Integrating S® Code Search and Code Bubbles

Steven P. Reiss
Department of Computer Science
Brown University
Providence, RI. 02912 USA
spr@cs.brown.edu

Abstract—We wanted to provide a tool for doing code
search over open source repositories as part of the Code Bub-
bles integrated development environment. Integrating code
search as a plug-in to Code Bubbles required substantial

changes to the S® code search engine and the development of
appropriate user interfaces in Code Bubbles.

After briefly reviewing Code Bubbles and the S® search
engine, this paper describes the integration strategy, the front
end for code search, the modifications to the code search engine
to handle context-based search, and the user interface for han-
dling the results of the search.

Index Terms—Code search, integrated development envi-
ronments, test-based search, code search in context.

1. INTRODUCTION

Code Bubbles [3,4] is an attempt to redesign the user
interface to programming, making the programming environ-
ment conform to the programmer’s working model. It does
this by displaying and manipulating complete working sets,
collections of task-relevant fragments including code, docu-
mentation, test cases, notes, bug reports, and other aspects of
programming [9,12]. The fragments in a working set may be
contained in multiple files, classes, or other modules, so
quick and easy viewing of all these at once is complicated in
traditional IDEs. Code Bubbles presents fragments in fully
manipulatable interface elements in order to provide an intui-
tive arrangement of working sets.

Code Bubbles runs as a separate tool on top of Eclipse
using a message-based plug-in mechanism [16]. It includes a
small Eclipse plug-in which connects to a message bus that
the main environment talks to. Integration is achieved using
command messages from Code Bubbles to Eclipse and infor-
mational messages from Eclipse to Code Bubbles. In addi-
tion, Code Bubbles itself provides a plug-in environment that
supports a wide range of tools. Plug-ins to Code Bubbles can
either be integrated using a traditional toaster-style plug-in
model [17] or using the message bus to communicate with
the tool running as a separate process.

S® is a code search engine that attempts to address
several of the problems with current code search technology
by effectively automating the multiple tasks the programmer
has to do manually in order to use the output of a code search
tool [14,15].

S® can be used to search for either Java classes or meth-
ods. It provides a web-based interface that asks the user to
first provide a description of what is wanted in terms of key-
words and the semantics of the target code. The latter
includes the signature for the target class or method, one or
more test cases, and optionally contracts (preconditions and

postconditions) and security specifications (e.g. the returned
code should not do any file 1/0).

Once this data is entered, S processes the request. It first
uses the keywords with an existing code search engine
(Ohloh, Krugle, or Sourcerer [1]) to get a starting set. It gen-
erally takes the first 100-200 files from the search results to
build an initial set of solutions. The next step is to apply
transformations to each solution to generate new solutions.
This is done repeatedly until no more transformations are
applicable and no new solutions are generated. These trans-
formations include relatively simply ones such as change the
name of the method to match the name in the specified signa-
ture or reordering the parameters; moderately complex ones
such as replacing a parameter with an assignment or discard-
ing statements that include undefined variables; and complex
ones such as extracting functionality from a method by
finding a top-level statement computing a value of the return
type, doing a backward slice of the code until the only free
variables are of the parameter types, and then extracting the
resultant code into its own function.

The system next takes all the resultant candidate solu-
tions and does a dependency check. This check first adds
other code fragments such as field declarations and auxiliary
methods from the initial file that might be needed to make the
candidate compile. Then it removes candidate solutions with
unmet dependencies that will obviously not compile. For
each candidate that passes the dependency check, the system
generates a test program that tests that candidate against the
user’s original test cases, contracts, and security constraints.
This test program is compiled and run using Apache Ant [18]
and JUnit [5]. The system does an additional pass looking at
the output from running the tests, and will try additional
transformations if they seem appropriate for example, trans-
formations that handle off-by-one or uppercase/lowercase
errors.

Finally, the system takes the candidate solutions that
pass all the test cases and passes the resultant code back to
the user. It gives the user the option of different formatting
styles [13] and different orderings for the results (e.g. fastest
to slowest, smallest to largest, least to most complex). It also
provides license information for each of the fragments. The
user can then take the result, cut and paste it into their
program and use it with the confidence it actually compiles
and passes their test cases.

