
To appear in ICFP’15

Hygienic Resugaring of Compositional Desugaring

Justin Pombrio Shriram Krishnamurthi
Brown University (United States)
{justinpombrio, sk}@cs.brown.edu

Abstract
Syntactic sugar is widely used in language implementation. Its
benefits are, however, offset by the comprehension problems it
presents to programmers once their program has been transformed.
In particular, after a transformed program has begun to evaluate
(or otherwise be altered by a black-box process), it can become
unrecognizable.

We present a new approach to resugaring programs, which is
the act of reflecting evaluation steps in the core language in terms
of the syntactic sugar that the programmer used. Relative to prior
work, our approach has two important advances: it handles hygiene,
and it allows almost arbitrary rewriting rules (as opposed to re-
stricted patterns). We do this in the context of a DAG representation
of programs, rather than more traditional trees.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

Keywords syntactic sugar, resugaring, hygiene, abstract syntax
DAG

1. Introduction
Syntactic sugar has a venerable history in programming languages,
starting with its use by Landin [10]. Desugaring is now actively
used in many practical settings:

• In the definition of language constructs in many languages
ranging from Python to Haskell.
• To extend the language, in languages ranging from the Lisp

family to C++ to Julia.
• To shrink the semantics of large scripting languages with many

special-case behaviors, such as JavaScript and Python, to small
core languages that tools can more easily process.

Of course, once a program has been desugared, it is much harder for
its programmer to recognize. Worse, when desugaring is followed
by any phase that rewrites terms, such as evaluation, optimization,
or theorem proving, there is typically no easy way to view the
rewritten terms using their original pre-transformation syntax. This
penalizes either the programmer who uses the sugar (who must
contend with the details of desugaring) or the language designer

[Copyright notice will appear here once ’preprint’ option is removed.]

(who must decide whether to forgo sugar and deal with a larger,
more complex language). In short, it violates the abstraction that
syntactic sugar ought to provide.

What we instead need is to lift an evaluation (or other reduction)
sequence back to the surface language in terms of the original pro-
gram. That is, we must reconstruct a source term that reflects what
the intermediate term would have been had the reduction process
been defined explicitly in terms of the source language (which, for
practical reasons, it is not). We build on the idea of resugaring pre-
viously introduced by Pombrio and Krishnamurthi [13]. That work
gives a method to reconstruct surface (i.e., pre-transformation)
terms out of core (i.e., post-transformation) terms. This work im-
proves upon that in two notable ways:

• The earlier work did not handle hygiene, which is a standard
part of desugaring systems. Our work expressly handles hy-
giene.
• The earlier work handled only limited rewriting systems: ones

where syntactic sugar could be expressed as a set of declarative
rules in a very limited language (akin to the syntax-rules [15]
macro system). This significantly limited the applicability of
that work. This work permits the use of arbitrary functions, so
long as they are compositional in the desugaring of their sub-
terms (i.e., do not probe the content of the subterms). Our work
can therefore handle the vast majority of complex desugaring
rules used in real languages. For instance, the earlier paper
could not handle some of the sugar used to implement Pyret
(pyret.org), a new functional programming language, but the
work in this paper can.

This work makes two additional contributions:

• Just like the prior work, we provide semantic guarantees about
resugaring, so that a programmer gets output that is both mean-
ingful and predictable. The previous work defined three goal
properties: Emulation, Abstraction, and Coverage. We prove the
same Emulation theorem (Theorem 1), prove a richer version of
Abstraction (Theorem 2), and put Coverage — which was only
evaluated empirically in the prior work — on a formal footing
(Theorem 4).
• In defining this resugaring system, we shift from traditional ab-

stract syntax trees to a different representation: abstract syn-
tax DAGs (ASDs), whose back-edges represent references from
bound to binding instances. Using this we are able to recon-
struct a traditional hygiene theorem (Section 4.3) without hav-
ing to assume that the desugaring algorithm is itself “hygienic”.

