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Abstract

The hierarchical Dirichlet process hidden
Markov model (HDP-HMM) is a flexible,
nonparametric model which allows state
spaces of unknown size to be learned from
data. We demonstrate some limitations of
the original HDP-HMM formulation (Teh
et al., 2006), and propose a sticky exten-
sion which allows more robust learning of
smoothly varying dynamics. Using DP mix-
tures, this formulation also allows learning
of more complex, multimodal emission dis-
tributions. We further develop a sampling
algorithm that employs a truncated approx-
imation of the DP to jointly resample the
full state sequence, greatly improving mixing
rates. Via extensive experiments with syn-
thetic data and the NIST speaker diarization
database, we demonstrate the advantages of
our sticky extension, and the utility of the
HDP-HMM in real-world applications.

1. Introduction

Hidden Markov models (HMMs) have been a major
success story in many applied fields; they provide core
statistical inference procedures in areas as diverse as
speech recognition, genomics, structural biology, ma-
chine translation, cryptanalysis and finance. Even af-
ter four decades of work on HMMs, however, signifi-
cant problems remain. One lingering issue is the choice
of the hidden state space’s cardinality. While standard
parametric model selection methods can be adapted to
the HMM, there is little understanding of the strengths
and weaknesses of such methods in this setting.
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Recently, Teh et al. (2006) presented a nonparamet-
ric Bayesian approach to HMMs in which a stochastic
process, the hierarchical Dirichlet process (HDP), de-
fines a prior distribution on transition matrices over
countably infinite state spaces. The resulting HDP-

HMM leads to data–driven learning algorithms which
infer posterior distributions over the number of states.
This posterior uncertainty can be integrated out when
making predictions, effectively averaging over models
of varying complexity. The HDP-HMM has shown
promise in a variety of applications, including visual
scene recognition (Kivinen et al., 2007) and the mod-
eling of genetic recombination (Xing & Sohn, 2007).

One serious limitation of the standard HDP-HMM
is that it inadequately models the temporal persis-
tence of states. This problem arises in classical finite
HMMs as well, where semi-Markovian models are of-
ten proposed as solutions. However, the problem is
exacerbated in the nonparametric setting, where the
Bayesian bias towards simpler models is insufficient to
prevent the HDP-HMM from learning models with un-
realistically rapid dynamics, as demonstrated in Fig. 1.

To illustrate the seriousness of this issue, let us con-
sider a challenging application that we revisit in Sec. 5.
The problem of speaker diarization involves segment-
ing an audio recording into time intervals associated
with individual speakers. This application seems like
a natural fit for the HDP-HMM, as the number of true
speakers is typically unknown, and may grow as more
data is observed. However, this is not a setting in
which model averaging is the goal; rather, it is critical
to infer the number of speakers as well as the transi-
tions among speakers. As we show in Sec. 5, the HDP-
HMM’s tendency to rapidly switch among redundant
states leads to poor speaker diarization performance.

In contrast, the methods that we develop in this paper
yield a state-of-the-art speaker diarization method, as
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Figure 1. Sensitivity of the HDP-HMM to within-state variations in the observations. (a) Observation sequence; (b) true
state sequence; estimated state sequence after 100 Gibbs iterations for the (c) original and (d) sticky HDP-HMM, with
errors indicated in red. Without an extra self–transition bias, the HDP-HMM rapidly transitions among redundant states.

well as a general solution to the problem of state persis-
tence in HDP-HMMs. The approach is easily stated—
we simply augment the HDP-HMM to include a pa-
rameter for self-transition bias, and place a separate
prior on this parameter. The challenge is to consis-
tently execute this idea in a nonparametric Bayesian
framework. Earlier papers have also proposed self-
transition parameters for HMMs with infinite state
spaces (Beal et al., 2002; Xing & Sohn, 2007), but
did not formulate general solutions that integrate fully
with nonparametric Bayesian inference.

