presents an
extensive set of results on the effect of tabs, scrolling, the number of images,
and the umber of requests made for different objects.
The findings in the paper have a number of implications for browser vendors
and webpage designers when choosing various content types and formats.
The reviewers found the study and its results interesting, and recommended
a number of further studies which the authors addressed to prepare the final
version of the paper. I hope the findings will provide valuable insights for
the mobile web practitioners, alongside enabling further research and mea-
surement studies in this space.

Public review written by
Hamed Haddadi

Imperial College London, UK

ACM SIGCOMM Computer Communication Review Volume 50 Issue 4, October 2020

Mobile Web Browsing Under Memory Pressure
Ihsan Ayyub Qazi, Zafar Ayyub Qazi, Theophilus A. Benson*, Ghulam Murtaza,

Ehsan Latif, Abdul Manan, Abrar Tariq
LUMS, *Brown University

{ihsan.qazi,zafar.qazi,ehsan.latif,20100198,20100262,19100088}@lums.edu.pk,theophilus_benson@brown.
edu

ABSTRACT
Mobile devices have become the primary mode of Internet
access. Yet, differences in mobile hardware resources, such as
device memory, coupled with the rising complexity of Web
pages can lead to widely different quality of experience for
users. In this work, we analyze how device memory usage
affects Web browsing performance. We quantify the mem-
ory footprint of popular Web pages over different mobile
devices, mobile browsers, and Android versions, analyze the
induced memory distribution across different browser com-
ponents (e.g., JavaScript engine and compositor), investigate
how performance gets impacted under memory pressure and
propose optimizations to reduce the memory footprint of
Web browsing. We show that these optimizations can im-
prove performance and reduce chances of browser crashes
in low memory scenarios.

CCS CONCEPTS
• Information systems → Browsers; • Hardware; •
Computing methodologies;

KEYWORDS
Mobile, Web Browsing, QoE, Device Memory

1 INTRODUCTION
Mobile devices have become the dominant mode for Internet
access [14]. Since October 2016, more websites have been
loaded on mobile devices than on desktop computers [37].
However, we see large differences in mobile hardware re-
sources (e.g., memory size, CPU speed, and the number of
CPU cores). For example, in the year 2018, approximately
300 million Android devices shipped globally had 1GB or
less memory, whereas 400 million Android devices had at
least 4GB of memory [9]. Such heterogeneity in device re-
sources makes it challenging for website operators to deliver
a uniform experience to users.

At the same time, mobile Web pages are becoming increas-
ingly complex, which is placing an increasing burden on
device resources such as memory. For example, in the last
seven years, the median Web page size has increased from
302KB to 1748KB, resulting in a median mobile Web page

taking 18.7 s to load, which is 300% longer than the median
desktop page [13].
Given these trends, it is becoming increasingly likely for

devices to operate in regimes where the available memory
becomes too low for a device to operate efficiently. Lack of
available memory can potentially degrade the mobile quality
of experience (QoE), prevent feature-rich applications to run,
or lead to application crashes [3]. This situation can be par-
ticularly problematic for entry-level devices that have small
RAM sizes, to begin with. Poor application performance
in such regimes can frustrate users and reduce incentives
for Original Equipment Manufacturers (OEMs) to manufac-
ture entry-level devices, thereby potentially excluding many
users from the smartphone ecosystem.

Several ongoing and recent efforts aim to improve mobile
QoE [19, 32, 35, 37, 39, 40, 45] including efforts that solely
target entry-level devices [4, 10, 42]. These solutions include
the development of tools for constructing simplified mobile
Web pages (e.g., AMP [1, 37]), delivering light pages to users
either through a proxy-based transcoding service such as
Google’s Web Light [29] or through server-side customiza-
tion (e.g., Free Basics [10]), and specialized operating systems
for entry-level devices (e.g., Android Go [4]). While there
has been anecdotal evidence [12, 17] that application perfor-
mance is affected when a device is running low on memory,
we are not aware of prior, independent efforts that aim to
quantify the impact of low memory on the QoE of mobile
Web browsing.

In this work, we analyze how and when device memory
usage (also known as memory pressure) affects Web brows-
ing performance. To this end, we (i) quantify the memory
footprint of Alexa top 100 Web pages across different use
cases (e.g., multiple tabs and page scrolling), mobile browsers
(e.g., Chrome, Firefox, Microsoft Edge and Brave), mobile de-
vices (e.g., devices with different RAM sizes and the number
of CPU cores as shown in Table 3), and Android versions
(e.g., Android 6, 7, and 8, and Android Go [4]), (ii) analyze
their memory distribution across different components (e.g.,
JavaScript engine and compositor), (iii) investigate how these
performance gets impacted under memory pressure and (iv)
propose optimizations to reduce the memory footprint of
Web pages. To ensure experimental precision, we conduct

ACM SIGCOMM Computer Communication Review Volume 50 Issue 4, October 2020

Key Measurement Insights Optimizations

(1) Mobile Chrome resulted in the least average memory footprint for loaded Web pages
(Alexa top 100) compared to Brave, Microsoft Edge, and Firefox browsers.

(2) Median memory footprint of Alexa top 100 pages on Chrome was 45x larger than the
Web page size

(3) Chrome Compositor and JS engine take up most memory across majority ofWeb pages
(4) With newer Android versions (while keeping the same Chrome version), the average

memory footprint of Alexa top 100 pages increased by 7.6MB and 9.8MB, with Android
7 and Android 8, respectively over Android 6.

(5) Under critical memory pressure, the average PLT increases by 28.2% (5% of the pages
experience more than 100% increase in PLT). We find that this trend holds across dif-
ferent mobile devices and Android versions.

(6) 6.3% of the Web pages crashed under critical memory pressure
(7) Under critical memory pressure, having more CPU cores can substantially improve

PLTs due to reduced interference with system daemons

(1) Using browser native JS reduced Java heap size by 1.6x-12.3x and 1.1x-9.9x
and the scripting time by 3x-105x and 4x-152x over using jQuery and React,
respectively

(2) Debloating jQuery reduced reduced Java heap size by 1MB and reduced the
loading time by 100ms

(3) On a synthetic page with 16 images, replacing PNG and GIF images with
either JPEG or WebP versions reduced the memory footprint by 12%-45%
and 12%-35%, respectively

Table 1: Key insights and optimization based on our analysis.

controlled experiments (§3), and use a combination of tools
(e.g., Google’s Telemetry [23]1 and Web Page Replay [30])
to isolate and attribute resource usage to individual browser
components.
Table 1 provides a summary of our key insights and op-

timizations. We find that for Alexa top 100 Web pages, the
memory footprint of the median page was at least 45x larger
than the page size; with the compositor and the JavaScript
(JS) engine contributing themost tomemory usage across the
majority of websites. We find that mobile Chrome induces
the least average memory overhead for Alexa top 100 pages
compared to Firefox, Microsoft Edge, and Brave. We also find
that Web page loads slow down significantly when a device
is operating under low memory (e.g., we observe an increase
of 28% in the average page load time) with complex Web
pages frequently crashing (6.3% of Web pages crashed in our
experiments). While the former occurs due to reclaiming of
cached pages by the kernel swap daemon (kswapd) when the
amount of free memory falls below a certain threshold, the
latter happens when the low memory killer daemon (lmkd)
kills a process due to low memory. This slowing of page
loads under high memory pressure holds across different
mobile devices and Android versions.
We present optimizations to improve Web browsing per-

formance and reduce the chances of Web page crashes under
lowmemory regimes. For example, we find that debloating JS
libraries (e.g., by removing unused functions), using browser
native JS, and employing memory-efficient image formats
can significantly reduce the memory footprint of a Web page.
For example, we find that jQuery (55%) and React (8%) are
the two most popular JS libraries used in Alexa top 880 Web
pages. We show that for common DOM operations, replacing
JS code that relies on external JS libraries with browser native
JS code can reduce the JS heap size by 1.6x-12.3x and 1.1x-
9.9x and the scripting time by 3x-105x and 4x-152x compared

1Telemetry is the performance testing framework used by Chrome.

to using jQuery and React (two most popular JS libraries in
our dataset), respectively.