An ASD is simply a tree that reflects binding structure. For instance,
the ASD representation of the term λx. λx. x is:

To appear in ICFP’15 1 2015/7/14

λ

x λ

x •

ASDs differ from typical AST representations in two ways: (i) their
variable references unambiguously link to their declaration sites,
and (ii) their nodes, including variable declarations, have identity.
Thus, for instance, the two declarations of x above are not equal.
Similarly, a second copy of this ASD would not be equal to the
first, since its nodes would differ in identity. (It would, however, be
isomorphic.)

Overall, then, our approach has the following shape. A program
is initially converted from an abstract syntax tree to an ASD through
a process called scope resolution, which makes the binding struc-
ture explicit. This program is then desugared. After each step of
the resulting evaluation (or other transformation), our approach at-
tempts to resugar it. If it can be resugared, the resulting ASD is then
unresolved to produce a term in the source language; otherwise the
step is skipped:

surf AST1 surf ASD′1 core1

(skipped) core2

surf AST2 surf ASD′2 core3

...

resolve

unresolve

desugar

resugar fails

resugar

step

step

step

step

step

We discuss the structure of the ASD in Section 3, resolution in Sec-
tion 3.2, unresolution in Section 3.3, resugaring (and desugaring)
in Section 4, and how it applies to sequences of terms (including
the skipping of terms) in Section 5.

Terminology
Throughout the paper, we will often make the following distinc-
tions:

surface vs. core The surface is the language before desugar-
ing, and the core is the language after.

declaration vs. reference A variable’s declaration is the bind-
ing site that introduces it. A reference is a use of a variable,
typically in expression position. We take this naming con-
vention from Erdweg et al. [3].

2. A Worked Example
We will motivate our term representation by showing two problems
that arise during resugaring, and how representing terms as ASDs
instead of ASTs fixes both problems. The first, which arises during
desugaring, is the familiar hygiene problem (Section 2.1), and
is solved by the fact that the ASD distinguishes identifiers that
happen to share the same name. The second problem (Section 2.2)
arises when resugaring, and is solved by the fact that the ASD
distinguishes nodes that happen to represent the same syntactic
construct.

2.1 Desugaring: Variable Capture
The first column of Fig. 1 shows the unhygienic desugaring of a
program, leading to variable capture; we will describe it in detail.

The premise of the example is that a programmer, while de-
veloping an application involving TCP/IP connections, invokes a

syntactic sugar that performs logging. The surface program the pro-
grammer wrote is shown in the first column. (VERBOSE is a prede-
fined constant.)

The definition of this sugar is shown in the second row. The
sugar log α to β when γ writes α to the file-system port β
when the condition γ is true.

A naive, unhygienic expansion of the log sugar is shown in
the third row. The highlighted code simply shows the instantiation
of pattern variables α, β, and γ (to improve legibility), and the
[C1 ⇒ C2] tag can be momentarily ignored. Unsurprisingly, this
unhygienic expansion causes the variable port to be captured. As a
result, the program eventually fails with a runtime type error when
to str is called on a file-system port.

Of course there are many hygienic transformation systems that
could be used here. However, if we first resolve terms to ASDs
the problem does not arise and an otherwise naive desugaring
suffices. In particular, in an ASD, each variable declaration in a
term has an unique identity. Rows 1–3 of the second column show
the desugaring and subsequent core evaluation of the program as
represented as an ASD. Since the two port variables are now
represented distinctly, capture no longer occurs and the program
behaves correctly when evaluated. As would be expected, the first
evaluation step evaluates the let, and the second evaluates the
outer if.

2.2 Resugaring: Code Capture
Let us see, however, what happens when this evaluation sequence
is resugared. First of all, to be able to resugar, we must tag terms by
the sugar they came from. This is necessary, for instance, to know
whether the core code came from an invocation of log, or whether
the programmer happened to write that code directly. Thus we put
a tag [C1 ⇒ C2] on the expansion of a sugar, where C1 and C2 are
patterns representing the part of the term that was rewritten during
desugaring. How this works in the face of arbitrary desugaring
functions will be explained in Section 4.2. (There should also be
a tag around the outer let; we have elided it for brevity.)