One of the enhancements we wanted to make to Code
Bubbles was to effectively plug S% into the development envi-
ronment in order to let the programmer search for code rather
than writing it from scratch. Here we concentrated on search-
ing for Java methods since this portion of S% is more stable
and usable.

II. PLUGGING S® INTO CODE BUBBLES

Plugging S® into Code Bubbles is neither easy or
straightforward. There are several problems or constraints
that had to be addressed in order to accomplish the task.
These problems are somewhat typical of what is arises when
attempting to integrate two co glex systems.

The first problem is that S” is large and memory-inten-
sive. It involves a large code base. Moreover, it typically
requires 24-48 gigabytes of memory, and significant CPU
resources in order to find a successful match. It is typically
run on a large server (16 cores, 64G memory). Running it as
part of Code Bubbles or even on the same machine as the one
running a programmmg environment is not practical.

Second, S® was designed to provide a web-based inter-
face rather than being program callable. While it can be run
standalone on a single example, it is much more efficient to
run it as a server. The web interface actually communicates
with the server using an XmlHttpRequest 1nterface This pro-
vides a hook that lets Code Bubbles use S® without having to
actually run the search tool as part of the environment.

Third, S® has specific input requirements including key-
words, a method or class signature, and test cases. If the pro-
grammer wanted to provide these separately each time, they
could just use the web interface. The advantage of integrating
S% into Code Bubbles is that much of this information can be
derivable automatically assuming the programmer starts by
creating a stub method for what they are searching for. In this
case the signature is already present, any comments can be
used to extract keywords, and, assuming the programmer is
using an agile methodology, any existing test cases for that
method can be used. At the same time, the programmer might
want to pr0v1de additional test cases or keywords.

Fourth, S° generates multiple solutions. Here the envi-
ronment has to provide a means for selecting among the solu-
tions and then integrating them into their existing code. Each
solution can be a single method, in which case it could
replace the programmer’s stub method. However, the solution
can also include auxiliary methods and fields which would
also have to be integrated appropnately into the user’s code.
While S° provides formatting services, when using a pro-
gramming environment it makes more sense to use the
current style conventions provided by the environment to
reformat the returned solution.

The most complex issue in doing the 1ntegrat10n is pro-
viding a context for the search. Typically S® looks for code
that can run by itself, i.e. it is not dependent on other user
classes or methods. This severely limits the types of code that
the search engine can be used to find. During normal pro-
gramming it will often be the case that the target code will
need to access other fields and methods of the class it is
embedded in. It might also need to access other project or
library classes either as parameter or return data types or as
intermediate values. In order to make code search useful in
these situations we had to create a search context, pass it
from Code Bubbles to S, and then have S° actually make use
of the context both in code transformations and in testing.

The notion of using a context to enable a server to be run
as a plug-in is used in other systems, for example, Strathcona
[7]. Here the server is run once for a particular instance of the
system and communicates with Eclipse directly to build a

context from the user’s project. Requests are passed to the
server which then evaluates them with res6pect to the prev1-
ously loaded context. The situation with S® is different since
the S® server must be able to handle multiple requests coming
from different contexts simultaneously. This requires that the
client environment build the context on demand and pass the
result to the server as part of the request.

There are several other integrations of code search tools
for open source code into programming environments. For
example, Ohloh provides an eclipse plug-in that lets the pro-
grammer start a keyword search from within the environ-
ment, effectively duplicating their web interface. This plug-in
uses the web XmlHttpRequest interface, similar to what we
are doing with S®. CodeGenie uses test cases and signatures
to search using Sourcerer for matching code [10,11]. This
does not take into account either context or any changes that
may need to be made in the returned code. Assieme concen-
trates on uses of APIs, uses general search engines, and does
some corrective work to make the result work [6]. A number
of other tools do code search over the current project or an
internal code base. Examples here include Codifier for Visual
Studio [2] and Code Conjurer for Eclipse [8]. Code Conjurer
uses Eclipse quick fix capabilities to modify the code to make
it work in the new context.