While the HDP-HMM treats the state transition dis-
tribution nonparametrically, it is also desirable to al-
low more flexible, nonparametric emission distribu-
tions. In classical applications of HMMs, finite Gaus-
sian mixtures are often used to model multimodal ob-
servations. Dirichlet process (DP) mixtures provide
an appealing alternative which avoids fixing the num-
ber of observation modes. Such emission distribu-
tions are not identifiable for the standard HDP-HMM,
due to the tendency to rapidly switch between redun-
dant states. With an additional self-transition bias,
however, we show that a fully nonparametric HMM
leads to effective learning algorithms. In particular,
we develop a blocked Gibbs sampler which leverages
forward–backward recursions to jointly resample the
state and emission assignments for all observations.

In Sec. 2, we begin by presenting background material
on the HDP. Sec. 3 then links these nonparametric
methods with HMMs, and extends them to account
for state persistence. We further augment the model
with multimodal emission distributions in Sec. 4, and
present results using synthetic data and the NIST
speaker diarization database in Sec. 5.

2. Background: Dirichlet Processes

A Dirichlet process (DP), denoted by DP(γ,H), is a
distribution over countably infinite random measures

G0(θ) =

∞
∑

k=1

βkδ(θ − θk) θk ∼ H (1)

on a parameter space Θ. The weights are sampled via
a stick-breaking construction (Sethuraman, 1994):

βk = β′
k

k−1
∏

ℓ=1

(1 − β′
ℓ) β′

k ∼ Beta(1, γ) (2)

We denote this distribution by β ∼ GEM(γ).

The DP is commonly used as a prior on the parameters
of a mixture model of unknown complexity, resulting
in a DPMM (see Fig. 2(a)). To generate observations,
we choose θ̄i ∼ G0 and yi ∼ F (θ̄i). This sampling
process is often described via a discrete variable zi ∼ β
indicating which component generates yi ∼ F (θzi

).

The hierarchical Dirichlet process (HDP) (Teh et al.,
2006) extends the DP to cases in which groups of data
are produced by related, yet unique, generative pro-
cesses. Taking a hierarchical Bayesian approach, the
HDP places a global Dirichlet process prior DP(α,G0)
on Θ, and then draws group specific distributions
Gj ∼ DP(α,G0). Here, the base measure G0 acts as
an “average” distribution (E[Gj ] = G0) encoding the
frequency of each shared, global parameter:

Gj(θ) =

∞
∑

t=1

π̃jtδ(θ − θ̃jt) π̃j ∼ GEM(α) (3)

=

∞
∑

k=1

πjkδ(θ − θk) πj ∼ DP(α, β) (4)

Because G0 is discrete, multiple θ̃jt ∼ G0 may take
identical values θk. Eq. (4) aggregates these probabil-
ities, allowing an observation yji to be directly associ-
ated with the unique global parameters via an indica-
tor random variable zji ∼ πj . See Fig. 2(b).

We can alternatively represent this generative process
via indicator variables tji ∼ π̃j and kjt ∼ β, as in
Fig. 2(c). The stick-breaking priors on these mix-
ture weights can be analytically marginalized, yield-
ing simple forms for the predictive distributions of as-
signments. The resulting distribution on partitions is
sometimes described using the metaphor of a Chinese

restaurant franchise (CRF). There are J restaurants
(groups), each with infinitely many tables (clusters) at
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Figure 2. (a) DPMM in which β ∼ GEM(γ), θk ∼ H(λ),
zi ∼ β, and yi ∼ f(y | θzi

). (b) HDP mixture model
with β ∼ GEM(γ), πj ∼ DP(α, β), θk ∼ H(λ), zji ∼
πj , and yji ∼ f(y | θzji

). (c) CRF with loyal customers.
Customers yji sit at table tji ∼ π̃j which considers dish
k̄jt ∼ β, but override variables wjt ∼ Ber(κ/α + κ) can
force the served dish kjt to be j. The original CRF, as
described in Sec. 2, has κ = 0 so that kjt = k̄jt.

which customers (observations) sit. Upon entering the
jth restaurant, customer yji sits at currently occupied
tables tji with probability proportional to the number
of currently seated customers, or starts a new table t̃
with probability proportional to α. Each table chooses
a dish (parameter) θ̃jt = θkjt

with probability propor-
tional to the number of other tables in the franchise
that ordered that dish, or orders a new dish θk̃ with
probability proportional to γ. Observation yji is then

generated by global parameter θzji
= θ̃jtji

= θkjtji
.