We will give a full account of resugaring in Section 4, but for
now it suffices to say that to resugar a term t tagged by [C1 ⇒ C2],
undo the rewrite the sugar performed: check to see if t matches the
pattern C2, yielding a substitution that maps “pattern variables” to
syntactic terms, and if so apply that substitution to C1. Resugar-
ing the core sequence above thus produces the surface evaluation
sequence shown in the last row of column 2.

The first two steps are fine. The first term is the same as the orig-
inal program (having been accurately reconstructed by resugaring),
and the second shows that the let has been substituted properly.
The third term is strange, however, and is a non sequitur with re-
spect to the second.

What happened is that the sugar’s if statement in C2 was
matched against the programmer’s if statement, causing it to be
“resugared”. As a result, this surface term makes no sense as a
follow-up to the previous surface term. We dub this “code capture”,
and it is somewhat analogous to variable capture. Just as renaming
port to tcp port would have changed the meaning of the program
when unhygienically desugaring, refactoring the surface code if
VERBOSE then STDERR else DEVNULL to if not(VERBOSE)
then DEVNULL else STDERR would prevent this term from be-
ing resugared, changing the surface sequence.

In the third column of Fig. 1, each node in the term is given
a unique identity. We represent their identity with numeric sub-
scripts; these numbers have no further meaning and, e.g., do not
represent an ordering. (One result of giving nodes identity is that
each time a rule is applied it is freshly instantiated; thus the desug-
aring rule in the second row shows a particular instantiation of the
log sugar.)

To appear in ICFP’15 2 2015/7/14

No identity Variables have identity All nodes have identity

Pr
og

ra
m let port = 80 in

log "Port: " + to str(port)

to (if VERBOSE

then STDERR

else DEVNULL)

when true

let port = 80 in
log "Port: " + to str(•)
to (if VERBOSE

then STDERR

else DEVNULL)

when true

let1 port = 802 in
log3 "Port: "4 + to str5(•)
to (if6 VERBOSE7

then STDERR8
else DEVNULL9)

when true10

Su
ga

r C1 = log α to β when γ
⇓

C2 = let port = if γ
then β
else DEVNULL in

write(α, port)

C1 = log α to β when γ
⇓

C2 = let port = if γ
then β
else DEVNULL in

write(α, •)

C1 = log3 α to β when γ
⇓

C2 = let11 port = if12 γ
then β
else DEVNULL13 in

write14(α, •)

C
or

e
ev

al
ua

tio
n

se
qu

en
ce let port = 80 in

[C1 ⇒ C2]
let port = if true then

(if VERBOSE

then STDERR

else DEVNULL)
else DEVNULL in

write("Port: " + to str(port),
port)
↓

...
↓

Error! to str given
filesystem port

let port = 80 in
[C1 ⇒ C2]
let port = if true then

(if VERBOSE

then STDERR

else DEVNULL)
else DEVNULL in

write("Port: " + to str(•), •)
↓

[C1 ⇒ C2]
let port = if true then

(if VERBOSE

then STDERR

else DEVNULL)
else DEVNULL in

write("Port: " + to str(80), •)
↓

[C1 ⇒ C2]
let port = if VERBOSE

then STDERR

else DEVNULL in

write("Port: " + to str(80), •)
↓
...

let1 port = 802 in
[C1 ⇒ C2]
let11 port = if12 true10 then

(if6 VERBOSE7
then STDERR8
else DEVNULL9)
else DEVNULL13 in

write14("Port: "4 + to str5(•), •)
↓

[C1 ⇒ C2]
let11 port = if12 true10 then

(if6 VERBOSE7
then STDERR8
else DEVNULL9)

else DEVNULL13 in
write14("Port: "4 + to str5(80), •)

↓
[C1 ⇒ C2]
let11 port = if6 VERBOSE7

then STDERR8
else DEVNULL9 in

write14("Port: "4 + to str5(80), •)
↓

...

Su
rf

ac
e

ev
al

ua
tio

n
se

qu
en

ce let port = 80 in
log "Port: " + to str(•)
to (if VERBOSE

then STDERR
else DEVNULL)

when true
↓

log "Port: " + to str(80)
to (if VERBOSE

then STDERR
else DEVNULL)

when true
↓

log "Port: " + to str(80)
to STDERR
when VERBOSE

↓
...

let1 port = 802 in
log3 "Port: "4 + to str5(•)
to (if6 VERBOSE7

then STDERR8
else DEVNULL9)

when true10
↓

log3 "Port: "4 + to str5(80)
to (if6 VERBOSE7

then STDERR8
else DEVNULL9)

when true10

↓

...