Our work has implications for different stakeholders in the
smartphone ecosystem. For website developers, our work
provides insights about how websites can be designed to
run better on low memory devices. In particular, we iden-
tify which application components contribute the most to
memory, how the device responds in low memory scenarios,
and which features can be adapted to reduce performance
degradation and prevent crashes.
For OEMs, our work provides insights about hardware

features that impact popular applications (e.g., how beneficial
is it to have more CPU cores when a device is running low
on memory?). For example, we find that under high mem-
ory pressure regimes using 4 cores compared to 2 cores
improved the average PLT by 51%-69% across different Web
pages. This happens because high priority system daemons
(e.g., kswapd and lmkd) steal CPU cycles from the foreground
browser application. This is unlike low-memory pressure
scenarios where 1-2 cores are sufficient for achieving high
performance. For users, our work can inform them about
when Web browsing starts to perform badly (and how users’
actions impact application behavior). Finally, for system de-
velopers our work sheds light on system-level mechanisms
that can help improve performance (e.g., kswapd scheduling).
The remainder of this paper is organized as follows: we

first motivate this study through a series of experiments
(§2) and then describe our experimental methodology in
detail (§3). We measure the memory footprint of Alexa top
100 pages over several mobile phones, mobile browsers, and
Android versions (§4). We then analyze and quantify the
impact of memory pressure on mobile QoE and browser
crashes (§5). We present our optimizations to reduce the
memory footprint of Web browsing under high memory
pressure (§6). We then discuss the implications of our work
for different stakeholders in the smartphone ecosystem (§7),
discuss related work (§8), and offer concluding remarks (§9).

ACM SIGCOMM Computer Communication Review Volume 50 Issue 4, October 2020

App 1

App 2 Cached Pages

Used Pages

Shared Pages

Figure 1: An example of two application processes
with used pages, cached pages, and shared pages. The
PSS of both processes is 8 (i.e., 6 + 4/2).

We have shared all the code and data needed to replicate
the experimental results in this paper in a public repository.
The details are available in the appendix section.

2 MOTIVATION
In this section, we highlight how applications can be im-
pacted by low device memory through a series of experi-
ments. The subsequent sections describe in detail our experi-
mental methodology (§3) and the complete set of experimen-
tal results across different configurations, OS versions, and
phone models (§4 and §5). We begin this section by briefly
describing how memory is organized on mobile devices.

Physical memory. The memory of a device is typically
divided into fixed size pages (e.g., 4 kB pages) that can be used
by different processes [21]. There are three types of pages:
(1) used pages, which are being actively used by processes,
(2) cached pages, which are being used by processes but the
data they contain is also backed up in the device storage,
thus these pages can be reclaimed if needed. These pages
are further divided into cached pages used by mobile apps
(whose size is denoted by cached PSS) and the kernel (cached
kernel) and (c) free pages, which are pages that are not being
used for anything. Note that system memory is used by both
the CPU and the device GPU (if any).
We measure the memory used by an application by its

Proportional Set Size (PSS), which is the portion of memory
occupied by a process and is composed of the private mem-
ory of that process plus the proportion of shared memory
with one or more other processes. We use PSS because it
avoids over-counting or under-counting the memory impact
of shared pages as shown in Figure 1.

Memory size limits the number of concurrent apps. To
analyze how free memory changes with the number of open
apps, we consider a 1GB device (Nokia 1) and a 2GB device

0
400
800

1200
1600

0 4 8 14 0 4 8 16 22

M
em

or
y

(M
B)

Number of Concurrent Apps

Used Cached Kernel Free
Nokia 1 (1GB) Nexus 5 (2GB)

Figure 2: State of device memory when different num-
ber of mobile apps are concurrently run on 1GB and
2GB memory devices. We pick the most popular mo-
bile apps on Google Play Store for this experiment.

Device Open Apps Avg. PLT (secs) Increase in PLT (%)
Nokia 1 1, 14 6.1, 7.5 17
Nexus 5 1, 22 4.9, 8.8 42.1

Table 2: Average PLT for five randomly selected Web
pages fromAlexa top 100 when 1 and 14 apps are open
in the background under Nokia 1 and 1 and 22 apps
with Nexus 5.

(Nexus 5)2. We pick the most popular apps from Google Play
Store, which include Gmail, Chrome, WhatsApp, YouTube,
Twitter, and Hangout among others [11]. We find that the
1GB device can support at most 16 apps concurrently (with
one app in the foreground and the rest in the background)
and immediately kills app(s) if any more are opened. On
the 2GB device, we could run at most 26 apps concurrently.
These numbers can vary depending on the memory footprint
of individual opened apps. Observe that in both phones, the
number of free and/or cached pages decreases as new apps
are opened as shown in Figure 23.

Memory usage affects page load times. To illustrate how
the number of open apps in the background affects page
load performance, we randomly pick five Web pages from
Alexa top 100 and load them in the browser. We compare the
average PLT of the pages on Nokia 1 and Nexus 5 phones.
With Nokia 1, we run these experiments with 1 and 14 back-
ground apps, and with Nexus 5, we consider 1 and 22 apps.
We pick 14 and 22 apps because the memory pressure be-
comes high/critical when these many apps are opened on the
respective phones. Observe that the average PLT increases
by 17% when using Nokia 1 and 42.1% on Nexus 5, as shown
in Table 2.

2The Nokia 1 phone runs Android 8.0.1 (Go edition) whereas the Nexus 5
phone runs Android 6.0.1, the highest Android version supported by the
phone. We use the default device/OS configuration for these experiments.
3For clarity, we do not show the cached PSS in the figure. Unlike cached
kernel pages, these cached PSS can only be reclaimed if the app is killed by
the system, reduces its memory footprint, or is explicitly closed.

ACM SIGCOMM Computer Communication Review Volume 50 Issue 4, October 2020

Device Name CPU Cores Clock Min-Max (GHz) RAM (GB) GPU OS Version Release Cost Release Date
Nexus 6P 8 1.55-1.95 3 Adreno 430 (650MHz) 6.0.0 - 8.1.0 $499 Sept, 2015
Nexus 6 4 2.7 3 Adreno 420 (600MHz) 5.0.1 - 7.1.1 $649 Oct, 2014
Nexus 5X 6 1.44-1.8 2 Adreno 418 (600MHz) 6.0.0 - 8.1.0 $379 Sept, 2015
Nexus 5 4 2.26 2 Adreno 330 (450MHz) 4.4 - 6.0.1 $349 Oct, 2013
Nokia 1 4 1.1 1 Mali-T720MP1 (600MHz) 8.1.0 Go $99 Feb, 2018

Table 3: Mobile devices used in our experiment and their corresponding specifications.