An alternative, non–constructive characterization of
samplesG0 ∼ DP(γ,H) from a Dirichlet process states
that for every finite partition {A1, . . . , AK} of Θ,

(G0(A1), . . . , G0(AK))

∼ Dir(γH(A1), . . . , γH(AK)). (5)

Using this expression, it can be shown that the fol-
lowing finite, hierarchical mixture model converges in
distribution to the HDP as L→ ∞ (Ishwaran & Zare-
pour, 2002; Teh et al., 2006):

β ∼ Dir(γ/L, . . . , γ/L)
πj ∼ Dir(αβ1, . . . , αβL).

(6)

Later sections use this weak limit approximation to
develop efficient, blocked sampling algorithms.

3. The Sticky HDP-HMM

The HDP can be used to develop an HMM with an
unknown, potentially infinite state space (Teh et al.,
2006). For this HDP-HMM, each HDP group-specific
distribution, πj , is a state-specific transition distribu-
tion and, due to the infinite state space, there are in-
finitely many groups. Let zt denote the state of the
Markov chain at time t. For Markov chains zt ∼ πzt−1

,
so that zt−1 indexes the group to which yt is assigned.
The current HMM state zt then indexes the parameter
θzt

used to generate observation yt (see Fig. 3).

Figure 3. Graph of the sticky HDP-HMM. The state
evolves as zt+1 ∼ πzt , where πk ∼ DP(α + κ, (αβ +
κδk)/(α+κ)) and β ∼ GEM(γ), and observations are gen-
erated as yt ∼ F (θzt). The original HDP-HMM has κ = 0.

By sampling πj ∼ DP(α, β), the HDP prior encour-
ages states to have similar transition distributions
(E[πjk] = βk). However, it does not differentiate self–
transitions from moves between states. When model-
ing systems with state persistence, the flexible nature
of the HDP-HMM prior allows for state sequences with
unrealistically fast dynamics to have large posterior
probability. For example, with Gaussian emissions, as
in Fig. 1, a good explanation of the data is to divide an
observation block into two small–variance states with
slightly different means, and then rapidly switch be-
tween them (see Fig. 1). In such cases, many models
with redundant states may have large posterior prob-
ability, thus impeding our ability to identify a single
dynamical model which best explains the observations.
The problem is compounded by the fact that once this
alternating pattern has been instantiated by the sam-
pler, its persistence is then reinforced by the prop-
erties of the Chinese restaurant franchise, thus slow-
ing mixing rates. Furthermore, when observations are
high-dimensional, this fragmentation of data into re-
dundant states may reduce predictive performance. In
many applications, one would thus like to be able to
incorporate prior knowledge that slow, smoothly vary-
ing dynamics are more likely.

To address these issues, we propose to instead sample
transition distributions πj as follows:

πj ∼ DP

(

α+ κ,
αβ + κδj
α+ κ

)

. (7)

Here, (αβ + κδj) indicates that an amount κ > 0 is
added to the jth component of αβ. The measure of πj

over a finite partition (Z1, . . . , ZK) of the positive in-
tegers Z+, as described by Eq. (5), adds an amount κ
only to the arbitrarily small partition containing j, cor-
responding to a self-transition. When κ = 0 the origi-
nal HDP-HMM is recovered. Because positive κ values
increase the prior probabilityE[πjj ] of self–transitions,
we refer to this extension as the sticky HDP-HMM.

In some ways, this κ parameter is reminiscent of the
infinite HMM’s self-transition bias (Beal et al., 2002).
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However, that paper relied on a heuristic, approximate
Gibbs sampler. The full connection between the infi-
nite HMM and an underlying nonparametric Bayesian
prior, as well as the development of a globally con-
sistent inference algorithm, was made in Teh et al.
(2006), but without a treatment of a self-transition
parameter.

