
Applied Bayesian 
Nonparametrics 

1. Models & Inference 

Tutorial at CVPR 2012
Erik Sudderth 
Brown University 

Additional detail & citations in background chapter: 
E. B. Sudderth, Graphical Models for Visual Object 
Recognition and Tracking, PhD Thesis, MIT, 2006. 



Applied 

Bayesian 

Nonparametric 

Statistics 
Learning probabilistic models of visual data. 

Clustering & features, space & time, mostly unsupervised. 

Complex data motivates models of unbounded complexity. 
We often need to learn the structure of the model itself. 

Not no parameters!  Models with infinitely many parameters. 
Distributions on uncertain functions, distributions, ! 

Focus on those models which are most useful in practice. 
To understand those models, we’ll start with theory! 



Applied BNP:  Part I 
•! Review of parametric Bayesian models 

!! Finite mixture models 
!!Beta and Dirichlet distributions 

•! Canonical Bayesian nonparametric (BNP) model families 
!!Dirichlet & Pitman-Yor processes for infinite clustering 
!!Beta processes for infinite feature induction 

•! Key representations for BNP learning 
!! Infinite-dimensional stochastic processes 
!!Stick-breaking constructions 
!!Partitions and Chinese restaurant processes 
!! Infinite limits of finite, parametric Bayesian models 

•! Learning and inference algorithms 
!!Representation and truncation of infinite models 
!!MCMC methods and Gibbs samplers 
!!Variational methods and mean field 



Coffee Break 



Applied BNP:  Part II 



Bayes Rule (Bayes Theorem) 
unknown parameters (many possible models) 

observed data available for learning 

prior distribution (domain knowledge) 

likelihood function (measurement model) 

posterior distribution (learned information) 

θ
D

p(θ)

p(D | θ)
p(θ | D)

p(θ,D) = p(θ)p(D | θ) = p(D)p(θ | D)

∝ p(D | θ)p(θ)

p(θ | D) =
p(θ,D)

p(D)
=

p(D | θ)p(θ)∑
θ′∈Θ p(D | θ′)p(θ′)



Gaussian Mixture Models 
•! Observed feature vectors: 
 
•! Hidden cluster labels: 

•! Hidden mixture means: 

•! Hidden mixture covariances: 

•! Hidden mixture probabilities: 

xi ∈ Rd, i = 1, 2, . . . , N

µk ∈ Rd, k = 1, 2, . . . ,K

zi ∈ {1, 2, . . . ,K}, i = 1, 2, . . . , N

Σk ∈ Rd×d, k = 1, 2, . . . ,K

πk,

K∑

k=1

πk = 1

•! Gaussian mixture marginal likelihood: 

p(xi | π, µ,Σ) =
K∑

zi=1

πziN (xi | µzi ,Σzi)

p(xi | zi,π, µ,Σ) = N (xi | µzi ,Σzi)



Gaussian Mixture Models 
Mixture of 3 Gaussian 

Distributions in 2D 
Contour Plot of Joint Density, 

Marginalizing Cluster Assignments 
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p(xi | π, µ,Σ) =
K∑

zi=1

πziN (xi | µzi ,Σzi)

p(xi | zi,π, µ,Σ) = N (xi | µzi ,Σzi)



Gaussian Mixture Models 

Surface Plot of Joint Density, 
Marginalizing Cluster Assignments 



Clustering with Gaussian Mixtures 

C. Bishop, Pattern Recognition & Machine Learning 
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Inference Given Cluster Parameters 

(b)
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Learning Binary Probabilities 
Bernoulli Distribution:  Single toss of a (possibly biased) coin   

0 ≤ θ ≤ 1

Xi ∼ Ber(θ), i = 1, . . . , N

•! Suppose we observe N samples from a Bernoulli 
distribution with unknown mean: 

•! What is the maximum likelihood parameter estimate? 

p(x1, . . . , xN | θ) = θN1(1− θ)N0

Ber(x | θ) = θI(x=1)(1− θ)I(x=0)

θ̂ = argmax
θ

log p(x | θ) = N1

N



Beta Distributions 

Probability density function: x ∈ [0, 1]

Γ(k) = (k − 1)!