Figure 1. Desugaring and Resugaring Example

To appear in ICFP’15 3 2015/7/14

Crucially, in the last core step shown, since if6 in the term does
not match if12 in the right-hand-sideC2 of the tag, this term cannot
be resugared. As a result, it is correctly skipped in the surface
evaluation sequence.

Thus changing the term representation from ASTs to ASDs pre-
vented both variable capture and code capture. Variable capture was
prevented because variables in an ASD have identity and variable
references point directly to their declarations; while code capture
was prevented because other nodes in an ASD also have identity.

3. Terms
We will now begin to describe our resugaring system formally,
beginning with the definition of ASD terms. While ASDs are DAGs,
the sharing present in them is limited to only their (variable) leaves,
allowing us to use a simple textual representation: variables and
nodes will be given subscripts that identify them. Thus we use
subscripts to represent the DAG structure of terms. As an example,
the desugared program from the previous section would be written:

let10 port1 = 8011 in
[C1 ⇒ C2] let12 port2 = if13 true14 then

(if15 VERBOSE16 then STDERR17 else DEVNULL18)
else DEVNULL19 in

write10("Using port "21 + to str22(port1),
port2)

Our formal definition of terms is inspired by Gabbay and Pitts’
Nominal Logic [5]. We start by defining two kinds of atoms: atoms
that provide identity to nodes are taken from a set A, and atoms that
represent variables are pairs of a variable name from a set X and a
unique subscript taken from U:

atom ::= xu where x ∈ X and u ∈ U
| a where a ∈ A

In the case that a term’s binding structure has not yet been resolved,
a unique identifier u ∈ U will not have been chosen for its vari-
ables. In this case, we will write x for xfree where free is a dis-
tinguished element of U. Likewise, let free also be a distinguished
element of A for nodes that lack identity. (The two frees will be
distinguished by context.)

Next we define terms over some fixed set of node types N as
follows:

t ::= decl(xu)
| ref(xu)
| val(val)
| nodea(n,

−→
ti) where n ∈ N

| tagC1⇒C2
t

Declarations decl represent variables in binding position, while
references ref represent variables in use position. Nodes node
represent both compound terms that have subterms, and constants.
Tags tagC1⇒C2

record how a sugar was expanded so that it may
be reversed later (patterns C will be defined momentarily). Values
val represent runtime values. We are agnostic to the representation
of values, and never inspect or modify val.

We do not assume that values have identity (i.e., subscripts),
since this would require expensive runtime tagging. This introduces
a problem, however: code capture could occur in part of a sugar that
expanded to a value, since there would be no way to distinguish
between, e.g., a val(6) introduced by the sugar and a val(6) in-
troduced by the programmer. Thus the syntactic term 6 (that, when
evaluated, produces the value 6) should be formally represented
with a node such as nodea(int, val(6)).1

1 This term/value distinction is also the reason that the term 80 loses its
subscript after being evaluated to a value in Fig. 1.

Comparison to Traditional Hygiene
At first glance, our approach appears very similar to traditional
approaches to hygiene, such as the original time-stamping al-
gorithm by Kohlbecker et al. [8]. We will detail the similarities
and differences here; our relationship to other work is given in
Section 7. Their technique works by coloring all of the syntax
with a fresh color (a syntax can have more than one color) at
each expansion step. The set of unique colors that a variable
has then serves to distinguish distinct identifiers that happen to
share the same name. This would seem akin to our subscripts.
However, our technique differs in three respects:

1. First, our variable subscripts uniquely determine identity,
while theirs only determines identity up to the phases of
expansion. For instance, if a macro expanded to λx. λx. x,
their approach would color it λxphase1. λxphase1. xphase1. We,
however, would resolve this term to λx1. λx2. x2, distin-
guishing between the two xs introduced by the same phase
of expansion.