3.1. A CRF with Loyal Customers

We further abuse the Chinese restaurant metaphor by
extending it to the sticky HDP-HMM, where our fran-
chise now has restaurants with loyal customers. Each
restaurant has a specialty dish with the same index as
that of the restaurant. Although this dish is served
elsewhere, it is more popular in the dish’s namesake
restaurant. We see this increased popularity from the
fact that a table’s dish is now drawn as

kjt ∼
αβ + κδj
α+ κ

. (8)

We will refer to zt as the parent and zt+1 as the child.
The parent enters a restaurant j determined by its
parent (the grandparent), zt−1 = j. We assume there
is a bijective mapping of indices f : t→ ji. The parent
then chooses a table tji ∼ π̃j and that table is served
a dish indexed by kjtji

. Noting that zt = zji = kjtji
,

the increased popularity of the house specialty dish
implies that children are more likely to eat in the same
restaurant as their parent and, in turn, more likely
to eat the restaurant’s specialty dish. This develops
family loyalty to a given restaurant in the franchise.
However, if the parent chooses a dish other than the
house specialty, the child will then go to the restaurant
where this dish is the specialty and will in turn be more
likely to eat this dish, too. One might say that for the
sticky HDP-HMM, children have similar tastebuds to
their parents and will always go the restaurant that
prepares their parent’s dish best. Often, this keeps
many generations eating in the same restaurant.

The inference algorithm is simplified if we introduce a
set of auxiliary random variables k̄jt andwjt as follows:

k̄jt ∼ β,

wjt ∼ Ber

(

κ

α+ κ

)

,
kjt =

{

k̄jt, wjt = 0;
j, wjt = 1,

(9)

where Ber(p) represents the Bernoulli distribution.
The table first chooses a dish k̄jt without taking the
restaurant’s specialty into consideration (i.e., the origi-
nal CRF.) With some probability, this considered dish
is overridden (perhaps by a waiter’s suggestion) and
the table is served the specialty dish j. Thus, kjt rep-
resents the served dish. We refer to wjt as the override

variable. For the original HDP-HMM, when κ = 0, the
considered dish is always the served dish since wjt = 0
for all tables. See Fig. 2(c).

3.2. Sampling via Direct Assignments

In this section we describe a modified version of the
direct assignment Rao-Blackwellized Gibbs sampler of
Teh et al. (2006) which circumvents the complicated
bookkeeping of the CRF by sampling indicator random
variables directly. Throughout this section, we refer to
the variables in the graph of Fig. 3. For this sampler,
a set of auxiliary variables mjk, m̄jk, and wjt must be
added (as illustrated in Fig. 2(c)).

Sampling zt The posterior distribution factors as:

p(zt = k | z\t, y1:T , β, α, κ, λ) ∝

p(zt = k | z\t, β, α, κ)p(yt | y\t, zt = k, z\t, λ). (10)

The properties of the Dirichlet process dictate that on
the finite partition {1, . . . ,K, k̃} we have the following
form for the group-specific transition distributions:

πj ∼ Dir(αβ1, . . . , αβj + κ, . . . , αβK , αβk̃). (11)

We use the above definition of πj and the Dirichlet dis-
tribution’s conjugacy to the multinomial observations
zt to marginalize πj and derive the following condi-
tional distribution over the states assignments:

p(zt = k | z\t, β, α, κ) ∝ (αβk +n−t
zt−1k +κδ(zt−1, k))

(

αβzt+1
+ n−t

kzt+1
+ κδ(k, zt+1) + δ(zt−1, k)δ(k, zt+1)

α+ n−t
k. + κ+ δ(zt−1, k)

)

.