3 METHODOLOGY
In this section, we describe the experimental methodology
we devised to understand the impact of memory on the per-
formance of Web browsing. One key challenge was to ensure
repeatability in our experiments. Below we describe our
testbed configuration, experimental design, and the choice
of performance metrics.
We measure the memory footprint of the top 100 Web

pages from Alexa over different mobile browsers (e.g.,
Chrome, Firefox, Microsoft Edge, and Brave). We then con-
duct a deeper analysis of memory usage in Chrome. We
focus on the Chromium browser (an open-source version
of Chrome) for two key reasons: (1) Chrome is the most
popular mobile browser [25] and (2) many mobile browsers
are based on Chromium including Brave [8], Microsoft Edge
[18], Opera [26], Vivaldi [27], and Kiwi [16].
We obtain fine-grained memory measurements (e.g., the

memory consumed by Java heap and the compositor) and
page load times using telemetry, the performance testing
framework used by Chrome [23]. To control network condi-
tions and allow for repeatability in experiments, we record
and replay Web pages using telemetry’s Web Page Replay
service. PLT is the time elapsed between when the URL is
sent to the server and when the onload event is fired – which
marks the point at which all resources that a page requires
have been downloaded and processed – thus capturing both
network loading and the device rendering time. Alternatives
to PLT such as the above-the-fold time (AFT) and speed index
[43] represent user-perceived page load times and measure
the time it takes for the visible parts of a page to be displayed.
However, they require screen/video recordings which can
increase memory and CPU usage and thus confound the true
memory consumption of mobile Web pages [22]. We host the
pages on a desktop and set the download speed to 30Mbps
and the upload speed to 15Mbps. We clear browser cache
and cookies between any two page loads.

For each use case and workload, we repeat the experiment
10 times, unless stated otherwise. The metrics we measure
include PSS, PLT and the fraction ofWeb pages that crash due
to low memory. Unless noted otherwise, we present average
values for different metrics. While we conduct our evaluation

across several phones as shown in Table 34, we use Nexus 5
for most of our experiments, a device with a 2GB memory.
We choose Nexus 5 for the generality of our analysis as
performance can be worse on devices with 1GB memory, or
less. Moreover, Nexus 5 was reported to be among the ten
most popular Android smartphones in several countries in
2019 [24].

4 MEMORY USAGE OF WEB BROWSING
In this section, we analyze the memory footprint of Web
browsing when loading Web pages with different complex-
ities. We first measure the memory consumed by different
mobile browsers (e.g., Chrome, Firefox, Microsoft Edge and
Brave). We then conduct a deeper analysis of memory us-
age in Chrome. We analyze how memory usage gets dis-
tributed across different browser processes (e.g., Renderer
and Browser processes), components (e.g., Java Heap and
Compositor) and use cases (e.g., page scrolling and when
using multiple tabs) and analyze factors that contribute to
larger memory consumption on complex pages.

4.1 Memory footprint of mobile browsers
To measure the memory used by different mobile browsers,
we open an empty tab and record the PSS5. We found the
PSS of Chrome, Brave, Microsoft Edge, and Firefox to be
141MB, 159MB, 223MB, and 173MB, respectively. While
Chrome had the least memory usage, Microsoft Edge con-
sumed the most memory. Browsers instantiate and maintain
different data structures and use different JavaScript engines
(e.g., Chrome uses the V8 JS engine whereas Firefox uses
SpiderMonkey) and browser engines6 (e.g., Chrome uses
Blink whereas Firefox uses Gecko as their browser engine),
which can result in different memory usage for loaded pages.
Therefore, next, we measure the average memory footprint
of Alexa top 100 pages when loaded on different browsers.

4One could use an online service such as Amazon’s Device Farm
(http://awsdevicefarm.info/) to use a larger set of mobile devices, how-
ever, at the time of writing, Device Farm did not provide remote access to
devices with 2GB or less RAM.
5We used Nexus 5 for these experiments with Android 6.0.1 (the high-
est Android version supported on this phone). along with the following
browser versions: Chrome (81.0.4044.17), Firefox (68.7.0), Microsoft Edge
(45.02.2.4931), Brave (1.5.131 , Chromium Build 80.0.3987.162).
6These are also known as rendering or layout engines.

ACM SIGCOMM Computer Communication Review Volume 50 Issue 4, October 2020

Figure 3: Average memory used by Alexa top 100
Websites when loaded on different mobile browsers.
The memory usage is obtained by subtracting the to-
tal memory usage of a loaded page (including the
browser) from the memory consumed by an empty
tab.

Figure 4:Memory consumed by the Browser, Renderer,
and GPU processes for Alexa top 100 Websites (sorted
by memory consumed – left to right).

Figure 3 shows that Chrome results in the smallest average
memory footprint across all browsers. Interestingly, even
though Microsoft Edge consumes the largest memory on an
empty page, it induces a smaller average memory footprint
for a loaded page than Firefox.

4.2 Deconstructing Chrome’s memory
usage

The Chrome browser has three main processes: Browser,
Renderer, and the GPU process. There is a single Browser
process for an instance of Chrome that is responsible for
performing the typical functions of a browser (e.g., opening
a tab and fetching a Web page). This process then passes
the fetched page and its resources to the Renderer process
through an IPC mechanism. For each new tab, a separate
Renderer process is created, which is responsible for parsing
the HTML, building the DOM, CSSOM, and the render tree,
running scripts, and painting the contents of aWeb page in its
respective tab. To perform these tasks the Renderer process
uses several engines (e.g., V8 JS engine). The GPU process is
used to perform compute-intensive tasks (e.g., compositing).
A GPU process does not only use GPU memory but can also
take up space in the RAM.
Memory consumption across browser processes. Figure
4 shows the memory consumed by the Browser, Renderer,
and GPU processes for Alexa top 100 Web pages. Observe

Figure 5: Ratio of the memory footprint of a browser
on a loaded page to the Web page size for Alexa top
100 Websites.

Figure 6:Memory distribution of theRenderer process
across browser components for Alexa top 100 Web-
sites.

that the consumed memory ranges from around 130MB
to 410MB. While the memory consumed by the Browser
and GPU processes remain largely the same7, the primary
difference appears in the memory footprint of the Renderer
process, which varies from 45MB to 290MB. This happens
because the Renderer process is responsible for building
and maintaining intermediate data structures (e.g., DOM,
CSSOM, and the render tree) that consume a significant
amount of memory. Note that in Chrome, the CSSOM and
DOM trees are combined into a render tree, which is then
used to compute the layout of each visible element and serves
as an input to the painting process that renders the pixels to
screen.
Figure 5 shows the CDF of the ratio of the memory foot-

print of a loadedWeb page (i.e., after subtracting the memory
consumed by all processes when only an empty tab is open)
to its size for Alexa top 100 Web pages. We find that 50% of
the Web pages consumed at least 45x more memory than
their actual sizes (i.e., the sum of the bytes in the base HTML
and all fetched objects) whereas 20% of the pages consumed
100x more memory relative to their sizes. Thus, a page can
have orders of magnitude larger memory footprint compared
to its size. For example, a 1750KB Web page in our dataset
led to 182MB of memory allocations in the browser (after
excluding the memory taken by an empty tab).
Memory distribution across browser components.Next,
we examine the distribution of memory occupied by the

7The browser process runs the UI and manages tab and plugin processes,
thereby performing a similar set of operations for every fetched Web page.