2. Second, we give identity to all nodes, not just variables.

3. Third, scope for them is defined by the desugaring, whereas
we define it explicitly for the surface language.

These technical differences reveal a philosophical difference:
inasmuch as they assign unique colors to variables, it ends up
implicitly reconstructing DAGs, whereas we do so directly and
completely.

Desugaring and resugaring will also make use of patterns,
which are terms with holes αi (i.e. “pattern variables”) in them:

C ::= decl(xu)
| ref(xu)
| val(val)

| nodea(n,
−→
Ci) where n ∈ N

| αi for i ∈ N

Holes may occur at most once in a pattern.
We will distinguish between terms (and patterns) whose binding

structure has been resolved, and those whose binding structure
is still unresolved. Unresolved terms are traditional ASTs, while
resolved terms are our ASDs. In an unresolved term, then, every
atom has the form x (that is, xfree). In a resolved term, however,
every declaration atom has a unique name xu, so there can be no
confusion between two variables that happen to share the same
name. Later, in Section 3.2, we will show how to resolve the
binding structure of a term, given scoping rules for the language.

3.1 Permutations
We will use permutations both to define α-equivalence and to
resolve terms’ scope. Permutations can act both on atoms directly,
or on terms. A permutation applied to a term will act on the atoms
of the term, leaving its overall shape unchanged. Permutations are
defined as follows, and their action is shown in Fig. 2:

σ ::= ε | (a↔ b) | σ1 ◦ σ2

Permutations form a group where ε is the identity, ◦ is group
multiplication, and σ−1 is given by (a ↔ b)−1 = (a ↔ b) and
(σ1 ◦ σ2)−1 = σ−1

2 ◦ σ
−1
1 . The domain of a permutation is the set

of elements it permutes: dom(σ) = {a | σ • a 6= a}.
It will be useful to compute a union of permutations σ1 + σ2

that has the same action as either of them over their domains.
More precisely, let σ1 ⊆ σ2 mean that for all a ∈ dom(σ1),
σ1 • a = σ2 • a. Then σ3 = σ1 + σ2 is the least permutation
such that σ3 ⊇ σ1 and σ3 ⊇ σ2, and can be computed using the

To appear in ICFP’15 4 2015/7/14

σ • a 7→ a
(a↔ b) • a = b
(a↔ b) • b = a
(a↔ b) • c = c when c 6∈ {a, b}

σ • t 7→ t
ε • t = t
(σ1 ◦ σ2) • t = σ1 • σ2 • t
σ • αi = αi
σ • decl(xu) = decl(σ • xu)
σ • ref(xu) = ref(σ • xu)
σ • val(val) = val(val)

σ • nodea(n,
−→
ti) = nodeσ•a(n,

−−−→
σ • ti)

σ • tagC⇒C′ t = tagσ•C⇒σ•C′ σ • t

Figure 2. Permuting

following rules (and is undefined when none apply):

(σ1 + σ2) • a =


σ1 • a if a 6∈ dom(σ2)

σ2 • a if a 6∈ dom(σ1)

b if σ1 • a = σ2 • a = b

3.2 Resolution, Informally
As we argued earlier, it is best to think of terms as DAGs. It is then
intuitively clear that capture will not be a problem. Our intuition
relies on the fact that each variable declaration in the term is unique.

We will show how to resolve a term t that does not initially
have this property by making each of its declarations fresh. We call
the resolution operator R. There are two situations in which this
resolution will be necessary:

1. First, the initial program written by the programmer must be
resolved.

2. Second, when a piece of sugar is expanded, the code introduced
by the sugar must be resolved.

To give an example of resolution, consider a simplified version
of the initial program from Section 2:

let port = 80 in
log port to STDERR when true

Roughly speaking,R chooses a fresh identity xu for each variable
declaration x, and then permutes x with xu within the scope of that
declaration. At the same time, nodes are assigned fresh identities. In
this example, port would be assigned a fresh subscript port1, and
the permutation (port ↔ port1) would be applied in its scope,
producing:

let10 port1 = 8011 in
(port↔ port1) •

log12 port to STDERR13 when true14
= let10 port1 = 8011 in

log12 port1 to STDERR13 when true14

3.3 Unresolution, Informally
While having fresh declarations is helpful to ensure properties like
hygiene, the user of the language should not be exposed to them.
Often their subscripts can simply be dropped, but other times this
would result in variable capture. Thus we will give an unresolution
algorithm that renames variables as necessary to avoid capture.
(This is left implicit in many other hygiene algorithms that either
(i) perform spurious renaming or (ii) color variables but do not
say how to present them.) Our algorithm for doing so tries to use

variables’ original names, and renames a variable only when it is
threatened with capture, as shown in Lemma 2.