(12)

This formula is more complex than that of the stan-
dard HDP sampler due to potential dependencies in
the marginalization of πzt−1

and πzt
. For a detailed

derivation, see Fox et al. (2007). The notation njk rep-
resents the number of Markov chain transitions from
state j to k, nj. =

∑

k njk, and n−t
jk the number of

transitions from state j to k not counting the transi-
tion zt−1 to zt or zt to zt+1. Intuitively, this expression
chooses a state k with probability depending on how
many times we have seen other zt−1 to k and k to
zt+1 transitions. Note that there is a dependency on
whether either or both of these transitions correspond
to a self-transition, which is strongest when κ > 0.

As in Teh et al. (2006), by placing a conjugate prior
on the parameter space, there is a closed analytic form
for the likelihood component p(yt | y\t, zt = k, z\t, λ).

Sampling β Assume there are currently K̄ unique
dishes being considered and take a finite partition

{θ1, θ2, . . . , θK̄ , θk̃} of Θ, where θk̃ = Θ\
⋃K̄

k=1
{θk}.

Since θ̃jt ∼ G0 and m̄.k tables are considering dish
θk, the properties of the Dirichlet distribution dictate:

p((β1, . . . , βK̄ , βk̃) | k̄, γ) ∝ Dir(m̄.1, . . . , m̄.K̄ , γ). (13)

From the above, we see that {m̄.k}
K̄
k=1

is a set of suf-
ficient statistics for resampling β on this partition.
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However, this requires sampling two additional vari-
ables, mjk and wjt, corresponding to the number of
tables in restaurant j served dish k and the corre-
sponding overwrite variables. We jointly sample from

p(m,w, m̄ | z1:T , β, α, κ) = p(m̄ |m,w, z1:T , β, α, κ)

p(w |m, z1:T , β, α, κ)p(m | z1:T , β, α, κ). (14)

We start by examining p(m | z1:T , β, α, κ). Having
the state index assignments z1:T effectively partitions
the data (customers) into both restaurants and dishes,
though the table assignments are unknown since mul-
tiple tables can be served the same dish. Thus, sam-
pling mjk is in effect equivalent to sampling table as-
signments for each customer after knowing the dish
assignment. This conditional distribution is given by:

p(tji = t | kjt = k, t−ji,k−jt, y1:T , β, α, κ)

∝

{

ñ−ji
jt , t ∈ {1, . . . , Tj};

αβk + κδ(k, j), t = t̃j ,
(15)

where ñ−ji
jt is the number of customers at table t in

restaurant j, not counting yji. The form of Eq. (15)
implies that a customer’s table assignment conditioned
on a dish assignment k follows a DP with concentra-
tion parameter αβk +κδ(k, j) and may be sampled by
simulating the associated Chinese restaurant process.

We now derive the conditional distribution for the
override variables wjt. The table counts provide that
mjk tables are serving dish k in restaurant j. If k 6= j,
we automatically have mjk tables with wjt = 0 since
the served dish is not the house specialty. Otherwise,

p(wjt | kjt = j, β, ρ) ∝

{

βj(1 − ρ), wjt = 0;
ρ, wjt = 1,

(16)

where ρ = κ
α+κ

is the prior probability that wjt = 1.
Observing served dish kjt = j makes it more likely that
the considered dish k̄jt was overridden than the prior
suggests. We draw mjj samples of wjt from Eq. (16).

Given mjk for all j and k and wjt for each of these
instantiated tables, we can now deterministically com-
pute m̄jk. Any table that was overridden is an unin-
formative observation for the posterior of m̄jk so that

m̄jk =

{

mjk, j 6= k;
mjj − wj., j = k.

(17)

Sampling Hyperparameters Rather than fixing
the sticky HDP-HMM’s hyperparameters, we place
vague gamma priors on γ and (α + κ), and a beta
prior on κ/(α+κ). As detailed in Fox et al. (2007), the
auxiliary variables introduced in the preceding section
then allow tractable resampling of these hyperparam-
eters. This allows the number of occupied states, and
the degree of self–transition bias, to be strongly influ-
enced by the statistics of observed data, as desired.