Γ(x+ 1) = xΓ(x)



Beta Distributions 

E[x] =
a

a+ b
V[x] =

ab

(a+ b)2(a+ b+ 1)

Mode[x] = arg max
x∈[0,1]

Beta(x | a, b) = a− 1

(a− 1) + (b− 1)



Bayesian Learning of Probabilities 
Bernoulli Likelihood:  Single toss of a (possibly biased) coin   

0 ≤ θ ≤ 1Ber(x | θ) = θI(x=1)(1− θ)I(x=0)

p(x1, . . . , xN | θ) = θN1(1− θ)N0

Beta Prior Distribution: 

p(θ) = Beta(θ | a, b) ∝ θa−1(1− θ)b−1

p(θ | x) ∝ θN1+a−1(1− θ)N0+b−1 ∝ Beta(θ | N1 + a,N0 + b)

Posterior Distribution: 

•! This is a conjugate prior, because posterior is in same family 
•! Estimate by posterior mode (MAP) or mean (preferred) 



Sequence of Beta Posteriors 

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

7

8

9

10

 

 

truth

n=5

n=50

n=100

Murphy 
2012 



Multinomial Simplex 



Learning Categorical Probabilities 
Categorical Distribution:  Single roll of a (possibly biased) die 

Cat(x | θ) =
K∏

k=1

θxk

k X = {0, 1}K ,

K∑

k=1

xk = 1

p(x1, . . . , xN | θ) =
∏K

k=1 θ
Nk

k

•! If we have Nk observations of outcome k in N trials: 

•! The maximum likelihood parameter estimates are then: 

•! Will this produce sensible predictions when K is large? 
For nonparametric models we let K approach infinity! 

θ̂ = argmax
θ

log p(x | θ) θ̂k =
Nk

N



Dirichlet Distributions 
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Moments: 

Marginal Distributions: 



Dirichlet Probability Densities 



Dirichlet Samples 

Dir(θ | 0.1, 0.1, 0.1, 0.1, 0.1) Dir(θ | 1.0, 1.0, 1.0, 1.0, 1.0)



Bayesian Learning of Probabilities 

Dirichlet Prior Distribution: 

Posterior Distribution: 

•! This is a conjugate prior, because posterior is in same family 

Categorical Distribution:  Single roll of a (possibly biased) die 

Cat(x | θ) =
K∏

k=1

θxk

k X = {0, 1}K ,

K∑

k=1

xk = 1

p(x1, . . . , xN | θ) =
∏K

k=1 θ
Nk

k

p(θ) = Dir(θ | α) ∝
K∏

k=1

θαk−1
k

p(θ | x) ∝
K∏

k=1

θNk+αk−1
k ∝ Dir(θ | N1 + α1, . . . , NK + αK)



Directed Graphical Models    
Chain rule implies that any joint distribution equals: 

Directed graphical model implies a restricted factorization: 

pa(t) → parents with edges pointing to node t

nodes → random variables

Valid for any directed acyclic graph (DAG): 
equivalent to dropping conditional 

dependencies in standard chain rule 



Plates:  Learning with Priors 

•! Boxes, or plates, indicate replication of variables 
•! Variables which are observed, or fixed, are often shaded 
•! Prior distributions may themselves have hyperparameters λ



Gaussian Mixture Models 
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p(xi | π, µ,Σ) =
K∑

zi=1

πziN (xi | µzi ,Σzi)

p(xi | zi,π, µ,Σ) = N (xi | µzi ,Σzi)



Finite Bayesian Mixture Models 

(a)

•! Cluster frequencies: Symmetric Dirichlet 
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•! Cluster shapes: Any valid prior on chosen 
family (e.g., Gaussian mean & covariance) 

