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Abstract
Most programming languages have been designed by com-
mi�ees or individuals. What happens if, instead, we throw
open the design process and let lots of programmers weigh in
on semantic choices? Will they avoid well-known mistakes
like dynamic scope? What do they expect of aliasing? What
kind of overloading behavior will they choose?

We investigate this issue by posing questions to program-
mers on Amazon Mechanical Turk. We examine several lan-
guage features, in each case using multiple-choice questions
to explore programmer preferences. We check the responses
for consensus (agreement between people) and consistency
(agreement across responses from one person). In general
we �nd low consistency and consensus, potential confusion
over mainstream features, and arguably poor design choices.
In short, this preliminary evidence does not argue in favor
of designing languages based on programmer preference.
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1 Introduction
Programming languages are clearly user interfaces: they
are how a programmer communicates their desires to the
computer. Programming language design is therefore a form
of user interface design.

�ere are many traditions in interface design, and in de-
sign in general. One divisor between these traditions is how
design decisions are made. Sometimes, decisions are made
by a small number of opinionated designers (think Apple).
�ese have parallels in programming language design, from
individual designers to small commi�ees, and this is even
codi�ed in (uno�cial) titles likes Benevolent Dictator for Life.
∗Last name is “Tunnell Wilson” (index under “T”).
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(Community input processes are clearly a hybrid, but at best
they only suggest changes, which must then be approved by
“the designers”.)

�ere are fewer examples of language design conducted
through extensive user studies and user input, though there
are a few noteworthy examples that we discuss in section 11.
None of these addresses comprehensive, general-purpose
languages. Furthermore, many of these results focus on
syntax, but relatively li�le on the semantics, which is at least
as important as syntax, even for beginners [11, 31].

In this paper, we assess the feasibility of designing a lan-
guage to match the expectations and desires of programmers.
Concretely, we pose a series of questions on Amazon Me-
chanical Turk (MTurk) to people with programming experi-
ence to explore the kinds of behaviors programmers would
want to see. Our hope is to �nd one or both of:

Consistency For related questions, individuals answer
the same way.

Consensus Across individuals, we �nd similar answers.

Neither one strictly implies the other. Each individual could
be internally consistent, but di�erent people may wildly
disagree on what they expect. At the other extreme, people
might not be internally consistent at all, but everyone may
agree in their (inconsistent) expectations.

Both properties have consequences for language design.
If people generate consensus without consistency, we can
still �t a language to their desires, though the language may
be unpredictable in surprising ways. On the other hand,
if people are internally consistent even though they don’t
agree with each other, we could imagine creating “personal-
ized” languages (using a mechanism like Racket’s #lang [9]),
though the resulting languages would be confusing to peo-
ple who don’t share their views. (�is is already slightly the
case: e.g., numerous scripting languages are super�cially
similar but have many subtle semantic di�erences.) In an
ideal world, people are both consistent and arrive at a con-
sensus, in which case we could �t a language to their views
and the language would likely have predictable behavior.

As Be�eridge’s Law implies [1], we do not live in that
world. Indeed, what we �nd is that in general, programmers
exhibit neither consistency nor consensus. Naturally, however,
this paper is only an initial salvo and the topic requires much
more exploration.

Methodology We conducted surveys on MTurk, each fo-
cusing on a language feature. Most of these surveys were
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open for a week; we kept a few open longer to get enough re-
sponses. We focused on mainstream features found in most
languages. �e tasks asked for previous programming expe-
rience, sometimes experience with that speci�c feature (like
object-oriented programming), and asked people to report
on their programming experience. �ose who did not list
any experience were eliminated from the data analysis (as
were duplicate respondents). We considered their responses
invalid and all others valid.

For each feature we asked respondents—called workers or
Turkers—to tell us what they thought “a NEW programming
language would produce”. We then presented a series of
programs with multiple choices for the expected output of
each one. (Each question also asked if they would want a
di�erent answer, but workers rarely selected this option, so
we don’t discuss it further.) For the programs, we purposely
used a syntax that was reminiscent of existing languages,
but not identical to any particular one. Every question also
allowed “Error” and “Other”. All respondents were required
to give their reasoning behind their chosen answer; those
who picked Error and Other were also asked to state their
expectation. In the data analysis, for simplicity we binned
all Error answers together, and likewise all Other responses
(even though this makes our measures look higher than they
really are).

Our discussion will also be presented by language feature.

2 Structure of the Data Analysis
In this section we describe our methods and how we will
organize the results. All the questions in one section (with
one exception: section 8.2) were answered by the same set of
workers, but no a�empt was made to solicit the same workers
across sections. �e �nal paper will be accompanied by a
link to the full questions and data sets.

2.1 Comparisons
Within each section, we will compute consensus and consis-
tency for small groups of related questions. We furthermore
visualize these measurements as well as the spread of data
for most question comparisons.

Summary Tables When comparing answers to just two
questions, we will summarize the results in a table. However,
for comparisons between three (or more) questions, instead
of showing an unwieldy n-dimensional table, we show a
cluster tree [16], as described below.

Cluster Trees As an illustrative example of clustering, sup-
pose that there were three questions, and workers fell into
two camps, with the �rst camp always answering “1, 2, 3”,
and the second camp answering “1, 4, 5”. �is produces the
following cluster tree:
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�e height of the point at which subtrees join gives the
average distance between the responses found in the subtrees,
where the distance between two responses is the fraction
of answers on which they di�er (i.e., normalized Hamming
distance [13]). In this case, within each cluster the responses
do not di�er at all, so each cluster is joined at height 0. Be-
tween the two clusters, responses always di�er in 2 out of 3
answers, so they join at height 2/3. (We have been unable
to get our package to always show the full y-axis, i.e., to
height 1; sorry.) On the other hand, say everyone chose their
answers uniformly at random; the cluster tree might be:1
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�e cluster trees we �nd for our programming surveys
show weak clustering, but there are two incidental factors
that may contribute to this. First, these trees are sensitive
to the number of questions. When there are few questions
(some of ours had fewer than 5), the height exaggerates dis-
agreement. Second, we purposely asked questions with the
potential for disagreement: there are plenty of straightfor-
ward programs whose behavior is uncontroversial, but they
wouldn’t make useful survey questions for that very reason.

We give a more technical description of our cluster trees
in appendix A.2.