ACM SIGCOMM Computer Communication Review Volume 50 Issue 4, October 2020

Figure 7: Number of requests made for different ob-
jects by Alexa top 100 Web pages (sorted by memory
consumed).

Renderer process across different browser components for
the same set of Web pages. We find that the compositor8, V8
(Chrome’s JS engine), and Malloc/Partition Alloc9 take up
most memory across most Web pages as shown in Figure 6.
This happens because the majority ofWeb pages, requests for
images dominate followed by requests for scripts as shown
in Figure 7.
Interestingly, we find that Web pages having large com-

positor memory footprint may not have a commensurately
large number of images. For example, the Web page with
the largest memory footprint in our dataset had a smaller
number of images than several other Web pages, possibly
due to differences in image resolutions and image formats.
To understand the impact of image resolutions, image for-
mats, and the number of images on compositor memory, we
construct synthetic Web pages. Figure 8 shows that the com-
positor’s memory footprint increases with image resolution
across all formats. However, images in GIF and PNG formats
contribute to much larger compositor memory, especially
for higher resolution images. For example, a 1500x1500 GIF
can contribute more than 90MB to compositor’s memory
compared to a WebP or JPEG image of the same resolution.
Next, we fix the image resolution and vary the number of
images perWeb page. Figure 9 shows that compositor’s mem-
ory footprint increases with the number of images but the
increase varies across formats. For example, for GIFs, the
compositor’s memory grows much larger for a small num-
ber of images but the difference becomes smaller for a large
number of images.

Use case 1–page scrolling. We now evaluate changes in the
memory footprint of a Web page when a user scrolls down
a page. We find that scrolling can significantly increase the
memory footprint of a Web page (e.g., due to rendering of
more images in the viewport) as shown in Figure 10. This

8Compositing refers to the use of multiple backing stores to cache and group
chunks of the render tree. It helps in avoiding repainting and makes some
features (e.g., scrolling) more efficient.
9PartitionAlloc is a memory allocator optimized for security, low allocation
latency, good space efficiency.

Figure 8: Compositor memory footprint as a function
of image resolution.

Figure 9: Compositor memory footprint as a function
of number of images in a Web page.

Figure 10: Changes in PSSwhen a page is scrolled from
top to bottom. We consider ten Web pages for this ex-
periment.

can happen both in the presence and absence of lazy load-
ing10. For example, bbc.com’s PSS increases by more than
50MB when it is scrolled down. We find that the primary
contributor to this increase are the compositor and the JS
engine.
Use case 2–using multiple tabs. We find that using multiple
tabs significantly increases the memory footprint. Figure 11
shows the PSS with one tab, two tabs (one tab being empty),
and five tabs (with four tabs being empty). Observe that
Chrome’s PSS increases by around 38MB with each empty
tab that is open. In Chrome, each tab runs as a separate
renderer process and causes memory usage in Java heap and
compositor.
In summary, Web pages can consume a large amount of

memory on mobile devices even if they have small sizes (e.g.,
more than 90% of Web pages consumed at least 10x more
memory than their sizes). Thememory usage can varywidely
across use cases and image formats with the compositor and
10Lazy loading is technique that defers loading of non-critical resources at
page load time.

ACM SIGCOMM Computer Communication Review Volume 50 Issue 4, October 2020

bbc.com

Figure 11: Changes in PSS when a Web page is loaded
in case of 1, 2, and 5 tabs scrolled from top to bottom.
We consider ten Web pages for this experiment.

the JS engine contributing most to memory in the majority
of cases.

4.3 Memory usage across Android Versions
We now evaluate the impact of using different Android ver-
sions on Chrome’s memory usage. Using the same Chrome
version, we load Alexa top 100 Web pages on three Android
versions: Android 6 (Marshmallow), Android 7 (Nougat), and
Android 8 (Oreo). We found that the memory footprint of
Web pages increased with newer versions of Android but
not substantially. In particular, we found the average mem-
ory footprint of Alexa top 100 Web pages for Marshmallow,
Nougat, and Oreo to be 49.8MB, 57.4MB, and 59.6MB, re-
spectively11. We conjecture that the increase in memory is
at least due to two reasons: (i) Android 7 introduced a new
API for multitasking (MultiInstanceManager) [2], which is
utilized by Chrome in Android versions 7, and above and
(ii) the use of different themes and window properties for
across Android versions. We measure the memory overhead
of the multitasking API by creating an instance of the Mul-
tiInstanceManager class in a blank android application and
found it to be approximately 7-8MB.

5 IMPACT OF MEMORY PRESSURE
When the memory usage of applications grows or there are
too many applications running in the system, the system
memory may become too low for a device to operate effi-
ciently. In such scenarios, Android makes use of two system
daemons: kswapd and lmkd. In particular, when the number
of free pages become too low, kswapd kicks in and starts re-
claiming cached pages to find more free memory. If kswapd
is unable to reclaim any cached pages, the device can start
to thrash. Thus in Android, the low memory killer daemon
lmkd is started when the numbers of cached pages get too

11We observed that Nougat and Oreo keep a larger amount of free memory,
which is maintained by the variable min_free_kbytes. In particular, while
Marshmallow sets it to 4893 kB, Nougat and Oreo set it to 5168 kB. We set
these values the same for all versions in our experiments to measure the
impact of other aspects of Android.

Process State Type of Process
Native daemons (e.g., kswapd, logd, adbd)
System system services (e.g., system_server)

Persistent persistent apps (e.g., telephony, WiFi)
Foreground contains foreground activity
Visible contains activities that are visible

Perceptible (e.g. background music playback)
Service contains an application service
Home contains the home application

Previous the previous foreground application
Cached cached, thus can be killed without any disruption

Table 4: Android process list in order of priority (na-
tive processes have the highest prioritywhereas cached
processes have the lowest priority).

low12. To keep system performance at acceptable levels, lmkd
starts killing processes in order of their priorities (starting
from the lowest priority first as shown in Table 4) to find
more free memory [7].

Thus, there are two important consequences for a device
operating in low memory regimes:
• An application can crash or get killed by lmkd. Since
lmkd kills processes based on their priority to free up mem-
ory, in case there are no more low priority processes left
to kill to free more memory, lmkd can kill the foreground
application as well.

• Application performance can degrade. This can hap-
pen for three reasons: (a) Due to interference with native
processes (i.e., kswapd and lmkd) that can take up CPU cy-
cles and are strictly prioritized over foreground processes,
(b) when a process tries to allocate memory but there is
no free memory available, the kernel blocks the allocation
while it frees up a page. This often requires waiting for
lmkd to kill a process or disk I/O to flush out a storage-
backed page, which increases delay and (c) if kswapd re-
claims cached pages of the foreground app, and later the
apps needs the data, it will need to fetch it from device
storage, which may cause noticeable delay and degrade
app performance.