In the next sections we look at how we addressed these
issues while plugging S% into Code Bubbles. In Section I1I
we look at the user interface for initiating a search.
Section IV discusses context-based search. Section V shows
the interface for reporting and using the result. We conclude
by discussing the open problems with this approach.

III. THE SEARCH REQUEST INTERFACE

To use the code search plug-in, programmers first create
a stub for the method they want to search for. This stub can
include header comments and can be accompanied by JUnit
test cases. The programmer then right clicks on the method
name and selects the menu option “Code Search for Method
Implementation”.

The result of this is a code search dialog similar to the s6
web interface but with fields already filled in. An example of
this is shown in the top of Figure 1. The keywords are
extracted from any comments after discarding common
terms. The user is given the choice of entering input-output
test cases (shown here), of entering code for a temporary test
case, or of selecting from existing test cases for the given
routine (shown at the bottom of Figure 1). Once the user is
satisfied with the search request, they push the “Start Search”
button to initiate the search. This creates an XmlIHttpRequest
that is sent to the S® web interface.

IV. CONTEXT-BASED SEARCH

In order to search for code that makes use of and fits into
the user’s existing code base, S® was extended to provide a
context-based search. Here, in addition to the search request,
the client passes a jar file containing the context in which the
search should be done. This file includes:

* C(lass files for all project code that might be needed to

compile and test the resultant fragment, including any
user test cases.

Code'Bubbl

| Record>roman(...)
B/ compute rc
| |

public static

'START SEARCH

[RecordTest>test_ro
o 20
Test case

4

@Test public

Test Name
test_compare..
test_roman_1

Class
DijkstraComp...
RecordTest

Assert.asse

Status | State
SUCCESS |UP_TO_DATE
FAILURE |UP_TO_DATE

oman nurmerals

(Record>romant)
B cumputr.'
| | [M

public static
recurn null;.

| RecordTest>test_rom

*
* Test case fo
o 2

@Test public »

Test Mame
test_compare..
[test_roman_1

Assert.asse JRe
State ___ Class

UP_TO_DATE |DijkstraComp...

UP_TO_DATE |RecordTest

T I Y T T

Fig. 1. The user interface for Code Bubbles Code search. In the top figure, The window at the upper left is a stub of the routine to search for. The windoy
the lower right is the junit test case for this method. The window at the lower left shows test results including the failure of the stub. The dialog on the r.
is the search box that results from right clicking on the method and selecting the “Code Search for Method Implementation” option. The bottom figure

shows the same situation with the system presenting the existing test cases for use in the search.
The source file the resultant code is to be placed in when

Any library jar files that might be needed to compile and
searching for a method.

test the resultant fragment.

* The name of the class and package where the resultant
code should appear.

* The set of imports that should be used for testing.

* Any user data files that are needed for the test programs
including the file contents and the path name as accessed
by the code.

Context-based search in S®is designed to work both with
the web interface and with Code Bubbles integration. For the
web interface we created an external application using JNLP
where the user interactively provided the information. While
this works, it is somewhat clumsy to use. The advantage of
embedding code search into the programming environment
starting with a stub method is that the environment knows the
appropriate context and can automatically generate it. The
target class and package is specified by the location of the
dummy method. The complete user code and libraries are
derived from the code and libraries needed for the user’s
project. While this might include more code and libraries
than is required, it is guaranteed to be complete. Extra data
files needed for the test case can be included using the appro-
priate button in the search dialog.

To support transforming the code from its original
context in open source code to the user’s given context, we
created additional transformations inside S°. These include:

* A context transformation that replaces types in the solu-
tion code found by search with types from the passed-in
context. For each reference to a class in the solution that
refers to a class in the solution package, the transforma-
tion attempts to find a corresponding user class. It first
constructs the set of fields and methods that are used in
the solution code for type to be replaced. Then it consid-
ers all classes in the user’s context that have methods and
fields with similar signatures. For each class in the user’s
context and each potential mapping of fields and methods
it constructs a new solution that uses the user class with
the given mapping. This transformation will also handle
the ‘this” argument to a non-static method, mapping calls
to other methods in the original class to possible methods
in the user’s context class.