Consensus Consensus is how much workers give the same
answers as each other. We measure it in two ways. First, we
give the simple agreement probability p̄. �is is the proba-
bility that two random workers answered a random ques-
tion the same way as each other. However, it is well un-
derstood [6] that p̄ overstates agreement, because it does
not account for the fact that some agreement may be due to
1 More precisely, we plo�ed answers chosen uniformly at random to 8
questions, each with 3 possible answers. �ese numbers were chosen to be
representative of our surveys.
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chance. It is therefore standard to use an inter-coder reliabil-
ity metric that accounts for chance. We thus also report a
metric called free-marginal κ [30], herea�er simply κ. �is
is the level of agreement above chance, where “chance” is
calculated assuming that for each question, each answer
is equally likely to be chosen. κ scores range from −1 to 1,
with negative scores representing less agreement than would
be expected by chance, 0 representing plain chance, and 1
representing perfect agreement.

�e assumption that all answers are equi-probable is un-
realistic, so κ scores may show higher agreement than they
should (though never lower). Unfortunately, we are unaware
of a more appropriate metric of agreement. �e notable al-
ternative is Fleiss’ κ score [10] (a generalization of Cohen’s
κ). Fleiss’ κ is not applicable for many of our uses, however,
because it requires that each question have the same set of
possible answers. Fortunately, we will typically be highlight-
ing how low the agreement scores are, so free-marginal κ is
the conservative direction to err in. We discuss our choice
of agreement measures further in appendix A.1.

Consistency Consensus measured how o�en workers an-
swered a question the same way as each other. Consistency,
on the other hand, measures how o�en workers gave what
we consider to be consistent answers to a set of questions.
For example, we asked what the programs "5" + 2 and
2 + "5" should produce, and we judged that the answers
ought to be the same, even though in some languages they
are di�erent.

Similar to consensus, we report for consistency both p̄
and (free-marginal) κ. When comparing answers to two
questions, p̄ for consistency will typically be the sum along
the diagonal. In addition, when we provide a consistency
score, we will always describe what we took to be consistent
responses. Unlike with consensus, which is a pure measure-
ment, here there is room for readers to disagree with our
choices; other choices could result in di�erent scores.

2.2 Overviews
Beyond looking at consensus and consistency for small sets
of questions, there is also information to be gleaned by look-
ing at workers’ overall responses to a survey. O�en, clusters
of workers can be found who appear to have similar expec-
tations. To explore this, we perform hierarchical clustering
analysis on the responses, plot the results as a tree, and label
some of the clusters we have found.

Additionally, sometimes Turkers’ expectations are at odds
with well-established language behaviors such as lexical
scope. When they are, their expectations can be classi�ed
as misconceptions. We will call out these cases. �ere is a
long history of literature on misconceptions that students
encounter when programming (Sorva [32, pg. 29] provides

a detailed summary). We con�rm some known misconcep-
tions here, and discover some new and unusual programmer
expectations.

With this explanation, we can now begin our study of
various language features.

3 Binding and Scope
We surveyed Turkers on their expectations of scope and
parameter passing. We obtained 56 valid responses.

3.1 Dynamic Scope
We begin by examining the following two programs and
comparing them. Both access identi�ers outside their static
scope, but in slightly di�erent ways. In a statically-scoped
language, both should produce an error.

1 func f():

2 a = 14

3 func g():

4 a = 12

5
6 f()

7 g()

8 print(a)

1 func f():

2 d = 32

3 return g()

4
5 func g():

6 return d + 3

7
8 print(f())

print(f())
print(a) 3 32 35 Error Other
12 0.0% 0.0% 28.6% 19.6% 0.0%
14 1.8% 1.8% 1.8% 0.0% 0.0%
26 0.0% 3.6% 7.1% 1.8% 1.8%
Error 1.8% 1.8% 7.1% 16.1% 1.8%
Other 1.8% 0.0% 0.0% 1.8% 0.0%

Sadly, the majority of Turkers expected some form of dy-
namic scope. Of course, it is impossible to be sure from these
studies what mental model they had of binding based on this
syntax (e.g., perhaps they assumed that all variables were
global and = only performed assignment, or that assignment
to undeclared variables li�ed those variables to an outer
scope). We were aware of these issues and ambiguities but
nevertheless used this syntax since it is common to many
popular languages that loosely have static scope. Some an-
swers are particularly inexplicable, such as the 19.6% who
chose (12, Error): why not pick Error for both? Perhaps they
thought that a function’s local variables should be available
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globally, but not from within other functions? Observe that
only 16.1% chose (Error, Error).

Consensus We obtained a consensus of p̄: 0.339; κ: 0.174.

Consistency For consistency, we binned answers into ·
accessing another function’s variables, · error, and · other,
for both of these questions. We obtain p̄: 0.536; κ: 0.304.

3.2 Accessing Formal Parameters
�e next pair of questions asks Turkers whether the pro-
gram has access to formal parameters outside a function.
�ese questions are similar to the previous ones, but focus
on formal parameters, which are arguably even more clearly
“scoped”, a perception borne out by the data. Still, only 39.3%
chose (Error, Error).

1 func f(b):

2 c = 8

3 return c + 5

4
5 f(4)

6 print(b)

1 func f(e):

2 return e + 5

3
4 func g(e):

5 return e * 2

6
7 f(7)

8 g(3)

9 print(e)

print(e)
print(b) 3 6 7 10 24 Error Other
4 5.4% 0.0% 0.0% 0.0% 0.0% 0.0% 3.6%
8 0.0% 0.0% 0.0% 0.0% 1.8% 0.0% 0.0%
13 1.8% 5.4% 1.8% 1.8% 0.0% 17.9% 7.1%
17 0.0% 0.0% 0.0% 1.8% 3.6% 0.0% 0.0%
Error 0.0% 0.0% 1.8% 0.0% 0.0% 39.3% 1.8%
Other 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 5.4%

Consensus We calculated a consensus of p̄: 0.337; κ: 0.223.
�is low score can be seen in the two largest clusters of 39.3%
and 17.9% while the rest of the groups consist of at most 7.1%.

Consistency We binned answers into · the actual argument
value, · the return value, · error, and · other. We obtain a
consistency of p̄: 0.625; κ: 0.5.

3.3 Variable Shadowing
�e following question tests whether functions have separate
bindings from top-level scope:

1 o = 3

2 func f():

3 o = 27

4
5 func g():

6 o = 11

7
8 f()

9 g()

10 print(o)

print(o)
3 11 27 38 Error Other

28.6% 53.6% 1.8% 5.4% 8.9% 1.8%
�e 11 answer corresponds to the top-level o being the o
mutated in the functions. �e 3 answer corresponds to in-
troducing new bindings within each function scope.