DefiningMemory Pressure. In Android, the memory usage
on a device is captured through memory pressure (P), which
is defined as:

𝑃 = (1 − 𝑅/𝑆) ∗ 100 (1)

where 𝑅 and 𝑆 are the number of reclaimed and number of
scanned pages, respectively. Note that P is measured over a
window, which is the number of scanned pages after which

12Note that each Android app runs in a separate Dalvik VM, which locally
runs a garbage collector (GC) to reclaim any app memory not being used.
GC runs when the app’s heap size grows large independent of whether the
system is operating under low memory or not. However, when GC daemon
runs, it can pause app execution, which may impact performance [21].

ACM SIGCOMM Computer Communication Review Volume 50 Issue 4, October 2020

Figure 12: Web page loads under different memory
pressure states across Alexa top 50 pages.

P is computed13. If most pages can be reclaimed, P would be
low. However, if the number of cached pages decrease, this
will lead to highmemory pressure regimes signifying that the
system is running under low memory. In Android, memory
pressure is referred to as “low" when 𝑃 ≤ 60, “medium" (or
moderate) when 60 < 𝑃 < 95, and “critical" (or high) when
𝑃 ≥ 95 [5, 28].

5.1 Impact on Web Browsing
Impact on PLTs and crashes. We now analyze the im-
pact of memory pressure on Web browsing. We introduce
memory pressure via a custom (native) Android app that
we built, which allocates memory until a target memory
pressure regime is achieved. For example, to induce critical
memory pressure, we continue to allocate memory until we
start receiving critical pressure signals from the kernel. We
only start page loads after having achieved a given memory
pressure regime.

Figure 12 shows the increase in PLT when the device oper-
ates under critical memory pressure compared to moderate
and low memory pressure states for Alexa top 50 pages. We
find that the average PLT increases by 28.2% under critical
memory pressure. This happens because under low mem-
ory kswapd starts reclaiming cached pages during the page
load process. Since kswapd has native priority and is strictly
prioritized over foreground apps, it takes away CPU cycles
from Chrome processes.

We find that the impact is the greatest onWeb pages with a
large memory footprint (e.g., 5% of theWeb pages experience
more than 100% increase in their in PLT) because for such
pages the chances are higher that the system runs out of free
memory under high memory pressures. In such cases, lmkd
will start killing processes leading to larger waiting times
for more free memory to become available, which increases
PLTs. In our evaluation, We found that about 6.3% of the
Web pages crashed under high memory pressure regimes.
Impact of number of cores.Next we analyze the impact of
CPU cores under different memory pressures on the perfor-
mance of Web browsing. We randomly pick five Web pages
13Currently, the window size is set to 512 pages (or 2MB for 4KB pages).

Figure 13: PLT as a function of CPU cores for five ran-
domly selected Web pages from Alexa top 100 under
low memory pressure.

Figure 14: PLT as a function of CPU cores for five ran-
domly selected Web pages from Alexa top 100 under
high/critical memory pressure.

from Alexa top 100 and measure their PLTs under low and
high/critical memory pressure regimes. Figure 13 shows that
1-2 CPU cores are enough for achieving high performance
and using more cores does not improve performance com-
mensurately. These results match the observations made by
Dasari et al. [35]. Next, we introduce high memory pressure
and then load pages with varying number of cores. Figure
14 shows that increasing the number of CPU cores improves
PLT significantly. In particular, using 4 cores as opposed 2
cores improves PLTs by 51%-69% for four Web pages (i.e.,
4chan.org, live.com, paypal.com, and trello.com). This hap-
pens because high priority system daemons kswapd and lmkd
consume significant CPU cycles and can also switch between
CPU cores.
Impact of mobile devices and Android versions. Next,
we evaluate page load performance over three mobile devices
(i.e., Nexus 5, Nexus 5X, and Nexus 6P) and three Android
versions (Marshmallow, Nougat, and Oreo). We make three
key observations from our results: (i) Across each mobile
device and Android version we considered, the PLTs were
(19.6%-29%) higher under high/critical pressure compared to
when the device is operating under low memory pressure as
shown in Figure 15, (ii) Shifting from Nougat to Oreo (i.e., to
a more recent Android version) decreased the average PLT
by 2.8%, which suggests better handling of memory pressure
situations in more recent Android versions and (iii) Using
Oreo on Nexus 6P resulted in an increase in the average PLT
by 9.4% under high memory pressured compared Nexus 5X
despite the former having 8 cores and 3GB of RAM compared

ACM SIGCOMM Computer Communication Review Volume 50 Issue 4, October 2020

Figure 15: Increase in PLT under high/critical mem-
ory pressure across threemobile devices and three An-
droid versions for Alexa top 50 pages.

to 6 cores and 2GB RAM in Nexus 5X. We conjecture this is
due to device-specific optimizations in Android for low-RAM
devices [6] (e.g., turning off memory-intensive application
features, keeping a smaller kswapd threshold on free memory
on low-RAM devices).

6 OPTIMIZATIONS FOR LOWMEMORY
A typical Web page can have different types of objects (e.g.,
JS, CSS, images and iframes). Our study of Alexa top 100Web
pages showed that images and JS contribute the most to the
memory footprint ofWeb pages onmobile browsers. Thus, to
reduce the memory footprint of Web pages to better handle
high memory pressure scenarios, we propose the following
optimizations.
(A) Debloating JS. Web pages commonly use JS libraries
(e.g., jQuery, AngularJS, React) for ease of development.
These libraries are often bloated and can have a largememory
footprint. Thus, we first analyze how common are different JS
libraries on popular Web pages. Figure 16a shows the usage
of (five most popular) JS libraries across Alexa top 880 Web
pages. We find that jQuery is the most widely used JS library
onWeb pages followed by React, Modernizr, Moment_js, and
AngularJS.

Next, we analyze the memory overhead induced by JS
libraries when reading, inserting, and updating the DOM.
To this end, we consider six operations involving a table
(e.g., creating 100 rows, updating styles, swapping rows, and
finally clearing rows) and implement them in jQuery, An-
gularJS, React, and VanillaJS (i.e., plain JS that does not use
any external JS library). Figure 16b shows the Java heap
size across different operations. Observe that using VanillaJS
results in the smallest memory footprint across all opera-
tions. In particular, VanillaJS results in 1.4x-1.9x smaller JS
heap size compared to jQuery, 1.6x-12.3x smaller compared
to AngularJS, and 1.1x-9.8x smaller than React across all
operations.
We also measure the scripting/execution time of these

operations and find that VanillaJS takes the least amount of
time across all operations. Compared to jQuery, VanillaJS
provides 3x-105x smaller scripting times across operations.

These results suggest that when developing simple pages,
avoiding the use of JS libraries can improvememory footprint
as well as reduce scripting times.

jQuery-Optimized. In this version of jQuery, we remove
unused functions from the library by examining the Web
page. This decreases (a) Java heap size (by ∼1MB) as well
as the (b) loading time of the library (by 100ms) for two
reasons: (a) this results in less code to parse and compile for
the JS engine, V8 and (b) there are less or smaller internal
data structures the library now maintains.