* A generalization transformation that will generalize class
return and parameter values in the search result to stan-
dard Java classes accessible from the user’s context. For
example, this will replace a return type that is specific to
the solution routine with a generic type such as
java.lang.Object.

* A name transformation that handles name conflicts
between the original code and the user’s context by
replacing conflicting names in the solution code with new,
unique names.

» Transformations that build a new solution from an exist-
ing one by removing code that references undefined
classes or methods as long as that code is not part of a
return statement or is otherwise critical to the method.

The context is also used for testing. Here the solution
needs to be integrated into the user’s class and run the appro-
priate class and library binaries from the context. Any JUnit
tests from the context cited in the specification are also called
as part of the test.

Using these extensions we were able to successfully
perform context-based searches. For example, we can find a
new method for an existing class (e.g. a square root method
for an internal Complex class), and can find methods that
access existing object (e.g. a topological sort routine that
sorts objects in the user’s application). In addition we have
used the context to provide file-based test cases, for example
for testing file conversion routines.

V. REPORTING THE RESULTS

After generating the search request, the user interface
needs to wait for the search engine to compute the results.
Since this could take several minutes, it creates a yellow line
at the bottom of the search request box indicating that code
search is in progress. Once the search is finished, this is
replaced with a green line indicating that the search is fin-
ished and a new bubbles containing the results is created as
shown in the top of Figure 2.

The result is displayed using a bubble stack, a feature
that Code Bubbles typically uses to show the results of a text
or identifier search. Each element of the stack lists informa-
tion about one returned result, indicating the result’s source,
code size, and a list of the declarations that were returned.
The user can click on any of these entries and view the actual
code within the bubble stack as seen in the figure. The code
fragments can be dragged out into individual bubbles so that
the programmer can compare results to choose the preferred
one.

Right clicking on an expanded solution, either within or
outside the result bubble stack, gives the programmer two
options, either to view the license for the resultant code or to
use the code to replace the dummy method. Choosing replace
automatically replaces the stub code with the returned code
the programmer selected, adds any auxiliary definitions such
as needed fields or helper methods to the user’s class, and
formats all the additions. The result can be seen in the bottom
of Figure 2. Note that here the test cases now all pass.

VI. DISCUSSION

Our previous work Code Bubbles used two different
plug-in mechanisms, a traditional toaster-based plug-in with
callbacks and access to the user interface, and a message
based plug-in for communicating with Eclipse and with
external tools for version management, testing, code analysis,
and debugging. However, neither of these technologies was
sufficient for integrating code search. Instead, we had to
access code search as a web service. This forced us to define
a context for code search and to integrate that notion both
into Code Bubbles and S°.

In this work we demonstrated that it is possible to inte-
grate a sophisticated code search tool into a programming
environment so that the result seems relatively seamless to
the user. We have been using the integrated tool in place of
the standard web interface for those cases where we wanted
to do code search, but still don’t have enough experience to
fully evaluate the integrated tool.

There is still a considerable amount of work that is
needed to make this integration practical and complete. It first
needs to be extended to include searching for classes as well

- Debug
Feedback ~

HELP

il

Code Search for Record.roman Arabichumersl sConvertor =
Keywords : [roman numerals Size: 28 lines, 235 characters actual code E
Use Context: Declarations: static String[][JacAtoR=new String[][]
- public static String roman(nt orden
‘ Setup Context Data Files
AutoPageNumberUtils
iU Rion=: ‘TEST‘CASES Size: 32 lines, 204 characters actual code
ftest_roman_1(RecordTest Declarations: private static int i2rStringBuffer sbuffint i ...

public static String romangnt i

Size: 32 lines, 212 characters actual code
Declarations: private static int i2r@StringBuffer sbuff,int i ...
public static String roman{nt

PagelabelNode

Size: 78 lines, 261 characters actual code
Declarations: public static java.lang.String romandnt ny