•! Data:  Assign each data item to a cluster,  
and sample from that cluster’s likelihood 

zi ∼ Cat(π)

xi ∼ F (θzi)



Generative Gaussian Mixture Samples 

•! Gaussian with known variance:  Gaussian prior on mean 
•! Gaussian with unknown mean & variance:  normal inverse-Wishart 

Learning is simplest with conjugate priors on cluster shapes: 



Mixtures as Discrete Measures 

Θ

Θ

Θ

X
Toy visualization: 1D Gaussian 
mixture with unknown cluster 

means and fixed variance 

G(θ) =

K∑

k=1

πkδθk(θ)

•! Define mixture via a discrete probability 
measure on cluster parameters: 

δθk atom, point mass, Dirac delta 

•! Generate data via repeated draws G: 

θ̄i = θzi



Mixtures Induce Partitions 

(a)

zi ∼ Cat(π)

•! If our goal is clustering, the output grouping 
is defined by assignment indicator variables: 

•! The number of ways of assigning N data 
points to K mixture components is KN

K ≥ N•! If                  this is much larger than the 
number of ways of partitioning that data:  

33 = 27N=3:  5 partitions versus 



Mixtures Induce Partitions 

zi ∼ Cat(π)

•! If our goal is clustering, the output grouping 
is defined by assignment indicator variables: 

•! The number of ways of assigning N data 
points to K mixture components is KN

K ≥ N•! If                  this is much larger than the 
number of ways of partitioning that data:  

N=5:  52 partitions versus 55 = 3125

  t t o s 

   ns versus 55 3

Courtesy 
Wikipedia 

For any clustering, there is a 
unique partition, but many ways to 

label that partition’s blocks. 



Dirichlet Process Mixtures 
The Dirichlet Process (DP)  
A distribution on countably infinite 

discrete probability measures. 
Sampling yields a Polya urn. 

Infinite Mixture Models 
As an infinite limit of finite 

mixtures with Dirichlet weight priors 

Stick-Breaking 
An explicit construction 

for the weights in 
DP realizations  

Chinese Restaurant 
Process (CRP) 
The distribution on 

partitions induced by 
a DP prior 



Chinese Restaurant 
Process (CRP) 
The distribution on 

partitions induced by 
a DP prior 

Dirichlet Process Mixtures 



Nonparametric Clustering 

•! Large Support:  All partitions of the data, from one giant 
cluster to N singletons, have positive probability under prior 

•! Exchangeable:  Partition probabilities are invariant to 
permutations of the data 

•! Desirable:  Good asymptotics, computational tractability, 
flexibility and ease of generalization! 

Clusters, arbitrarily ordered 
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 Ghahramani,  

BNP 2009 



Chinese Restaurant Process (CRP) 
•! Visualize clustering as a sequential process of customers 

sitting at tables in an (infinitely large) restaurant: 
customers observed data to be clustered 

tables distinct blocks of partition, or clusters 

•! The first customer sits at a table.  Subsequent customers 
randomly select a table according to: 

number of tables occupied by the first N customers 

number of customers seated at table k 

k̄ a new, previously unoccupied table 

K

Nk

α positive concentration parameter 



Chinese Restaurant Process (CRP)    ( ) 



CRPs & Exchangeable Partitions 

•! The probability of a seating arrangement of N customers 
is independent of the order they enter the restaurant: 

p(z1, . . . , zN | α) = Γ(α)

Γ(N + α)
αK

K∏

k=1

Γ(Nk)

1

1 + α
· 1

2 + α
· · · 1

N − 1 + α
=

Γ(α)

Γ(N + α)
normalization 
constants 

α

1 · 2 · · · (Nk − 1) = (Nk − 1)! = Γ(Nk)

first customer to 
sit at each table 
other customers 
joining each table 

•! The CRP is thus a prior on infinitely exchangeable partitions 



De Finetti’s Theorem 
•! Finitely exchangeable random variables satisfy: 

•! A sequence is infinitely exchangeable if every finite 
subsequence is exchangeable 

•! Exchangeable variables need not be independent, but 
always have a representation with conditional independencies: 

An explicit construction is useful in hierarchical modeling! 