(B) Choosing memory efficient image formats. To as-
sess possible improvements that can be brought about by
changing image formats, we first analyze how common are
different image formats in popular Web Pages. Figure 18
shows the usage of image formats across 43309 images in
Alex top 880 Web pages. Observe that GIF (32%), JPEG (30%),
and PNG (23%) are the three dominant image formats fol-
lowed by WebP (6%).
Next, we carry out a controlled experiment by loading a

synthetic page with 16 images. We encode all images in a one
format and measure their memory footprint and then repeat
this process for other formats. Figure 19 shows the PSS of the
renderer process and its memory distribution across three
major components for different image formats. Observe that
the PSS varies widely across image formats. In particular,
GIF results in the largest PSS (i.e., 279MB), followed by PNG
(i.e., 227MB) whereas JPEG (162MB) and Google’s WebP
(167MB) format result in the smallest memory footprint.

Interestingly, we find that while the compositor (cc) mem-
ory footprint does not vary significantly across formats
(107MB-123MB) in this case14, the difference is due to Web-
cache – which shows the actual size of images – and malloc,
which reflects the memory consumed by data structures
when an image is loaded. The difference in the memory con-
sumption grows larger with the number of images in a Web
page (see Figure 17. This happens because GIF and PNG both
use lossless compression but the latter usually delivers bet-
ter compression. Moreover, GIF limits the color palette (i.e,
collection of colors that an image uses) to at most 256 colors
wheres PNG allows for larger number of palettes and thus
produces high quality images but at the cost of a higher file
size than other formats. JPEG uses a combination of lossy
and lossless optimization to reduce file size of the image
asset. Lossless WebP compression uses already seen image
fragments in order to exactly reconstruct new pixels whereas
lossy WebP compression uses predictive coding to encode
an image.

14The difference in compositor memory footprint does vary significantly
in case of high resolution images or when the number of images/page are
small as discussed in Section 4.

ACM SIGCOMM Computer Communication Review Volume 50 Issue 4, October 2020

(a) Popularity of JS libraries (b) Java heap Size (c) Scripting time

Figure 16: (a) Popularity of JS libraries in Alexa top 880 Websites (we list top five), (b) Java heap size for several
operations performed by different JS libraries, and (c) time to perform different operations.

Figure 17: PSS of the renderer process as we increase
the number of images in a Web page.

Figure 18: Popularity of image formats in Alexa top
880 Web pages.

Figure 19: PSS of the renderer process and three
browser components (i.e., Webcache, cc, and malloc)
for different image formats. For this experiment, we
used a synthetic page having just 16 images.

Thus, Websites with several images can significantly re-
duce their memory footprint on users’ devices if they opt
for image formats such as JPEG and WebP and serve low
resolution images.

7 DISCUSSION AND IMPLICATIONS
Our finding have implications for different stakeholders in
the smartphone ecosystem.
• Website Developers: Our work provides insights for website
developers for reducing the memory footprint of their
Web pages, which can speed up page loads when a mobile

device is running low onmemory or have a small RAM size
to begin with. For example, using native JS, debloated JS
libraries, and memory-efficient image formats can reduce
memory pressure and improve scripting times.

• Original Equipment Manufacturers: For OEMs, our work
provides insights about mobile hardware features that
impact Web browsing under high memory pressure. For
example, having more CPU cores (e.g., 4 compared to 1 or
2) can significantly improve Web browsing performance
under high memory pressure scenarios due to reduced
interference with high priority system daemons such as
kswapd.

• Application Users: Crashes and poor application perfor-
mance frustrate users. Our work can inform users about
scenarios underwhich they can experience slow page loads
and how user actions (e.g., number of open apps) impact
application behaviour.

• System Developers: Our work sheds light on possible
system-level mechanisms that can help improve perfor-
mance (e.g., kswapd scheduling). For example, careful as-
signment or cores to system daemons can reduce interfer-
ence with foreground processes.

8 RELATEDWORK
There is a large body of work on optimizing mobile Web
performance, including design and optimization of proxy ser-
vices (e.g., [20, 32, 41, 42]), reducing the overhead of client-
side JavaScript (e.g., [39, 45]), prefetching [15, 34], under-
standing dependencies in the page load process [46], study-
ing the impact of network infrastructure [47], and analysis
of mobile devices in developing countries [33, 35].

Analysis of page load bottlenecks. WProf [43] is a
lightweight in-browser profiler that produces a detailed de-
pendency graph of the activities that make up a page load.
In [38], authors perform comparison between mobile and
non-mobile browsers and characterize performance bottle-
necks. They found that computation activities, and not the
network transfer times, are the main bottleneck on mobile
browsers. In contrast, our work focuses on understanding
the memory footprint of Web pages and page load perfor-
mance of Web browsing when a device is operating low on
memory. Ahmad et al. [33] analyzed the characteristics of

ACM SIGCOMM Computer Communication Review Volume 50 Issue 4, October 2020

mobile devices in a developing region and observed that
device-level bottlenecks are highly likely.

Proxy and backend accelerators/frameworks. Fly-
Wheel [32] is an HTTP proxy service that reduces data for
mobile users by compressing responses in-flight between ori-
gin servers and browsers. However, FlyWheel does not pro-
vide support for HTTPS pages. The Opera Mini [19] browser
works by offloading compute intensive tasks, such as script-
ing, to a proxy service. However, it often comes at the cost of
interactivity (e.g., OperaMini does not support touch events).
Some recent approaches, such as Prophecy [39] and Shan-
dian [46], return post-processed versions of objects to reduce
client-side computation and bandwidth costs. For example,
in Prophecy, Web servers precompute the JavaScript heap
and the DOM tree for a page and when a mobile browser
requests the page, the server returns a write log that con-
tains a single write per JavaScript variable or DOM node.
AMP accelerates mobile page loads by requiring pages to be
written in a restricted dialect of HTML, CSS, and JavaScript
that is faster to load [1, 37].

Server push systems. Several systems aim to accelerate
mobile page loads by leveraging HTTP/2’s server push fea-
ture, where servers proactively push resources to clients in
anticipation of future requests [36, 40, 44]. While useful, such
approaches can increase memory pressure and thus impact
user-perceived performance especially on low-end devices
[15].

Solutions for entry-level devices. Several ongoing and
recent efforts aim to improve mobile QoE on entry-level de-
vices [4, 10, 42]. Free Basics is a Facebook initiative to provide
zero-rated Web services in developing countries. The Free
Basics platform is available in over 60 countries that offers a
collection of Web services that serve light pages to users so
that they can load faster on low-end mobile devices while
saving data. Free Basics services do not support JavaScript,
large images, or videos. Google’s Web Light service [42] is a
proxy-based service available in several developing countries,
which transcodes pages into pruned versions and improves
page load performance at the cost page quality and site inter-
activity. Android Go is a pruned version of Android designed
for entry-level devices [4].

9 CONCLUSION
In this work, we analyzed the impact of device memory us-
age on mobile browsing performance over different mobile
phones, mobile browsers, Android versions, and across dif-
ferent application use cases. Our analysis of popular Web
pages shows that their memory footprint can be orders of
magnitude larger than their corresponding page sizes. This
can often lead to slow browsing performance or page crashes
when a device is running low on memory or if a device has

small memory to begin with. We find that debloating JS and
using memory-efficient image formats can significantly re-
duce the memory footprint of Web pages and improve load
performance. We view this work as an initial step towards
a better understanding of how a device running under low
memory impacts application performance.