3.3. Blocked Sampling of State Sequences

The HDP-HMM direct assignment sampler can exhibit
slow mixing rates since global state sequence changes
are forced to occur coordinate by coordinate. This is
explored in Scott (2002) for the finite HMM. Although
the sticky HDP-HMM reduces the posterior uncer-
tainty caused by fast state-switching explanations of
the data, the self-transition bias can cause two con-
tinuous and temporally separated sets of observations
of a given state to be grouped into two states. If this
occurs, the high probability of self-transition makes it
challenging for the sequential sampler to group those
two examples into a single state.

A variant of the HMM forward-backward procedure
(Rabiner, 1989) allows us to harness the Markov struc-
ture and jointly sample the state sequence z1:T given
the observations y1:T , transitions probabilities πj , and
model parameters θk. To take advantage of this pro-
cedure, we now must sample the previously marginal-
ized transition distributions and model parameters. In
practice, this requires approximating the theoretically
countably infinite transition distributions. One ap-
proach is the degree L weak limit approximation to
the DP (Ishwaran & Zarepour, 2002),

GEML(α) , Dir(α/L, . . . , α/L), (18)

where L is a number that exceeds the total number
of expected HMM states. This approximation encour-
ages the learning of models with fewer than L com-
ponents while allowing the generation of new compo-
nents, upper bounded by L, as new data are observed.

The posterior distributions of β and πj are given by:

β ∼ Dir(γ/L+ m̄.1, . . . , γ/L+ m̄.L) (19)

πj ∼ Dir(αβ1 + nj1, . . . , αβj + κ+ njj , . . . , αβL + njL).

Depending on the form of the emission distribution
and base measure on the parameter space Θ, we sam-
ple parameters for each of the currently instantiated
states from the updated posterior distribution:

θj ∼ p(θ | {yt | zt = j}, λ). (20)

Now that we are sampling θj directly, we can use a
non-conjugate base measure.

We block sample z1:T by first computing backward
messages mt,t−1(zt−1) ∝ p(yt:T |zt−1,π,θ) and then
recursively sampling each zt conditioned on zt−1 from

p(zt | zt−1, y1:T ,π,θ) ∝

p(zt | πzt−1
)p(yt | θzt

)mt+1,t(zt). (21)

A similar sampler has been used for learning HDP hid-
den Markov trees (Kivinen et al., 2007). However, this
work did not consider the complications introduced by
multimodal emissions, as we explore next.
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Figure 4. Sticky HDP-HMM with DP emissions, where st

indexes the state-specific mixture component generating
observation yt. The DP prior dictates that st ∼ ψzt for
ψk ∼ GEM(σ). The jth Gaussian component of the kth

mixture density is parameterized by θk,j so yt ∼ F (θzt,st).

4. Multimodal Emission Distributions

For many application domains, the data associated
with each hidden state may have a complex, multi-
modal distribution. We propose to approximate such
emission distributions nonparametrically, using an in-
finite DP mixture of Gaussians. This formulation is
related to the nested DP (Rodriguez et al., 2006).
The bias towards self-transitions allow us to distin-
guish between the underlying HDP-HMM states. If
the model were free to both rapidly switch between
HDP-HMM states and associate multiple Gaussians
per state, there would be considerable posterior un-
certainty. Thus, it is only with the sticky HDP-HMM
that we can effectively learn such models.

We augment the HDP-HMM state zt with a term st

indexing the mixture component of the zth
t emission

density. For each HDP-HMM state, there is a unique
stick-breaking distribution ψk ∼ GEM(σ) defining the
mixture weights of the kth emission density so that
st ∼ ψzt

. The observation yt is generated by the Gaus-
sian component with parameter θzt,st

. See Fig. 4.