Consensus We report a consensus of p̄: 0.369; κ: 0.243. As
there is no question to compare this to, there is no consis-
tency to report.

3.4 Clustering All Responses
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�e split between the “A” and “B” clusters was entirely due
to the program in section 3.3. �e workers in the “A” cluster
all expected this program to produce 11. �e workers in
the “B” cluster all expected 3. �e remaining workers did
not have a majority opinion on this question. Workers in
both “A” and “B” were split on whether the �rst program in
section 3.1 would error or not.

4 Single Inheritance
We measured how workers expected �eld and method access
to work in the presence of single inheritance. We prefaced
the questions with a quick primer for classes in our made-up
language and with class de�nitions common to the programs.
We had 48 valid responses.
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ac.f()
ac.x 3 30 33 60 300 330 Error Other
3 4.2% 2.1% 0.0% 0.0% 2.1% 2.1% 0.0% 2.1%
6 0.0% 0.0% 0.0% 2.1% 0.0% 0.0% 0.0% 0.0%
300 2.1% 18.8% 0.0% 0.0% 43.8% 0.0% 2.1% 2.1%
303 0.0% 0.0% 0.0% 2.1% 0.0% 0.0% 0.0% 0.0%
330 0.0% 0.0% 0.0% 0.0% 0.0% 2.1% 0.0% 0.0%
333 2.1% 0.0% 2.1% 0.0% 0.0% 0.0% 0.0% 0.0%
Error 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 6.2% 0.0%
Other 2.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Table 1. Comparison of Inheritance Answers

4.1 Comparing Field and Method Access

1 class A:

2 Int x = 3

3 Int f():

4 return x

5 Int g():

6 return x + f()

7
8 class B extends A:

9 Int x = 30

10 Int f():

11 return x

12
13 class C extends B:

14 Int x = 300

15 Int g():

16 return x + f()

Given this preface, we asked for the output for each of:

1 A ac = C()

2 print(ac.x)

1 A ac = C()

2 print(ac.f())

�e results of these questions are shown in table 1. Notice
that only one person (2.1%) expected these programs to be-
have as Java would (3 and 30, respectively). We also had a
third question:

1 A ac = C()

2 print(ac.g())

No worker answered all three questions consistent with
Java’s semantics.
Consensus We report a consensus of p̄: 0.373; κ: 0.316. We
do not report consistency as �eld and method access are
two separate semantic concepts and Java itself does not treat
them consistently.

4.2 Clustering All Responses
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�e “A” cluster expected ac.f() to produce 30 (Java’s an-
swer). �e “B” cluster expected it to produce 300, which
corresponds to giving ac the type C instead of A. Both clus-
ters “A” and “B” expected ac.x to produce 300 and ac.g()
to produce the sum of these two.

“B”s answers are what we would get from translating into
Python, which would necessarily leave out the type annota-
tion A on ac. �us, maybe workers simply failed to notice the
annotation. We therefore posted another typed inheritance
study, this one using two variables, one declared to have
type A and the other C. �is led 20% to conclude that anno-
tating with A was an error. �is outcome was independent
of whether they listed having Java experience.

It is worth noting that not a single worker expected Java’s
behavior across all the questions. We were curious to see
how similar but newer languages like C# and Kotlin fare.
C# also goes against Turkers’ expectations: �eld lookup
behaves similarly to Java, and method access either gets
the “highest” or “lowest” method, depending on whether the
superclass’s method is declared with new or virtual. Kotlin,
in contrast, behaves according the the majority of workers’
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expectations—the �elds and methods of the “lowest” class
are accessed.2

5 Records and Fields
We posed questions to Turkers about object aliasing and
dynamic �eld lookup. We received 64 valid responses.

5.1 Object Aliasing
We created programs both in conventional �eld access syn-
tax (record.field) and in one conducive to dynamic �eld
access (record["field"]). We can compare between these
two syntaxes as a way to validate that workers interpreted
them the same way. We did not ask Turkers whether they
preferred one over the other.

We compare answers to the following three questions to
explore workers’ expectations on aliasing:

1 func f(d):

2 d.name = "Batman"

3 c = {"name": "Bruce Wayne", "allowance ": 2000}

4 f(c)

5 print(c.name)

1 func f(e):

2 e["type"] = "cocoon"

3
4 h = {"name": "Winky", "type": "caterpillar "}

5 f(h)

6 print(h["type "])

1 func f(k):

2 day = "day"

3 k["birth" + day] = "today"

4
5 l = {"name": "Liam", "birthday ": "tomorrow "}

6 f(l)

7 print(l[" birthday "])

2�is opens up a potential type soundness issue: if a subclass overrides a
�elds with a subtype of the original �eld’s type, then assigning to the �eld
using the superclass could violate the �eld’s type signature in the subclass.
Kotlin avoids this issue by not allowing a mutable �eld to be overridden
with a subtype.
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About 30% of workers (cluster “B”) expected aliasing while
another 30% (cluster “A”) expected no aliasing (potentially
using a pass-by-copy semantics). �e remaining workers did
not have consistent expectations.

Consensus We report a consensus of p̄: 0.410; κ: 0.230.

Consistency We report a consistency of p̄: 0.743; κ: 0.679
for binning answers into · nothing, · object aliasing, · no
object aliasing, · error, and · other. �ough workers might
have been split on whether object aliasing occurs naturally or
not, few workers changed their opinion between the di�erent
syntactical versions of this question. However, despite our
instructions on the equivalence of the two syntaxes, some
workers thought the [] form should error as these records
were not arrays. (We also tried this study with parenthetical
�eld access syntax, but this was confused with function calls.)

5.2 Dynamic Field Lookup
For these questions, we asked what record["brick" +
"house"] (or record["dog" + "house"] for one question)
should produce while varying the �elds available in record.

1 s = {" doghouse ": "red", "maker": "Brydon "}

2 print(s["dog" + "house "])

1 w = {"brick": 3, "house": 5}

2 print(w["brick" + "house "])

1 v = {"brick": 1, "house": 4, "brickhouse ": 2}

2 print(v["brick" + "house "])
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�e workers in the “B” cluster evaluated the �eld-access
expression, and then accessed the �eld of that name (if it ex-
isted). �e “A” cluster was more interesting: they distributed
the operation across the �elds, thus choosing the answers 8
and 5 (by adding the values together).

Consensus We report a consensus over these three ques-
tions of p̄: 0.351; κ: 0.153.