1 [pee a
& * A convenience method to turn integers into Rof |
3 +* pumerals, for the generstion of page labels.
4|

5 publie static String roman(int nj{

L}

q

g

g

START SEARCH

boolean upperCase=true;
StringBuffer buf-new StringBuffer():

o I—— vhile (n >= 1000} {

Status State Class Test Name 5 z‘fzi:ﬁgfnd: Hts

SUCCESS [UP_TO_DATE |DijkstraComp... [test_compare 11 }

FAILURE |[UP_TO_DATE |RecordTest ftest_roman_1 15 if (n »= 900) |
1.3 buf. append(“CHT)
14 n-=900;
15 }
16 if (n >= 500) {
17 buf.appendi“D") ; =

i 1 cony ¢

an | [eenne | [can | [eom

-
Feedback ~
HELF
Code Search for Record.roman
Record>romant...) 2 1 Keywords : [roman numerals Size:
wy N =
public static Scring romanCint n) i Use Context: Declara
if (n <0 || n>= 4000) { | Setup Context Data Files |
Cl throw new java.lang.Error("
i Input Mode : | TEST_CASES [~]
String reman = ""; 3 pr
for (int ii = 0, len = —] itest_roman_1(RecordTesy &
Jlengch; i1 = len; ++Hi 3
= while (n == RUHJ\N_VN'_UES[_ & G
= n -= ROMAN_VALUES[1i1; = g
roman += ROMAN_STRINGS[ii]; ol
1 5 s
1 o 10 pu
return roman; o) 1l
12
13
b 14
RecordTest>test_roman_1(...) 15
B 16
5 'Test case Tor Recard.roman(int) START SEARCH i;
"/
R 3
@Test public void test_roman_1() 0
{ L. ok
Assert.assertEaua?s(")(VII",Record.mljm{f?ﬁ 22 |
¥ L 1 kil
Status State Class Test Name Size:
SUCCESS |UP_TO_DATE |DijkstraComp... [test_compare Dedara
SUCCESS |UP_TO_DATE |RecordTest test_roman_1
Size:
Dedara

Fig. 2. The top view shows the result of a code search, with bubble stack on the right containing the various results that were returned. Here the user has
selected on for further analysis. The bottom view shows the original code after choosing one of the results and using it to replace the original method.

as methods. This is more difficult both because class stubs changes to the context transformations within S° since these
and class test cases are more complex. It would also require have been designed and tested for methods and would be

inefficient in their current form if used for class transforma-
tions.

A second concern is that the underlying code search
engines used by S% are very sensitive to the proper choice of
keywords for the initial search. While taking keywords from
comments is a convenience, a better job needs to be done on
selecting appropriate words or phrases. Moreover, SO itself
needs to deal with this situation.

A third change that is needed is to determine a minimal
context, possibly splitting the context used for search from
that required for compiling and running the test cases. This
would make context-based search faster since it would
restrict the set of transformations that have to be considered.
The problem here is that what is minimal can be difficult to
define. We could just include those parts of the system that
are needed semantically by the enclosing class and any test
classes. (This is relatively easy to compute assuming that
Java reflection is not used.) However, this might be either too
large (you might not need all of the libraries or it other tests
in the test class and what they refer to), or it might be too
small since a successful transformation might require access
to code that is not currently used by the class.

ACKNOWLEDGEMENTS

This work is supported by the National Science Founda-
tion grant CCF1130822. Additional support has come from
Microsoft and Google.

REFERENCES

1. Sushil Bajracharya, Trung Ngo, Erik Linstead, Yimeng Dou, Paul Rigor,
Pierre Baldi, and Cristina Lopes, “Sourcerer: a search engine for open
source code supporting structure-based search,” Proceedings ACM
SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications 2006, pp. 682-682 (October 2006).

2. Andrew Begel, “Codifier: a programmer-centric search user interface,”
Workshop on Human-Coputer Interaction and Information Retrieval,
(October 2007).