10 ACKNOWLEDGEMENT
We are grateful to the SIGCOMM CCR reviewers for their in-
sightful comments and suggestions. This work was partially
funded by a Google Faculty Research Award and LUMS FIF
grant.

REFERENCES
[1] [n. d.]. AMP: Building the future web, together. ([n. d.]).

https://www.ampproject.org/.
[2] [n. d.]. Android 7.0 for Developers. ([n. d.]).

https://developer.android.com/about/versions/nougat/android-
7.0.

[3] [n. d.]. Android: Crashes. ([n. d.]). https://developer.android.com/
topic/performance/vitals/crash.

[4] [n. d.]. Android Go. ([n. d.]). https://www.android.com/versions/go-
edition/.

[5] [n. d.]. Android: LMKD in Userspace. ([n. d.]).
https://source.android.com/devices/tech/perf/lmkd.

[6] [n. d.]. Android: Low RAM Configuration. ([n. d.]).
https://source.android.com/devices/tech/perf/low-ram.

[7] [n. d.]. Android: Processes and Application Lifecycle. ([n. d.]).
https://developer.android.com/guide/components/activities/process-
lifecycle.

[8] [n. d.]. Brave browser moves to Chromium codebase. ([n. d.]).
https://zd.net/3cZHDp7.

[9] [n. d.]. Build for Android (Go edition): optimize your app for global
markets (Google I/O ’18). ([n. d.]). https://bit.ly/2UKLQDl.

[10] [n. d.]. Free Basics Platform. ([n. d.]).
https://developers.facebook.com/docs/internet-org.

[11] [n. d.]. Google Play Store. ([n. d.]). https://developer.android.com/
distribute/google-play.

[12] [n. d.]. How to fix low memory and low storage issues on Android.
([n. d.]). https://bit.ly/2Hc8Mre.

[13] [n. d.]. http archive. ([n. d.]). https://httparchive.org/.
[14] [n. d.]. ICT Facts and Figures. ([n. d.]). https://www.itu.int/en/ITU-

D/Statistics/Documents/facts/ICTFactsFigures2017.pdf.
[15] [n. d.]. Introducing NoState Prefetch. ([n. d.]).

https://developers.google.com/web/updates/2018/07/nostate-
prefetch.

[16] [n. d.]. Kiwi Browser - Fast and Quiet. ([n. d.]). https://bit.ly/2WZAIH2.
[17] [n. d.]. Low memory on Android: how to fix it. ([n. d.]).

https://bit.ly/2Mn73U3.
[18] [n. d.]. Microsoft Edge. ([n. d.]).

https://www.microsoftedgeinsider.com/en-us/.
[19] [n. d.]. Opera mini browser. ([n. d.]). http://www.opera.com/mobile/.
[20] [n. d.]. Opera Turbo. ([n. d.]). http://www.opera.com/turbo.
[21] [n. d.]. Overview of memory management. ([n. d.]). https://developer.

android.com/topic/performance/memory-overview.
[22] [n. d.]. Speed Index. ([n. d.]). https://web.dev/speed-index/.
[23] [n. d.]. Telemetry. ([n. d.]). https://chromium.googlesource.com/

catapult/+/HEAD/telemetry/.

ACM SIGCOMM Computer Communication Review Volume 50 Issue 4, October 2020

https://developer.android.com/topic/performance/vitals/crash
https://developer.android.com/topic/performance/vitals/crash
https://developer.android.com/distribute/google-play
https://developer.android.com/distribute/google-play
https://developer.android.com/topic/performance/memory-overview
https://developer.android.com/topic/performance/memory-overview
https://chromium.googlesource.com/catapult/+/HEAD/telemetry/
https://chromium.googlesource.com/catapult/+/HEAD/telemetry/

[24] [n. d.]. The most popular Android smartphones in 2019. ([n. d.]).
https://deviceatlas.com/blog/most-popular-android-smartphone.

[25] [n. d.]. The Most Popular Browsers. ([n. d.]).
https://www.w3schools.com/browsers/.

[26] [n. d.]. Vivaldi. ([n. d.]). https://en.wikipedia.org/wiki/Opera_(web_browser).
[27] [n. d.]. Vivaldi. ([n. d.]). https://vivaldi.com/.
[28] [n. d.]. vmpressure.c. ([n. d.]). https://android.googlesource.com/

kernel/msm/+/android-9.0.0_r0.31/mm/vmpressure.c.
[29] [n. d.]. Web Light: Faster and lighter mobile pages from search. ([n.

d.]). https://support.google.com/webmasters/answer/6211428?hl=en.
[30] [n. d.]. Web Page Replay. ([n. d.]). https://github.com/catapult-project/

catapult/blob/master/web_page_replay_go/README.md.
[31] [n. d.]. WebPageTest. ([n. d.]). https://www.webpagetest.org/.
[32] Victor Agababov, Michael Buettner, Victor Chudnovsky, Mark Cogan,

Ben Greenstein, Shane McDaniel, Michael Piatek, Colin Scott, Matt
Welsh, and Bolian Yin. 2015. Flywheel: Google’s Data Compression
Proxy for theMobileWeb. In Proceedings of the 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 2015).

[33] Sohaib Ahmad, Abdul Lateef Haamid, Zafar Ayyub Qazi, Zhenyu
Zhou, Theophilus Benson, and Ihsan Ayyub Qazi. 2016. A View from
the Other Side: Understanding Mobile Phone Characteristics in the
DevelopingWorld. In Proceedings of the 2016 Internet Measurement Con-
ference (IMC ’16). 319–325. https://doi.org/10.1145/2987443.2987470

[34] Michael Butkiewicz, Daimeng Wang, Zhe Wu, Harsha V. Madhyastha,
and Vyas Sekar. 2015. KLOTSKI: Reprioritizing Web Content to Im-
prove User Experience on Mobile Devices. In NSDI.

[35] Mallesham Dasari, Santiago Vargas, Arani Bhattacharya, Aruna Bal-
asubramanian, Samir R. Das, and Michael Ferdman. 2018. Impact of
Device Performance on Mobile Internet QoE. In Proceedings of the
Internet Measurement Conference 2018 (IMC ’18). 1–7. https://doi.org/
10.1145/3278532.3278533

[36] Jeffrey Erman, Vijay Gopalakrishnan, Rittwik Jana, and K. K. Ramakr-
ishnan. 2013. Towards a SPDY’ier Mobile Web?. In Proceedings of
the Ninth ACM Conference on Emerging Networking Experiments and
Technologies (CoNEXT ’13). 303–314. https://doi.org/10.1145/2535372.
2535399

[37] Byungjin Jun, Fabian E. Bustamante, Sung YoonWhang, and Zachary S.
Bischof. 2019. AMP Up Your Mobile Web Experience: Characterizing
the Impact of Google’s Accelerated Mobile Project. In The 25th Annual
International Conference on Mobile Computing and Networking (Mobi-
Com ’19). Article 4, 14 pages. https://doi.org/10.1145/3300061.3300137

[38] Javad Nejati and Aruna Balasubramanian. 2016. An In-Depth Study of
Mobile Browser Performance. In Proceedings of the 25th International
Conference on World Wide Web (WWW ’16). 1305–1315. https://doi.
org/10.1145/2872427.2883014

[39] Ravi Netravali and James Mickens. 2018. Prophecy: Accelerating Mo-
bile Page Loads Using Final-State Write Logs. In Proceedings of the 15th
USENIX Conference on Networked Systems Design and Implementation
(NSDI’18). 249–266.