Consistency If we consider the A cluster to all be consis-
tent, and similarly the B cluster, we obtain a consistency
of p̄: .785; κ: 0.677 (these bins are · the distributed �elds, ·
the evaluated �eld expression value, and · other ). We can
also check whether workers use the same operation (8 and
5 versus 35 and 14) when distributing. �e corresponding
bins are · adding the distributed �eld values, · concatenating
the distributed �eld values, · evaluating the �eld expression
value then looking up the �eld, and · other. �is yields p̄:
0.833; κ: 0.778.

5.3 Clustering All Responses
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�e grouping on the le� tended to expect no object aliasing
while the grouping on the right thought aliasing occurs.
Interestingly, most of the workers on the right evaluated the
�eld-access expression �rst and then looked up the value;

the workers in the le� group were split on these questions
but tended to distribute. In short, the right group followed
conventional language behavior, but the le� group did not.

6 Boolean Coercion
We explored which values workers �nd “truthy” and “falsy”.
�e basic format of these questions is:

1 if (0) {

2 print("blue pill")

3 } else {

4 print("red pill")

5 }

substituting other values for 0. For each question, the only
possible answers are: blue pill (corresponding to the value
coercing to true), red pill (meaning the value coerced to
false), and (as always) “Error” and “Other”.

We questioned Turkers on numbers, strings, and empty
data structures, and received 56 valid responses. As there
are consistency issues with numbers and strings, we delay
discussing it until a�er comparing empty data structures.

6.1 Empty Aggregates: "", [], {}
We consider the responses for "", [], and {}. �e survey
explained that [] means an empty list and {}means an empty
object. We obtain the following cluster tree:
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Each of the four largest clusters thought that these values
should all behave the same way. Cluster “B” thought that
each of these expressions should error in the test expression
position of a conditional; cluster “D” believed they should
all be falsy; cluster “A” picked Other for each; and cluster “C”
believed they should all be truthy.

Consensus No single cluster has a majority of workers, so
we obtain low consensus scores of p̄: 0.275; κ: -0.033.

Consistency "", [], and {} are all empty aggregates: of
characters, list elements, or �eld values, respectively. It is
therefore plausible that they should all be treated identically
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as boolean conditionals, and in fact Turkers largely agree.
Binning answers into · true, · false, · error, and · other, we
get a consistency of p̄: 0.726; κ: 0.635.

6.2 �e Remaining�estions
�e rest of the truthy/falsy questions we asked were essen-
tially independent of one another, so we simply report how
many workers believed each value to be truthy/falsy/etc.:

�estion truthy falsy Error Other
0 19.6% 48.2% 8.9% 23.2%
15 37.5% 23.2% 19.6% 19.6%
"-1" 21.4% 28.6% 32.1% 17.9%
NaN 12.5% 30.4% 30.4% 26.8%
"0" 25.0% 30.4% 25.0% 19.6%
nil 14.3% 37.5% 25.0% 23.2%
true 51.8% 14.3% 7.1% 26.8%

Notably, workers expected 0—more than any other value—
to be falsy, likely from a boolean interpretation of 0 and 1
(as in C).

�e number of people who picked Other is uncommonly
high for this survey. �e majority of these workers reported
that they did not expect to see just a constant in the predi-
cate position, and (in e�ect) expected to see an expression
that included an explicit comparison operator. �is may
be a consequence of many traditional computing curricula,
which do not usually show a raw constant in the predicate
position, nor use a reduction semantics [7], which would
force a learner to confront this possibility.

In response to this, we sent out another survey with a
variable assigned to the constant we wanted to test, and
the variable placed in the predicate position. �is did not
remove the original problem entirely (some workers still
expected a comparison), and introduced new di�culties due
to a variable being in the predicate position (some workers
thought the conditional would evaluate to true if the variable
inside of it were assigned to anything at all).

Interestingly, 14.3% of workers expected true to be falsy.
�ese workers had similar reasoning as those who picked
Other. �ey gave one of two explanations: (i) since there was
no input to this comparison, the conditional would default
to false; or (ii) they expected that an implicit input was being
compared to true, and that this implicit input would most
likely be false.

6.3 Clustering All Responses
�e full set of 10 questions tested the truthiness of:

true, 0, "", NaN, nil, "0", "-1", [], {}, 15

We obtained the cluster tree:
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Only eight workers agreed with anyone else for all questions—
everyone else answered distinctly. Generally, the workers in
the le� area picked Other for most values, those in the middle
area picked true or false for a majority of questions, and
those in the right area picked Error. �e overall consensus
was correspondingly low: p̄: 0.278; κ: 0.036.

7 Numbers
We received 60 valid responses to questions about numbers.
We asked three questions, one of which was free-response,
so we leave it out of the comparisons below.

Precision
We asked workers to tell us what they expected the programs

1 1 / 3

and

1 2.5 + 2.125

to produce, with answers that explored a variety of options
of precision and presentation. �eir answers were as follows:

2.5 + 2.125
1 / 3 4.6 4.625 Error
0 0.0% 10.0% 0.0%
0.3 3.3% 5.0% 0.0%
0.333 0.0% 8.3% 1.7%
0.3333333333333 0.0% 31.7% 0.0%
0.3333. . . 0.0% 20.0% 0.0%
0.3̄ 0.0% 11.7% 0.0%
1/3 0.0% 3.3% 0.0%
NaN 0.0% 1.7% 0.0%
Error 0.0% 1.7% 0.0%
Other 0.0% 1.7% 0.0%

(�e second program had additional answers, such as 4 and
5, which nobody picked.)
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Consensus We obtain a consensus of p̄: 0.536; κ: 0.467.
Virtually every worker expected the answer to the second
program to be precise, but for the �rst program fewer chose
any of the precise answers, and they were furthermore split
on the preferred output, resulting in a lower overall consen-
sus score.

Consistency We looked for consistency across the ques-
tions in choosing precise answers: this means binning to-
gether the several precise representations for the �rst ques-
tion (e.g., 1/3 with 0.3̄). �us, the bins are · precise, · not
precise, · error, and · other. �is resulted in a score of p̄:
0.383; κ: 0.248, which is not very high.

However, this classi�cation con�ates two issues. One
is the internal representation of the quotient, the other is
what the computer will output [33]. Many of the workers
who picked 0.3333333333333 mentioned that the computer
would truncate the display. Only three (out of 19) mentioned
anything about �oating point numbers. �us, if we instead
code 0.3333333333333 as precise in the classi�cation above,
we obtain a consistency of p̄: 0.700; κ: 0.630.

8 Number and String Operations
We now move on to common binary operations with num-
bers and strings as operands. We asked 12 questions, and
received 45 valid responses.