To implement blocked resampling of (z1:T , s1:T ), we
use weak limit approximations to both the HDP-HMM
and Dirichlet process emissions, approximated to lev-
els L and L′, respectively. The posterior distributions
of β and πk remain unchanged; that of ψk is given by:

ψk ∼ Dir(σ/L′ + n′
k1, . . . , σ/L

′ + n′
kL′), (22)

where n′
kl are the number of observations assigned to

the lth mixture component of the kth HMM state. The
posterior distribution for each Gaussian’s mean and
covariance, θk,j , is determined by the observations as-
signed to this component, namely,

θk,j ∼ p(θ | {yt | (zt = k, st = j)}, λ). (23)

The augmented state (zt, st) is sampled from

p(zt, st | zt−1, y1:T ,π,ψ,θ) ∝

p(zt | πzt−1
)p(st | ψzt

)p(yt | θzt,st
)mt+1,t(zt). (24)

Since the Markov structure is only on the zt compo-

nent of the augmented state, the backward message
mt,t−1(zt−1) from (zt, st) to (zt−1, st−1) is solely a
function of zt−1. These messages are given by:

mt,t−1(zt−1) ∝
∑

zt

∑

st

p(zt | πzt−1
)p(st | ψzt

)

p(yt | θzt,st
)mt+1,t(zt). (25)

5. Results

Synthetic Data We generated test data from a
three-state Gaussian emission HMM with: 0.97 proba-
bility of self-transition; means 50, 0, and -50; and vari-
ances 50, 10, and 50 (see Fig. 1(a).) For the blocked
sampler, we used a truncation level of L = 15.

Fig. 5 shows the clear advantage of considering a sticky
HDP-HMM with blocked sampling. The Hamming
distance error is calculated by greedily mapping the
indices of the estimated state sequence to those max-
imizing overlap with the true sequence. The appar-
ent slow convergence of the sticky HDP-HMM direct
assignment sampler (Fig. 5(b)) can be attributed to
the sampler splitting temporally separated segments
of a true state into multiple, redundant states. Al-
though not depicted due to space constraints, both
sticky HDP-HMM samplers result in estimated mod-
els with significantly larger likelihoods of the true state
sequence than those of the original HDP-HMM.

To test the model of Sec. 4, we generated data from a
two-state HMM, where each state had a two-Gaussian
mixture emission distribution with equally weighted
components defined by means (0, 10) and (−7, 7), and
variances of 10. The probability of self-transition was
set to 0.98. The resulting observation and true state
sequences are shown in Fig. 6(a) and (b).

Fig. 6(e)-(h) compares the performance of the sticky
and original HDP-HMM with single and infinite Gaus-
sian mixture emissions. All results are for the blocked
sampler with truncation levels L = L′ = 15. In-
tuitively, when constrained to single Gaussian emis-
sions, the best explanation of the data is to associate
each true mixture component with a separate state
and then quickly switch between these states, result-
ing in the large Hamming distances of Fig. 6(g)-(h).
Although not the desired effect in this scenario, this
behavior, as depicted in Fig. 6(c), demonstrates the
flexibility of the sticky HDP-HMM: if the best ex-
planation of the data according to the model is fast
state-switching, the sticky HDP-HMM still allows for
this by learning a small bias towards self-transitions.
The sticky HDP-HMM occasionally has more accu-
rate state sequence estimates by grouping a true state’s
Gaussian mixture components into a single Gaussian
with large variance. By far the best performance is
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Figure 5. Hamming distance between true and estimated state sequences over 100 iterations for the sticky HDP-HMM (a)
blocked and (b) direct assignment samplers and the original HDP-HMM (c) blocked and (d) direct assignment samplers.
These plots show the median (solid blue) and 10th and 90th quantiles (dashed red) from 200 initializations.
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Figure 6. Performance of inference on data generated by an HMM with Gaussian mixture emissions. (a) Observation
sequence; (b) true HMM state sequence; estimated HMM state sequence using the sticky HDP-HMM model with (c)
single and (d) infinite Gaussian mixture emissions. Errors are indicated by red markers. The bottom row contains
Hamming distance plots, as in Fig. 5, for infinite Gaussian mixture emissions and the (e) sticky HDP-HMM and (f)
original HDP-HMM, and single Gaussian emissions for the (g) sticky HDP-HMM and (h) original HDP-HMM.

achieved by the sticky HDP-HMM with infinite Gaus-
sian mixture emissions (see Fig. 6(e) and (d)); compar-
ing to Fig. 6(f), we see that the gain can be attributed
to modeling rather than just improved mixing rates.