We present an example of this algorithm using the term from
Section 2 that threatened variable capture. We will make a few
changes for expository purposes: we simplify the program to focus
on its binding structure and introduce one extra let binding to bet-
ter show the behavior of unresolution. We also ignore the identities
of nodes (which are removed during unresolution in a straightfor-
ward way) and focus just on variables. Here is the term we wish to
unresolve:

let msg1 = "Port: " in
let port2 = 80 in

let port3 = STDERR in
write(msg1 + to_str(port2), port3)

Unresolution proceeds in two phases. The first phase, findThreats,
safely but conservatively estimates the set of variable references at
risk of capture. Specifically, it estimates that a variable xu is at risk
of being captured iff it is in scope of a different variable xu′ of the
same name.

In this case, findThreats:

• correctly concludes that msg1 is not at risk of capture, since it is
not in scope of any other variable of the same name
• correctly concludes that port2 is at risk of capture, since it is in

scope of port3
• over-conservatively concludes that port3 is at risk of capture,

since it is in scope of port2

Thus the final set of threats returned is {port2, port3}
The second phase, renameThreats, begins by picking a fresh

variable name for each threatened variable, perhaps producing the
map port2 7→ portA, port3 7→ portB. It then renames all
variables in the term: threatened variables are looked up in the map,
while others simply have their suffix removed, producing:

let msg = "Port: " in
let portA = 80 in

let portB = STDERR in
write(msg + to_str(portA), portB)

Combining these two phases will give an unresolution operator
U that turns ASDs back into ASTs.

3.4 Resolution and Unresolution, Formally
We have given examples of scope resolution and unresolution, and
now present them formally. To begin, we need a language-agnostic
algebra for expressing the scoping rules of a language. We will
use the binding combinators defined in the Romeo expansion sys-
tem [16]. (It is worth noting, however, that the rest of our system re-
lies only on term resolution and unresolution; thus a different scope
resolution mechanism could be substituted in place of Romeo’s.) In
Romeo’s scoping algebra, terms can export bindings to be used by
other terms, and a term that has subterms can choose which of its
subterms’ exported bindings should be imported into which of its
other subterms. The combinators β for expressing binding imports
and exports are:2

β ::= ε | i | β1 ◦ β2 | β1 + β2

Here ε is the empty binding, i denotes the bindings exported by the
i’th subterm, ◦ denotes left-biased union, and + denotes disjoint
union. The meaning JβK (−→σi) of these combinators is given by how
they act on a list of permutations −→σi (specifically, the permutations
exported by the nodes of its children). They can also act on sets

2 In Romeo, the combinators ◦ and + are written . and +∪ respectively, and
their action is defined differently, but they behave the same.

To appear in ICFP’15 5 2015/7/14

JβK (−→σ) 7→ σ

JεK (−→σi) = ε
JjK (−→σi) = σj
Jβ1 ◦ β2K (−→σi) = Jβ1K (−→σi) ◦ Jβ2K (−→σi)
Jβ1 + β2K (−→σi) = Jβ1K (−→σi) + Jβ2K (−→σi)

JβK (
−−−−−→
{xu, ...}) 7→ {xu, ...}

JεK (
−→
Si) = ∅

JjK (
−→
Si) = Sj

Jβ1 ◦ β2K (
−→
Si) = Jβ1K (

−→
Si) ∪ Jβ2K (

−→
Si)

Jβ1 + β2K (
−→
Si) = Jβ1K (

−→
Si) ∪ Jβ2K (

−→
Si)

Figure 3. Binding Combinators

of variables. Their action in either case is shown in Fig. 3. The
pun of using ε, ◦ and + both for permutations and as the binding
combinators is on purpose, as each is just the lifted form of the
other.