De Finetti’s Directed Graph 

What distribution underlies the infinitely exchangeable CRP? 



Chinese Restaurant 
Process (CRP) 
The distribution on 

partitions induced by 
a DP prior 

Dirichlet Process Mixtures 
The Dirichlet Process (DP)  
A distribution on countably infinite 

discrete probability measures. 
Sampling yields a Polya urn. 



Dirichlet Processes 

•! Given a base measure (distribution) H & concentration parameter 
•! Then for any finite partition 

the distribution of the measure of those cells is Dirichlet: 

Ferguson 1973 

Base Measure 

α > 0



Dirichlet Processes 

•! Marginalization properties of finite Dirichlet distributions satisfy 
Kolmogorov’s extension theorem for stochastic processes: 

Ferguson 1973 

Base Measure 



DP Posteriors and Conjugacy 

•! Does the posterior distribution of G have a tractable form? 
•! For any partition, the posterior mean given N observations is 

G ∼ DP(α, H) θ̄i ∼ G, i = 1, . . . , N

•! In fact, the posterior distribution is another Dirichlet process, 
with mean that depends on the data’s empirical distribution: 



DPs and Polya Urns 

!! Consider an urn containing ! pounds of very tiny, 
colored sand (the space of possible colors is ") 

!! Take out one grain of sand, record its color as  
!! Put that grain back, add 1 extra pound of that color 
!! Repeat this process! 

θ̄1

•! Can we simulate observations without constructing G? 
•! Yes, by a variation on the classical balls in urns analogy: 

G ∼ DP(α, H) θ̄i ∼ G, i = 1, . . . , N



Chinese Restaurant 
Process (CRP) 
The distribution on 

partitions induced by 
a DP prior 

Dirichlet Process Mixtures 
The Dirichlet Process (DP)  
A distribution on countably infinite 

discrete probability measures. 
Sampling yields a Polya urn. 

Stick-Breaking 
An explicit construction 

for the weights in 
DP realizations  



A Stick-Breaking Construction 

0 1 

concentration 
parameter 

•! Dirichlet process realizations are discrete with probability one: 

G ∼ DP(α, H) G(θ) =

∞∑

k=1

πkδθk(θ)

Sethuraman 1994 

•! Cluster shape parameters drawn from base measure: θk ∼ H

•! Cluster weights drawn from a stick-breaking process: 



Dirichlet Stick-Breaking 
E[βk] =

1

1 + α
βk ∼ Beta(1,α)



DPs and Stick Breaking 



Chinese Restaurant 
Process (CRP) 
The distribution on 

partitions induced by 
a DP prior 

Dirichlet Process Mixtures 
The Dirichlet Process (DP)  
A distribution on countably infinite 

discrete probability measures. 
Sampling yields a Polya urn. 

Stick-Breaking 
An explicit construction 

for the weights in 
DP realizations  

Infinite Mixture Models 
As an infinite limit of finite 

mixtures with Dirichlet weight priors 



DP Mixture Models 

G ∼ DP(α, H)

θ̄i ∼ G
xi ∼ F (θ̄i)

G(θ) =

∞∑

k=1

πkδθk(θ)

zi ∼ Cat(π)

xi ∼ F (θzi)

θk ∼ H(λ)
π ∼ Stick(α)

•! Stick-breaking:  Explicit size-biased sampling of weights 
•! Chinese restaurant process:  Indicator sequence 
•! Polya urn:  Corresponding parameter sequence 

z1, z2, z3, . . .
θ̄1, θ̄2, θ̄3, . . .