We constructed most of these questions in analogous pairs.
We give the consensus and consistency scores for each ques-
tion pair below, and will describe the consistency bins next:3

Consensus Consistency
�estion1 �estion2 p̄ κ p̄ κ

"5" + 2 2 + "5" 0.232 0.122 0.933 0.924
3 * "4" "4" * 3 0.224 0.138 0.822 0.802
"123"-"3" "123"-"2" 0.209 0.121 0.911 0.898
"xyz"-"z" "xyz"-"y" 0.352 0.223 0.911 0.893
"1234"/4 "XXXX"/4 0.358 0.269 0.622 0.528

Workers were generally consistent on each question pair.
�ere were a large number of bins, but most workers fell
into just these few:

+ · error, · addition (converting strings to numbers as
necessary), and · string concatenation

- · error, · subtraction, and · removal of the right operand
from the le�

* · error, · string repetition, · multiplication (converting
strings to numbers, and producing a number), and ·
multiplication (converting strings to numbers, and
producing a string)

/ · error, · producing the �rst character of the le� operand,
and · producing NaN

3 �e subtraction and division questions had space around the operator; we
omit it here for space.

8.1 Clustering All Responses
Beyond the questions described above, we also asked work-
ers their expectations on "6" + "7" and "8" * "2". �e
overall cluster tree is:
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�e “A” cluster is characterized by expecting a majority of
the operations to error. �e “B” cluster expected almost all
operations to produce some value.

8.2 Type Annotations
�e content here was actually part of the types survey (sec-
tion 9), so we do not include its responses in the clustering
above. We provided the following question:

1 x: String = "5"

2 y: Int = 3

3 print(x + y)

We include it here to see what e�ect including type anno-
tations has on producing a value or an Error. Without type
annotations, 33% of workers expected this program to error.
With type annotations, 41% of workers expected it to error.
�is di�erence is not statistically signi�cant (two-sample
t-test, p-value = 0.458). Interestingly, a larger percentage of
workers in the Types survey than workers in the Number and
String Operations survey expected string concatenation to
occur: 36% vs 13%. �is di�erence is statistically signi�cant
(two-sample t-test, p-value = 0.008).

9 Types
We ask Turkers whether the argument to a function can be
of a di�erent type than the formal parameter, and whether
an error is produced when incompatible types are used in
an operation. We also probed their expectations of what are
commonly run-time errors. We have 49 valid responses.

9.1 Re-Assignment or Re-Binding
We reassigned a variable to a value of a di�erent type. How-
ever, we used the conventional = syntax, which can be in-
terpreted as either assignment or (re-)binding. We used two
variants, distinguished only by a type annotation, to see
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whether their interpretation of = was changed by the anno-
tation:

1 x: Number = 3

2 x = "hello"

3 print(x)

1 x: Number = 3

2 x: String = "hello"

3 print(x)

x: String = "hello"
x = "hello" 3 hello Error Other
3 0.0% 2.0% 0.0% 0.0%
hello 4.1% 22.4% 4.1% 0.0%
Error 0.0% 36.7% 26.5% 2.0%
Other 0.0% 0.0% 2.0% 0.0%

�e 36.7% group suggests that the type annotation made
a di�erence. �e workers in this group explained: that the
variable was re-declared as a string; that its type was changed
to be a string; that it was reassigned to be a string variable;
or that a new variable was declared.

Consensus We obtained a consensus of p̄: 0.492; κ: 0.323.
�is low agreement is due to the three large groupings of
responses.

Consistency We consider two possible ways to be consis-
tent. It’s certainly consistent to report Error in both cases.
We bin answers into · the original value, · the mutated value,
· error, and · other. �is obtains p̄ 0.490; κ: 0.320. We are also
willing to consider that the annotation makes the second
program legal, making Error and hello consistent. As these
two are now consistent, we can only bin answers into · the
original value, · type annotation makes the second program
valid, and · other. �is scores p̄: 0.429; κ: 0.143.

9.2 Incorrect Argument Types
We now examine expectations when actual arguments do
not match the formal ones.

1 func f(s: String) -> Number :

2 12 / s

3 print(f(2))

1 func f(i: Number ):

2 print(i + 1)

3
4 f("one")

1 func f(s: Number) -> Number :

2 return 12 / s

3 print(f("4"))
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One might expect that Turkers are more likely to think these
programs error because the type is explicitly mentioned in
the function header. �is is in contrast to binary operators,
which are o�en overloaded.

Indeed, the large “A” cluster contains those workers who
expected the majority of these programs to error. �e inner
“B” cluster contains those workers who expected every one
of these programs to error. �e “C” cluster contains the
workers who expected these programs to produce a value,
except for three workers in the middle, who expected the
�rst program to error.

Consensus We report p̄: 0.505; κ: 0.367. Again, this can be
a�ributed to the number of workers who expected all three
programs to error.

Consistency We use a coarse form of consistency: ·whether
these programs are expected to error or · not or · other. With
that loose expectation, we report p̄ 0.755; κ: 0.633.

9.3 Clustering All Responses
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�e large “A” cluster contains workers who thought that
the majority of programs should error while the remaining
workers, in “B”, thought that the majority of these programs
should produce a value.
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9.4 Runtime Error
To check whether workers who didn’t expect annotation
errors would expect any errors at all, we included a question
that would result in an out-of-bounds error.

1 func getFifthElement(a: Array) -> Int :

2 return a[5]

3
4 v: Array = [1, 4, 9]

5 print(getFifthElement(v))

About 82% of workers expected the program to error. One
worker picked 4; three workers picked 9. None of these
workers had a helpful explanation. Five workers picked
“Other.” Two of the �ve gave clear explanations. One said
that it should error, but mentioned that Array is “not further
typed as a general container.” �e other worker expected
it to return null. (In an earlier version of this study, one
respondent picked the answer 9 because they counted the
commas as elements. . . )

9.5 Strictly Typed vs Scripting Languages
We also asked these Turkers whether they preferred “strong-
ly/static typed languages” or “scripting languages”. Eighteen
responded that they preferred scripting languages while 31
responded that they preferred typed languages.

We correlated these preferences against whether the work-
ers ended up in clusters “A” and “B” (which roughly corre-
spond, respectively, to “typed” and “scripting” responses).
We obtained a Pearson’s correlation of 0.210, which is—
curiously—only a slight correlation.

10 Closures and Lambdas
�is survey began by showing an example of how we use
lambdas in this language. We received 49 valid responses.