Speaker Diarization Data The speaker diariza-

tion task involves segmenting an audio recording into
speaker-homogeneous regions, while simultaneously
identifying the number of speakers. We tested the util-
ity of the sticky HDP-HMM for this task on the data
distributed by NIST as part of the Rich Transcrip-
tion 2004-2007 meeting recognition evaluations (NIST,
2007). We use the first 19 Mel Frequency Cepstral
Coefficients (MFCCs), computed over a 30ms window
every 10ms, as our feature vector. When working
with this dataset, we discovered that: (1) the high
frequency content of these features contained little
discriminative information, and (2) without a mini-
mum speaker duration, the sticky HDP-HMM learned
within speaker dynamics in addition to global speaker
changes. To jointly address these issues, we instead

model feature averages computed over 250ms, non–
overlapping blocks. A minimum speaker duration of
500ms is set by associating two average features with
each hidden state. We also tie the covariances of
within–state mixture components. We found single–
Gaussian emission distributions to be less effective.

For each of 21 meetings, we compare 10 initializations
of the original and sticky HDP-HMM blocked sam-
plers. In Fig. 8(a), we report the official NIST di-
arization error rate (DER) of the run with the largest
observation sequence likelihood, given parameters esti-
mated at the 1000th Gibbs iteration. The sticky HDP-
HMM’s temporal smoothing provides substantial per-
formance gains. Fig 8(b) plots the estimated versus
true number of speakers who talk for more than 10%
of the meeting time, and shows our model’s ability
to adapt to a varying number of speakers. As a fur-
ther comparison, the ICSI team’s algorithm (Wooters
& Huijbregts, 2007), by far the best performer at the
2007 competition, has an overall DER of 18.37%, simi-
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Figure 7. True state sequences for meetings (a) AMI 20041210-1052 and (c) VT 20050304-1300, with the corresponding
most likely state estimates shown in (b) and (d), respectively, with incorrect labels shown in red.
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Figure 8. For the 21 meeting database: (a) plot of sticky
vs. original HDP-HMM most likely sequence DER; and
(b) plot of true vs. estimated number of speakers for sam-
ples drawn from 10 random initializations of each meeting
(larger circles have higher likelihood).

lar to our 19.04%. Our best and worst DER are 1.26%
and 31.42%, respectively, compared to their 4.39% and
32.23%. We use the same non-speech pre-processing,
so that the differences are due to changes in the iden-
tified speakers. As depicted in Fig. 7, a significant
proportion of our errors can be attributed to split-
ting or merging speakers. The ICSI team’s algorithm
uses agglomerative clustering, and requires significant
tuning of parameters on representative training data.
In contrast, our hyperparameters are automatically
set meeting-by-meeting, so that each component’s ex-
pected mean and covariance are that of the entire fea-
ture sequence. Note that the selected runs plotted
in Fig. 8 are not necessarily those with the smallest
DER. For example, the run depicted in Fig. 7(d) had
24.06% DER, while another run on the same meeting
had 4.37% (versus ICSI’s 22.00%.) There is inherent
posterior uncertainty in this task, and our sampler has
the advantage of giving several interpretations. When
considering the best per-meeting DER for the five most
likely samples, our overall DER drops to 15.14%; we
hope to explore automated ways of combining multiple
samples in future work. Regardless, our results demon-
strate that the sticky HDP-HMM provides an elegant
and empirically effective speaker diarization method.

6. Discussion

We have demonstrated the considerable benefits of an
extended HDP-HMM in which a separate parameter

captures state persistence. We have also shown that
this sticky HDP-HMM allows a fully nonparametric
treatment of multimodal emissions, disambiguated by
its bias towards self-transitions, and presented efficient
sampling techniques with mixing rates that improve
on the state-of-the-art. Results on synthetic data, and
a challenging speaker diarization task, clearly demon-
strate the practical importance of our extensions.
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