π



Samples from DP Mixture Priors 

N=50 



Samples from DP Mixture Priors 

N=200 



Samples from DP Mixture Priors 

N=1000 



Finite versus DP Mixtures    tu es 

π ∼ Stick(α)

zi ∼ Cat(π)

xi ∼ F (θzi)

Finite Mixture DP Mixture 

GK(θ) =

K∑

k=1

πkδθk(θ)

THEOREM:  For any measureable function f, as  K → ∞

G ∼ DP(α, H)

θk ∼ H



Finite versus CRP Partitions    a t t o s 

π ∼ Stick(α)

zi ∼ Cat(π)

Finite Mixture DP Mixture 

Chinese Restaurant Process: 

p(z1, . . . , zN | α) = Γ(α)

Γ(N + α)

( α

K

)K+
K+∏

k=1

Nk−1∏

j=1

(
j +

α

K

)

p(z1, . . . , zN | α) = Γ(α)

Γ(N + α)
αK+

K+∏

k=1

(Nk − 1)!

K+ number of blocks in cluster 

Finite Dirichlet: 

•! Probability of Dirichlet indicators approach zero as 
•! Probability of Dirichlet partition approaches CRP as K → ∞



Dirichlet Process Mixtures 
The Dirichlet Process (DP)  
A distribution on countably infinite 

discrete probability measures. 
Sampling yields a Polya urn. 

Infinite Mixture Models 
As an infinite limit of finite 

mixtures with Dirichlet weight priors 

Stick-Breaking 
An explicit construction 

for the weights in 
DP realizations  

Chinese Restaurant 
Process (CRP) 
The distribution on 

partitions induced by 
a DP prior 



Pitman-Yor Process Mixtures 

Infinite Mixture Models 
But not an infinite limit of finite 

mixtures with symmetric weight priors 

Stick-Breaking 
An explicit construction 

for the weights in 
PY realizations  

Chinese Restaurant 
Process (CRP) 
The distribution on 

partitions induced by 
a PY prior 



Pitman-Yor Processes 
The Pitman-Yor process defines a distribution on 

infinite discrete measures, or partitions 

Dirichlet process: 

0 1 



Dirichlet Stick-Breaking 

All stick indices 



Pitman-Yor Stick-Breaking 



Chinese Restaurant Process (CRP) 
customers observed data to be clustered 

tables distinct blocks of partition, or clusters 
•! Partitions sampled from the PY process can be generated 

via a generalized CRP, which remains exchangeable 
•! The first customer sits at a table.  Subsequent customers 

randomly select a table according to: 

number of tables occupied by the first N customers 

number of customers seated at table k 

k̄ a new, previously unoccupied table 

K

Nk

discount & concentration parameters 0 ≤ a < 1, b > −a

p(zN+1 = z | z1, . . . , zN ) =
1

b+N

(
K∑

k=1

(Nk − a)δ(z, k) + (b+Ka)δ(z, k̄)

)



Human Image Segmentations 

Labels for more than 29,000 segments in 2,688 images of natural scenes 



Statistics of Human Segments 
How many objects 
are in this image? 

Many 
Small 

Objects 

Some 
Large 

Objects 

Object sizes follow 
a power law 

Labels for more than 29,000 segments in 2,688 images of natural scenes 



Statistics of Semantic Labels 

sky 
trees 

person 

lichen 

rainbow 
wheelbarrow 

waterfall 

Labels for more than 29,000 segments in 2,688 images of natural scenes 

How frequent are 
text region labels? 



Why Pitman-Yor? 

Jim Pitman 

Marc Yor 

Generalizing the Dirichlet Process 
!!Distribution on partitions leads to a 

generalized Chinese restaurant process 

! Special cases of interest in probability: 
Markov chains, Brownian motion, ! 