10.1 Top-Level State
We �rst consider how closures interact with top-level state.

1 z = 5

2 f = lambda(x): return x + z end

3 z = 3

4 print(f(2))

1 f = lambda(y): return y * b end

2 b = 10

3 print(f(3))

�ese programs resulted in table 2.

Consensus We report p̄: 0.579; κ: 0.484.

Consistency We consider the answers 5 and 30 consistent
(the same behavior as a language like Scheme). We also
consider 7 and Error to be consistent. Binning all other
values as having some other semantic model (resulting in
bins of · Scheme-like, · closing over the store, and · other),
we obtained a consistency of p̄: 0.714; κ: 0.571.

print(f(3))
print(f(2)) 3 30 Error Other
5 0.0% 65.3% 2.0% 0.0%
7 2.0% 6.1% 4.1% 2.0%
10 0.0% 4.1% 0.0% 0.0%
Error 0.0% 6.1% 6.1% 0.0%
Other 2.0% 0.0% 0.0% 0.0%

Table 2. Comparison of Top-Level State Answers

10.2 Local Bindings
We next explored Turkers’ expectations of nested scopes and
lambdas.

1 func make_lambda ():

2 h = 2

3 return lambda(x): return x - h end

4
5 h = 13

6 f = make_lambda ()

7 print(f(20))

print(f(20))
5 7 18 Error Other

2.0% 18.4% 44.9% 26.5% 8.2%

A surprising number of workers expected make lambda
to error. Four out of these 13 workers thought that f was the
same function as make lambda, and were therefore confused
to see a parameter (20) being passed. �ree workers com-
plained that the variable x wasn’t de�ned. �e remaining
workers did not have helpful explanations.

Consensus We report p̄: 0.298; κ: 0.123. As this is a singu-
lar question, we do not report consistency.

10.3 Closure Creation

1 func hello(name):

2 return lambda (): print("Hello , " + name) end

3
4 hiJ = hello("Jack")

5 hiP = hello("Peter")

6 hiJ()

Answer Percentage
Jack 4.1%
Hello, Jack 67.3%
Hello, JackPeter 2.0%
Hello, JackHello, Peter 16.3%
Error 8.2%
Other 2.0%
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Fortunately, two-thirds of workers correctly understood how
closures should work. Unfortunately, one-sixth thought that
the print statement was invoked twice.

Consensus We report a consensus of p̄: 0.479; κ: 0.414.
Again, there is no question to compare this question to, so
there is no consistency to calculate.

10.4 Clustering All Responses
We cluster all questions over all workers.
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�e “A” and “B” clusters are split on make lambda. �ose
in “A” expected either 7 or Error while the workers in “B”
expected 18. �e remaining workers usually only di�ered
by one question.

11 Related Work
Several languages have been designed around user studies.
Most of these have focused on novice programmers. For
instance, LOGO’s turtle geometry was based on systems
that children could handle [29]; the natural programming
project [28] conducted studies of child programmers to drive
the language’s design; and Python’s predecessor, ABC [27],
was designed to be easy to learn for beginners. In contrast,
we do not limit ourselves to beginner features.

Other research has focused on more speci�c topics: �o-
rum’s [34] syntax is based on user studies; Hanenberg and
others have studied speci�c language features [18, 24, 36];
and there have been several studies of programming envi-
ronments and tools [19, 22] that end up having at least some
impact on language design itself. Our studies, on the other
hand, focus on overall language design, and in particular on
semantic, rather than syntactic features.

Miller et al. [25] describe how to use programmers’ ex-
pectations to drive language design. �ey observe that the
semantics of a language as designed, as implemented, and
as understood by users tend to all be distinct. �ey improve
Yedalog by making its speci�cation more similar to its users’
expectations. �eir observations about users are somewhat
similar to ours. A major di�erence is that they are focused
on improving one particular feature of an existing language,

whereas we are looking at a wide range of language features
to identify a holistic language design in the process.

Kaijanaho proposes using results from research papers
to design programming languages [15] and o�ers a useful
critique on using Cohen’s κ in these kinds of studies. His
recommendations, which include Fleiss’ κ, all su�er from
the problem outlined at the beginning of this paper—namely,
they all assume that each question has the same set of possi-
ble answers.

�ere have also been many studies of student learning and
misconceptions [2, 4, 31] that have the potential to impact
language design. See Sorva [32, pg. 29] for an overview. Our
surveys have a similar format of questions and choices of
answers (corresponding to common interpretations). We
too have found a number of problematic expectations that
programmers hold (section 13). However, there are three
major di�erences between that literature and this paper:

• �ose papers almost uniquely focus on a certain de�-
nition of introductory programming classes. In con-
trast, MTurk workers are required to be adults (18
and older) and many are working professionals.

• Corresponding to the focus, those papers examine a
narrow set of features, such as variables, loops, and
function calls. Our work extends beyond this set in
both directions, to more advanced features such as
the interaction between inheritance and types, and
to features taken for granted, like numbers. Similarly,
we are also more focused on some of the edge cases
of language behavior, which introductory courses
would usually not cover and hence not test.
• Finally, there is a major di�erence in goals. �at work

is a�empting to study whether programmers under-
stand the semantics of the languages they work with.
In contrast, we did not start with any �xed language,
and instead wanted to explore what workers would
want their languages to do. �is results in a fairly
di�erent set of actual questions.

Nevertheless, we were able to reproduce some of those �nd-
ings, such as Fleury’s observation that novices expected
functions to fall back on dynamic scope when a variable was
otherwise unbound [11] (section 3.1).

�ere has been some work on crowdsourcing program-
ming environments as well. For instance, Hartmann et al.
develop a system that recommends bug �xes based on cor-
rections that peers have made [14], and Mooty et al. crowd-
source API documentation [26]. Our study focused entirely
on language design, ignoring the programming environment,
though it does point out some misconceptions that could
limit the e�ectiveness of crowdsourced explanations.

12 �reats to Validity
Our work has several threats to validity, including these.
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First is the use of MTurk itself. �ough our criterion
for Turkers mentioned programming experience, and we
eliminated those who did not select any languages, we did
not �rst verify their programming ability. By providing
multiple-choice answers, we may have made it even easier
for cheaters to click at random. To prevent this, we did force
workers to explain their reasoning for every answer. Most
workers provided answers that were not nonsensical (and
unlike what we might get from non-programmers or naive
bots). �erefore, we have some faith in the responses.