[40] Vaspol Ruamviboonsuk, Ravi Netravali, Muhammed Uluyol, and Har-
sha V. Madhyastha. 2017. Vroom: Accelerating the Mobile Web with
Server-Aided Dependency Resolution. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication (SIGCOMM
’17). 390–403. https://doi.org/10.1145/3098822.3098851

[41] Shailendra Singh, Harsha V. Madhyastha, Srikanth V. Krishnamurthy,
and Ramesh Govindan. 2015. FlexiWeb: Network-Aware Compaction
for Accelerating Mobile Web Transfers. In Proceedings of the 21st An-
nual International Conference on Mobile Computing and Networking
(MobiCom ’15). 604–616. https://doi.org/10.1145/2789168.2790128

[42] Ammar Tahir, Muhammad Tahir Munir, Shaiq Munir Malik, Za-
far Ayyub Qazi, and Ihsan Ayyub Qazi. 2020. Deconstructing Google’s
Web Light Service. In Proceedings of The Web Conference 2020 (WWW

’20). 884–893. https://doi.org/10.1145/3366423.3380168
[43] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy,

and David Wetherall. 2013. Demystifying Page Load Performance with
WProf. In Proceedings of the 10th USENIX Conference on Networked
Systems Design and Implementation (NSDI’13). 473–486.

[44] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy,
and David Wetherall. 2014. How Speedy is SPDY?. In Proceedings of
the 11th USENIX Conference on Networked Systems Design and Imple-
mentation (NSDI’14). 387–399.

[45] Xiao Sophia Wang, Arvind Krishnamurthy, and David Wetherall. 2016.
Speeding up Web Page Loads with Shandian. In NSDI.

[46] Xiao Sophia Wang, Arvind Krishnamurthy, and David Wetherall. 2016.
Speeding up Web Page Loads with Shandian. In Proceedings of the 13th
Usenix Conference on Networked Systems Design and Implementation
(NSDI’16). 109–122.

[47] Yasir Zaki, Jay Chen, Thomas Pötsch, Talal Ahmad, and Lakshmi-
narayanan Subramanian. 2014. Dissecting Web Latency in Ghana. In
Proceedings of the 2014 Conference on Internet Measurement Conference
(IMC ’14). 241–248. https://doi.org/10.1145/2663716.2663748

A APPENDIX: CODE AND DATA
To replicate the experimental results reported in this work,
we have created a public repository15. In this repository,
we have provide all the code and data needed to reproduce
the experiments described in this paper. This includes the
tools we developed to the run the experiments, scripts for
analysis and plotting of the generated data. In addition, we
also provide information on how we setup third party tools
we used for our experiments. If additional help is needed,
please contact any of the co-authors.
For our experiments, we use the userdebug build in An-

droid. We track the memory footprint of Chrome through
Google’s Telemetry tool [23]. For measuring Web page sizes
and gathering other page specific statistics, we use Web-
PageTest, an open-source tool for measuring Web perfor-
mance [31]. For inducing memory pressure on a mobile, we
developed a customAndroid application using SDK andNDK.
To use this application, one needs to root the device. For
tracking PSS of applications, we developed another custom
Android application.

All the experimental data and code is in the reposi-
tory folder web_browser_experiments. The main folder is
further divided into three sub-folders: am_footprint_web,
mp_simulation_web and base_for_web_optimization. These
folders provide information on reproducing results corre-
sponding to specific sections of the paper. Below we provide
a description of the contents of these sub-folders.

A.1 Application Memory Footprint
The am_footprint_web folder contains the link to the Teleme-
try archive, which is the primary tool we have used for
Web tracing (instructions to run Telemetry are also provided

15https://github.com/nsgLUMS/mobileLowMem

ACM SIGCOMM Computer Communication Review Volume 50 Issue 4, October 2020

https://android.googlesource.com/kernel/msm/+/android-9.0.0_r0.31/mm/vmpressure.c
https://android.googlesource.com/kernel/msm/+/android-9.0.0_r0.31/mm/vmpressure.c
https://github.com/catapult-project/catapult/blob/master/web_page_replay_go/README.md
https://github.com/catapult-project/catapult/blob/master/web_page_replay_go/README.md
https://www.webpagetest.org/
https://doi.org/10.1145/2987443.2987470
https://doi.org/10.1145/3278532.3278533
https://doi.org/10.1145/3278532.3278533
https://doi.org/10.1145/2535372.2535399
https://doi.org/10.1145/2535372.2535399
https://doi.org/10.1145/3300061.3300137
https://doi.org/10.1145/2872427.2883014
https://doi.org/10.1145/2872427.2883014
https://doi.org/10.1145/3098822.3098851
https://doi.org/10.1145/2789168.2790128
https://doi.org/10.1145/3366423.3380168
https://doi.org/10.1145/2663716.2663748
https://github.com/nsgLUMS/mobileLowMem

there). Another folder named user_debug_build_images con-
tains the userdebug builds for the devices we used in our
experiments. To run Telemetry, a device must be flashed with
the userdebug build of Android. After completing the flash-
ing and setting up Telemetry on a local machine, one can
easily run Telemetry benchmarking on a device. There are
many benchmarks available in Telemetry but for our use case,
we have usedmemory_top_10_mobile to the component-wise
distribution of memory. We wrote scripts to parse CSV files
generated by Telemetry. These scripts are available in the
folder named csv_parsers. Figures 4, 5 and 6 can be drawn
from the final parsed CSV. We also have shared a file con-
taining URLs of the Alexa_top_100 Web pages we used in
our experiments under the samples folder. The folder of
web_page_test contains instructions about how to use and
extract results of WebPageTest tests (e.g., number of requests
generated by every page, number of objects downloaded,
etc), which were used to generate Figure 7.

A.2 Memory Pressure
The folder mp_simulation_web contains four sub-folders:
mp_simulator_apk, root_images, impact_on_devices, and
core_binding. In the mp_simulator_apk folder, there is an
APK for Android devices – which we used for generating
memory pressure on the device – along with the instructions
about how to run that application and how to track mem-
ory pressure using the Android Profiler of ADB logcat. As
our application requires root permissions, the target device
must be rooted, for which we also have included root im-
ages in the root_images folder. By using the mp_simulator
application, we introduce the desired memory pressure and
then run Telemetry as discussed earlier but this time we use
the loading_mobile benchmark to get component-wise time
division of Web page loading until the onload event. In the
folder of core_binding, we have mentioned how to bind cores
to the process and then run Telemetry to observe its impact
on a Web page’s load time. The folder mp_simulation_web
contains experimental results in the form CSV files that can
be used to generate Figure 15.

A.3 Optimizations
The data and instructions to perform experiments re-
lated to optimizations for Web browsing are in the folder
base_for_web_optimizations. The samples folder inside the
parent directory contains further two sub-folders: images and
synthetic_pages. To obtain memory footprints of different
browser components, we used Telemetry same as described
in A.1.

ACM SIGCOMM Computer Communication Review Volume 50 Issue 4, October 2020