Power Law Distributions 
DP PY 

Number of unique 
clusters in N 
observations 

Heaps  Law: 

Size of sorted 
cluster weight k 

Goldwater, Griffiths, & Johnson, 2005 
Teh, 2006 

Natural Language 
Statistics 

Zipf s Law: 



An Aside:  Toy Dataset Bias 
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Pitman-Yor Process Mixtures 

Infinite Mixture Models 
But not an infinite limit of finite 

mixtures with symmetric weight priors 

Stick-Breaking 
An explicit construction 

for the weights in 
PY realizations  

Chinese Restaurant 
Process (CRP) 
The distribution on 

partitions induced by 
a PY prior 

Dirichlet processes and finite Dirichlet 
distributions do not produce 

heavy-tailed, power law distributions 



Latent Feature Models 

•! Latent feature modeling:  Each group of observations is 
associated with a subset of the possible latent features 

•! Factorial power:  There are 2K combinations of K features, while 
accurate mixture modeling may require many more clusters 

•! Question:  What is the analog of the DP for feature modeling? 

Binary matrix 
indicating feature 
presence/absence 

Depending on application, features 
can be associated with any 
parameter value of interest 



Nonparametric Binary Features 
The Beta Process (BP)  

A Levy process whose realizations 
are countably infinite collections of 

atoms, with mass between 
0 and 1. 

Infinite Feature Models 
As an infinite limit of a finite 

beta-Bernoulli binary feature model 

Stick-Breaking 
An explicit construction 

for the feature frequencies 
in BP realizations  

Indian Buffet 
Process (IBP) 

The distribution on 
sparse binary matrices 

induced by a BP 



Poisson Distribution for Counts 

X = {0, 1, 2, 3, . . .}

Poi(x | θ) = e−θ θ
x

x!
θ > 0



Indian Buffet Process (IBP) 
•! Visualize feature assignment as a sequential process of 

customers sampling dishes from an (infinitely long) buffet: 
customers observed data to be modeled 

dishes binary features to be selected 
•! The first customer chooses                      dishes, 
•! Subsequent customer i randomly samples each previously 

tasted dish k with probability 

•! That customer also samples                           new dishes 
number of previous customers to sample dish k 

Poisson(α)

fik ∼ Ber
(mk

i

)

Poisson(α/i)

mk

α > 0



Binary Feature Realizations 

•! IBP is exchangeable, up to a permutation of the order with 
which dishes are listed in the binary feature matrix 

•! Clustering models like the DP have one “feature” per customer 
•! The number of features sampled at least once is 

y   

Ghahramani,  
BNP 2009 

O(α logN)



Finite Beta-Bernoulli Features 

πk ∼ Beta
( α

K
, 1
)

zik ∼ Ber(πk)

•! The expected number of active features in N customers is 
Nα

(1 + α/K)
→ Nα

•! The marginal probability of the realized binary matrix equals 



Beta-Bernoulli and the IBP 
•! We can show that the limit of the finite beta-Bernoulli model, 

and the IBP, produce the same distribution on 
left-ordered-form equivalence classes of binary matrices: 

•! Poisson distribution in IBP arises from the law of rare events: 
•! Flip K coins with probability of coming up heads 
•! As                 the distribution of the number of total heads 

approaches Poisson(α)

α/K
K → ∞



Nonparametric Binary Features 
The Beta Process (BP)  

A Levy process whose realizations 
are countably infinite collections of 

atoms, with mass between 
0 and 1. 

Infinite Feature Models 
As an infinite limit of a finite 

beta-Bernoulli binary feature model 

Stick-Breaking 
An explicit construction 

for the feature frequencies 
in BP realizations  

Indian Buffet 
Process (IBP) 

The distribution on 
sparse binary matrices 

induced by a BP 

Extensions:  Additional control over feature sharing, power laws! 



Nonparametric Learning 

Finite Bayesian Models 
Set finite model order to be larger 

than expected number of 
clusters or features. 

Stick-Breaking 
Truncate stick-breaking 

to produce provably 
accurate approximation. 