Nevertheless, other researchers have found that up to 40%
of Turker responses can be considered uninformative [17], a
ratio that may also apply to us. �at said, MTurk is known
to be a good forum for �nding technically quali�ed work-
ers [23], so while we believe it is worth considering stronger
barriers, we do not believe the use of MTurk is itself inher-
ently questionable. To make sure that we only surveyed
quali�ed Turkers, we could have included simple questions
by which we could �lter out workers who answered incor-
rectly.

Second is the nature of questions and answers. �ree
things characterize our quizzes: the sample programs were
short, they did not mix many features, and they provided
multiple-choice answers. �e short programs and multiple-
choice answers were intended to make the tasks quick to
complete, in keeping with recommendations for MTurk [20].
However, each of these is an important restriction, and li�ing
them might result in fairly di�erent responses.

�ird is that workers might have been biased towards
believing that programs were valid and did not error. To
mitigate this, we explicitly made “Error” an answer choice
and gave it just as much visibility of any of the other answer
choices. Furthermore, many workers did expect programs
to error. �erefore, we do not believe this is a major threat
to validity.

Fourth is that workers might have been in�uenced by
the syntax of our programs. We tried to mitigate this by
explicitly choosing a unique syntax. Nevertheless, some
individual features (such as indentation, the JavaScript-like
map structures) might have biased the workers towards those
languages’ behaviors.

Fi�h is the expertise and quali�cation of our audience,
over which we have no real control. How would these an-
swers vary if we ran a similar study with students at various
stages (high school, �rst-year college, about to graduate),
professional programmers, computer science department
faculty members, or for that ma�er participants at a pro-
gramming languages conference? It would be particularly
interesting to explore variations between this last group and
everyone else. �at said, all these audiences—including the
Turkers—use these languages, so we should not be too quick
to dismiss the expectations of the MTurk workers.

Finally, we have not yet investigated the stability of these
opinions. If we ask many more workers, or ask at di�erent

times, do we see a major di�erence? It is known that the
time of day has some impact on MTurk (in part due to the
large population of workers from the USA and India) [23],
but other, more subtle variables may also be at play. In
addition, programmer a�itudes are clearly shaped by the
languages they use: worker responses in the era of Pascal,
C, and Ada may have been very di�erent than they are now
when languages like JavaScript, Ruby, and Python—with all
their peculiarities [3]—have broad followings.

13 Language Design Consequences
Until this point in the paper, we have mostly only reported
�ndings factually, o�ering relatively li�le commentary. �e
goal of this study, however, is to understand the conse-
quences for language design, which we now discuss.

It is tempting, a priori, to expect that workers would sim-
ply choose answers that are consistent with whatever lan-
guage they use most, i.e., regurgitate existing design deci-
sions. However, we �nd that even this is not the case, as in
many cases workers make choices that are not consistent
with any mainstream language: for instance, distributing
addition over �eld access, and accessing function parameters
outside the function. Whether it is because they do not un-
derstand their languages well enough, or dislike the choices
already made, or (in rare cases, like section 4) perhaps simply
do not interact in the same way with these features in their
daily programming, is a ma�er for further investigation.

Our overarching conclusion is that we do not see enough
consistency or consensus amongst workers to suggest canon-
ical language designs. One could argue that these studies
show two camps of workers: those who expect an ML-like
or strict language and those who expect a scripting-like
language. �e workers in the strict camp expected narrow
behavior including static scoping, type annotations being
respected, minimal operator overloading, and only boolean
expressions in the predicate position of conditionals. �e
workers who fell into the scripting camp wanted rich be-
havior, but they didn’t agree on exactly what that behavior
should be.

However, there are still some puzzling clumps of work-
ers. Indeed, even in places where we see large clusters of
agreement, they tend to point in directions languages should
probably not take: for instance, permi�ing dynamic scope,
and allowing annotations on function parameters to be ig-
nored. Future work needs to explore why programmers
want these behaviors, whether they understand the conse-
quences of programming in languages that work this way
(especially when some of these features interact), and—most
importantly—whether even small amounts of training can
dissuade them from making these choices [8]. One hopes
that if workers were shown the consequences of their choices
then they would be willing to reconsider. However, even so,
research is cognitive psychology [5] has shown that miscon-
ceptions are di�cult to un-learn.
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�e �nding on dynamic scope is particularly disturbing,
since it is quite clear that no ma�er how much program-
mers may �nd it appealing for small programs, it is unlikely
to return in any carefully-designed language. Indeed, even
languages that have included it by accident or lack of fore-
thought (e.g., Python and JavaScript) have evolved to remove
it as much as possible. It is certainly worth investigating
whether workers even recognize terms like “dynamic scope”,
have any (negative) associations with it, and can recognize
it in a program. It is also unclear whether programmers
understand the negative consequences dynamic scope has
for the construction of tools. It may be that educating, or
even priming, them along these lines may result in di�erent
stated preferences.

We also noticed intriguing behavior on other features:

• On numbers (section 7), many workers preferred ex-
act arithmetic, and this number grows even higher
if we account for the di�erence between evaluation
and printing. �is is inconsistent with the behavior
of most mainstream languages, which (a) make an
arti�cial distinction between integers and �oats, and
(b) whose �oats fail to obey several well-understood
mathematical properties (such as associativity and
distributivity). It is unclear whether programmers
compartmentalize and mode-shi� between “numbers”
and “computer numbers”, or whether they incorrectly
believe numbers in programming languages behave
like their mathematical counterparts. Anecdotally,
we certainly see evidence—for instance, on program-
mer discussion fora—of developers su�ering from the
la�er misconception.

• With inheritance (section 4), as no worker expected
these questions to perform as Java does, one should
question how natural Java’s approach is. We were
also surprised by how bri�le their understanding was,
with small changes to programs shi�ing their expec-
tations signi�cantly.

• Operator overloading (section 8) showed that workers
have consistent interpretations for + and -, but not
so for other binary operations. �is suggests that at
least all the other cases ought to be made an error.

• In the case of aliasing (section 5.1), we were surprised
by the number of programmers who did not expect
object aliasing across a function call. �is is inconsis-
tent with virtually all mainstream languages that have
side-e�ects, and many programs explicitly rely on
the aliased behavior (e.g., when passing an object to a
void-returning method); disturbingly, many workers
tend towards assuming a non-existent “safety”. We
also note that the workers all have experience with
primarily-imperative languages. �is does suggest
investigating other language mechanisms, whether
through immutable data or linearity or an outright

lack of aliasing [35]. In addition, it suggests that lan-
guage tutorials and documentation must explicitly
teach users about aliasing behavior in the language,
especially in the presence of mutation.