3. Andrew Bragdon, Steven P. Reiss, Robert Zeleznik, Suman Karumuri,
William Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra,
and Joseph J. LaViola, Jr., “Code bubbles: rethinking the user interface

paradigm of integrated development environments,” International
Conference on Software Engineering 2010, pp. 455-464 (2010).
Andrew Bragdon, Steven P. Reiss, Robert Zeleznik, Suman Karumuri,
William Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra,
and Joseph J. LaViola, Jr., “Code bubbles: a working set-based interface
for code understanding and maintenance,” Proceedings SIGCHI
Conference on Human Factors in Computing Systems, pp. 2503-2512
(2010).

. E. Gamma and K. Beck, “Test infected: Programmers love writing tests,”

http://www.junit.org, (1998).

Raphael Hoffmann and James Fogarty, “Assieme: finding and leveraging
implicit references in a web search interface for programmers,”
Proceedings UIST 2007, pp. 13-22 (October 2007).

Reid Holmes and Gail C. Murphy, “Using structural context to
recommend source code examples,” International Conference on
Software Engineering 05, pp. 117-125 (May 2005).

Caitlin Kelleher and Randy Pausch, “Lowering the barriers to
programming: A taxonomy of programming environments and
languages for novice programmers,” ACM Computing Surveys Vol. 37(2)
pp. 83-137 (June 2005).

Andrew J. Ko, Htet Aung, and Brad A. Myers, “Eliciting design
requirements for maintenance-oriented IDEs: a detailed study of
corrective and perfective maintenance tasks,” Proceedings of the 27th
International Conference on Software Engineering, pp. 126-135 (2005).

. Otavio Lemos, Sushil Bajracharya, Joel Ossher, Ricardo Morla, Paulo

Masiero, Pierre Baldi, and Cristina Lopes, “CodeGenie: using test-cases
to search and reuse source code,” ASE *07, pp. 525-526 (November
2007).

. Otavio Lemos, Sushil Bajracharya, Joel Ossher, Paulo Masiero, and

Cristina Lopes, “Applying test-driven code search to the reuse of
auxiliary functionality,” Proceedings ACM Symposium on Applied
Computing, pp. 476-482 (2009).

. B. A. Meyers, A.J. Ko, M. J. Coblenz, and H. H. Aung, “An exploratory

study of how developers seek, relate, and collect relevant information
during software maintenance tasks,” IEEE Transactions on Software
Engineering Vol. 32(12) pp. 971-987 (2006).

. Steven P. Reiss, “Automatic code stylizing,” Proceedings ASE *07, pp.

74-83 (November 2007).

. Steven P. Reiss, “Semantics-based code search,” International

Conference on Software Engineering 2009, pp. 243-253 (May 2009).

. Steven P. Reiss, “Specifying what to search for,” Proceedings SUITE

2009, (May 2009).

. Steven P. Reiss, “Plugging in and into Code Bubbles,” Proceedings

Workshop on Developing Tools as Plug-ins 2012, pp. 55-60 (June
2012).

. Richard Snodgrass and Karen Shannon, “Supporting flexible and

efficient tool integration,” Proceedings International Workshop on
Advanced Programming Environments, pp. 290-313 (June 1985).

. Jesse Tilly and Eric M. Burke, Ant: The Definitive Guide, O’Reilly

(2002).

	Integrating S6 Code Search and Code Bubbles
	Steven P. Reiss
	Department of Computer Science Brown University Providence, RI. 02912 USA spr@cs.brown.edu
	Abstract
	Index Terms
	I. Introduction
	II. Plugging S6 into Code Bubbles
	III. The Search Request Interface
	Fig. 1. The user interface for Code Bubbles Code search. In the top figure, The window at the upper left is a stub of the routine to search for. The window at the lower right is the junit test case for this method. The window at the lower lef...

	IV. Context-Based Search
	V. Reporting The Results
	Fig. 2. The top view shows the result of a code search, with bubble stack on the right containing the various results that were returned. Here the user has selected on for further analysis. The bottom view shows the original code after choosi...

	VI. Discussion
	Acknowledgements
	References