CRP & IBP 
Tractably learn via finite 

summaries of true, 
infinite model. 

Infinite Stochastic Processes 
Conceptually useful, but usually 

impractical or impossible for 
learning algorithms. 



Markov Chain Monte Carlo 

•! At each time point, state          is a configuration of all the 
variables in the model: parameters, hidden variables, etc. 
•! We design the transition distribution                       so that 

the chain is irreducible and ergodic, with a unique 
stationary distribution 

z(0) z(1) z(2) z(t+1) ∼ q(z | z(t))

z(t)

q(z | z(t))

p∗(z)

p∗(z) =

∫

Z
q(z | z′)p∗(z′) dz′

•! For learning, the target equilibrium distribution is usually the 
posterior distribution given data x:   
•! Popular recipes:  Metropolis-Hastings and Gibbs samplers 

p∗(z) = p(z | x)



Gibbs Sampler for a 2D Gaussian 

C. Bishop, Pattern Recognition & Machine Learning 
z1

z2

L

l

z
(t)
i ∼ p(zi | z(t−1)

\i ) i = i(t)

z
(t)
j = z

(t−1)
j j �= i(t)

Under mild conditions, 
converges assuming all 
variables are resampled 

infinitely often (order can be 
fixed or random) 

General Gibbs Sampler 



Finite Mixture Gibbs Sampler 

Most basic approach:  Sample z, #, $%



Standard Finite Mixture Sampler 



Standard Sampler: 2 Iterations 



Standard Sampler: 10 Iterations 



Standard Sampler: 50 Iterations 



Collapsed Finite Bayesian Mixture 

•! Conjugate priors allow analytic integration of some parameters 
•! Resulting sampler operates on reduced space of cluster 

assignments (implicitly considers all possible cluster shapes) 



Collapsed Finite Mixture Sampler 



Standard versus Collapsed Samplers 



DP Mixture Models 



Collapsed DP Mixture Sampler 



Collapsed DP Sampler: 2 Iterations 



Standard Sampler: 10 Iterations 



Standard Sampler: 50 Iterations 



DP versus Finite Mixture Samplers 



DP Posterior Number of Clusters 



Bayesian Ockham’s Razor 

William of Ockham 

Plurality must never be 
posited without necessity.  

D
m

θ

data 

model 

parameters 

Even with uniform p(m), marginal likelihood provides a model selection bias 



Example:  Is this coin fair? 
M0: Tosses are from a fair coin: 
M1: Tosses are from a coin of unknown bias: 

θ = 1/2

θ ∼ Unif(0, 1)

Marginal Likelihoods 

Number of heads in N=5 tosses 

M1 

M0 

•! ML:  Always prefer M1 
•! Bayes:  Unbalanced counts 

are much more likely with a 
biased coin, so favor M1 

•! Bayes:  Balanced counts 
only happen with some 
biased coins, so favor M0 



Variational Approximations 

(Multiply by one) 

(Jensen’s 
inequality) 

•! Minimizing KL divergence maximizes a likelihood bound 
•! Variational EM algorithms, which maximize for q(x) within 

some tractable family, retain BNP model selection behavior 



Mean Field for DP Mixtures 

•! Truncate stick-breaking at some upper bound K on the true 
number of occupied clusters: 

 
 
 
•! Priors encourage assigning data to fewer than K clusters 

k = 1, . . . ,K − 1

πK = 1−
K−1∑

k=1

πk

Blei & Jordan 
2006 



MCMC & Variational Learning 

Finite Bayesian Models 
Set finite model order to be larger 

than expected number of 
clusters or features. 

Stick-Breaking 
Truncate stick-breaking 

to produce provably 
accurate approximation. 

CRP & IBP 
Tractably learn via finite 

summaries of true, 
infinite model. 

Infinite Stochastic Processes 
Conceptually useful, but usually 

impractical or impossible for 
learning algorithms. 



Applied BNP:  Part II 