• We �nd a morass when it comes to truthiness (and
falsehood) (section 6). �is may be unsurprising given
the variation between languages in the �eld: just be-
tween Python, Ruby, JavaScript, and PHP, there is lit-
tle to no agreement on which values are truthy/falsy,
each having distinct tables—even though each pre-
sumably represents what its designers thought was
“obvious”. �e danger of permi�ing such variation is
that programmers are bound to get confused when
they switch between languages, especially within the
same application (e.g., a Web application that uses a
JavaScript front-end and Python back-end). For this
reason, it seems safer to allow only values of a distinct
Boolean type in the conditional position.

In summary, it is di�cult to learn one clear message from
these studies, but there do seem to be two themes. One is that
workers seem to have di�culty agreeing, and even at being
consistent on unusual features. �is makes it di�cult to
design a language around their preferences. �e other is that
some standard features (such as inheritance and overloading)
that have a complex semantics are not easily predictable by
programmers. �ese should therefore either be avoided or
at least explained well, with a�ention paid to corner cases.
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A Methodology
A.1 Measuring Agreement
Both consistency and consensus are measures of agreement.
We will �rst describe how to measure agreement in general,
and then state how this applies to consistency and consen-
sus. As stated earlier, our questions were primarily multiple-
choice, but had “Other” and “Error” as write-in questions,
and we binned all Error answers together, and likewise all
Other responses.

In general, agreement can be measured between a set of
raters that give answers in a set of cases. �e naive measure
of agreement p̄ is the probability that two random raters
agree on a random case. However, some of this “agreement”
may have occurred by chance. �is is not accounted for in p̄,
but it is accounted for in inter-coder reliability metrics, or
“kappa” scores. �ere are two notable options: Fleiss’ κ [10]
(which is a generalization of Cohen’s κ), and free-marginal
κ [30].

Fleiss’ κ is not applicable for many of our use cases be-
cause it requires that each question have the same set of
possible answers. Additionally, it gives inappropriately low
agreement scores when there are few cases, which is o�en
our situation. In the extreme, when there is only one case,
Fleiss’ κ cannot be positive (it may be negative, 0, or unde-
�ned). �is is due to the (unrealistic) assumption in Fleiss’ κ
that the actual distribution of answers for questions is exactly
the observed distribution.

Free-marginal κ, on the other hand, assumes that the ac-
tual distribution of answers is uniform. �is is also an unre-
alistic assumption. Since we a�empted to provide answers
for all plausible interpretations for each question (including
misinterpretations), “Other” need not have been chosen at
all. For the same reason, many of the answers we provided
were for fringe interpretations of the program, which could
plausibly not have been picked at all. As a consequence,
free-marginal κ scores are higher than they should be (as a
uniform distribution minimizes agreement by chance).

Since we argue that agreement scores are low, it would be
disingenuous to report Fleiss’ κ scores even in cases where
it is technically applicable. We therefore report only free-
marginal κ. Of course, since we make our data freely avail-
able, readers may perform their own analyses as well.

Consensus For consensus, p̄ can be measured as follows:
(i) pick a question uniformly at random; (ii) pick two workers
uniformly at random; (iii) p̄ is the probability that those two
workers answered that question the same way.

In terms of inter-coder reliability, the “raters” are workers
and the “cases” are questions.

Consistency For consistency, p̄ can be measures as follows:
(i) pick a worker uniformly at random; (ii) pick two questions
(of the subset under consideration) uniformly at random; (iii)
p̄ is the probability that that worker gave consistent answers

to those two questions. (Consistent answers are those we
judged to be consistent, as described in each comparison.)

Although it may seem unusual, in terms of inter-coder reli-
ability, the “raters” are questions and the “cases” are workers.
In general, the “raters” a�empt to categorize each “case”, and
one looks for agreement among the raters for each case. For
the consistency measure, the questions are being used to cat-
egorize the workers in terms of which consistent viewpoint
they have, and we look for agreement among the questions
for each worker. �is is also the interpretation needed for p̄
to be computed as above.

A.2 Clustering Analysis
Hierarchical clustering is performed by �rst computing all
pairwise dissimilarities between observations, and then us-
ing those dissimilarities to (recursively) group the observa-
tions into clusters. In our case, an observation in a survey
is the vector of answers given by a worker. We excluded
the questions about prior programming experience, and the
(rare) open ended questions, since clustering would not be
meaningful on them. �is le� only the questions with cate-
gorical answers.

Clustering Algorithm
Our precise method of clustering can be explained concisely
in one sentence; however it is ripe with terminology that
many readers may be unfamiliar with. We therefore state
the sentence and then explain the terminology:

We used agglomerative hierarchical cluster-
ing with a Hamming distance function and an
“average” linkage criterion.

Clustering is used to �nd groups of “similar” observations.
Similarity is de�ned with respect to a distance function, in
our case normalized Hamming distance.
Hierarchical clustering produces a tree whose leaves are

observations and whose subtrees are clusters. Subtrees have
a height between 0 and 1, and shorter subtrees are tighter
clusters (i.e., shorter subtrees have smaller distances between
their leaves).
Agglomerative hierarchical clustering computes the tree

bo�om-up. Initially, every observation is a singleton tree.
Recursively, two of the most similar clusters are joined to
form a new tree, whose height is their dissimilarity. �is
metric of similarity between clusters is chosen, and is called
the linkage criterion. We used the average distance between
individual observations as the linkage criterion because it
seemed more appropriate than the alternatives (such as min-
imum or maximum distance between clusters).

We computed the plots using the daisy and agnes func-
tions in R’s cluster package [21].
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Distance Function
We stated that we used Hamming distance. Technically, the
library function we invoked uses Gower’s distance func-
tion [12, equation (5)], but in our case these are equivalent.
�e exact formula is:

di j =

n∑
k=1

si jk δi jkwk

n∑
k=1

δi jkwk

In our case:
• di j is the computed distance (i.e., dissimilarity) be-

tween the answers given by the i’th and j’th workers.
• n is the number of questions.
• si jk is 1 if worker i and worker j disagreed on question
k , or 0 otherwise.
• δi jk is used to handle questions that were not an-

swered. None of our questions were optional, so
δi jk = 1.
• wk is the relative weight given to the k’th question.

We weighted each question equally, so wk = 1.
�us, for us di j is simply the fraction of questions on

which workers i and j disagreed:

di j =

∑n
k=1 si jk

n
Equivalently, this is the Hamming distance [13] divided by
the number of questions.
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