These binding combinators are used to give a binding signature
sign(n) = (

−→
βi) ↑ β to each node constructor n, where βi are

the imports of its children, and β are its exports. (The up-arrow is
merely notation for a pair.)

The algorithms for scope resolution R and unresolution U are
given in Fig. 4. In the figure, new u. generates a globally unique
fresh name or id u, and t //C is used to copy the fresh ids chosen
for t onto C. In R, recursive calls return a pair of a term t and
the permutation σ that it exports; this pair is written t ↑ σ. We
will slightly abuse notation by using term/permutation pairs, like
R(t) = t′ ↑ σ, in situations where terms are expected; in this case
we mean for the permutation to be ignored.

The U function uses three helper functions: (i) exports(t)
finds the set of variable declarations provided by a term t, (ii)
findThreats(t, S) recursively finds threatened variables in term t (S
is the set of variables “in scope” at t), and (iii) renameThreats(t, f)
renames variables in t according to f .

Scope resolution and unresolution are approximately inverses
of one another. To make this formal, say that two terms t1 and t2
are isomorphic t1 ' t2 when they differ only up to a permutation:

Definition 1 (isomorphism). t1 ' t2 when ∃σ. σ • t1 = t2

Then resolution and unresolution obey the rule:

Lemma 1. R(U(R(t))) ' R(t)

Proof sketch. We aim to show that performing U and then R on
a term R(t) is the identity up to permutation. Neither R nor
U change the shape of the term, so we only need consider how
they modify variables. Consider first the variable declarations, then
references.

A variable declaration decl(xu) inR(t) will get mapped by f
in U to some decl(y), and then to some decl(yv) for fresh v in
R. This is fine.

Now consider references. The only concern is that some ref-
erence ref(xu) in R(t) might get mapped to ref(y) by f (as it
must) but then get mapped to some decl(yv′) for v′ 6= v by R.
Since the reference ref(xu) in R(t) obtained the subscript u via
R in the first place, it must have been acted on by the permutation
(x ↔ xu) from decl(xu). Thus, in the second R step, it will be
acted on by the permutation (y ↔ yv) from decl(yv). The only
remaining concern is that it may also be acted on by a different per-
mutation (y ↔ yv′) with v′ 6= v. But any variable in danger of

Σ • C 7→ t
Σ • val(v) = val(v)
Σ • αi = t when αi → t ∈ Σ
Σ • decl(xu) = decl(xu)
Σ • ref(xu) = ref(xu)

Σ • nodea(n,
−→
Ci) = nodea(n,

−−−−→
Σ • Ci)

Figure 5. Substitution

causing this would have been found by findThreats and renamed
during U .

Once terms have been resolved, it is easy to compare them for
equality up to renaming: two resolved terms are α-equivalent when
they are identical up to a permutation of their variables. We will
write t1 =α t2 to mean that t1 and t2 are α-equivalent.

Definition 2 (α-equivalence). t1 =α t2 when
R(t1) ' R(t2)

Lemma 2. U(t) will only rename a variable reference xu in t if it
is in scope of a declaration xu′ with u′ 6= u.

Proof. The only variables which are renamed by
renameThreats are those in the set returned by findThreats, so we
just need to argue that findThreats only finds threatened variables.
The only nonempty base case for findThreats is that for variable
references, given by:

findThreats(ref(xu), S) = {xu} if {xu′ ∈ S | u 6= u′} 6= ∅
else ∅ blah

The set S of variables it passes along recursively is precisely the set
of variables in scope at that point, so findThreats will only produce
{xu} when some xu′ “threatens” to capture xu.

4. Desugaring and Resugaring
In this section, we introduce the primary algorithms of our resugar-
ing system: the algorithms for desugaring and resugaring individual
terms. They can then be used to resugar an evaluation sequence via
the pseudo-code algorithm:

def showSurfaceSequence(s):
let c = desugar(s)
while c can take a reduction step:
let s′ = resugar(c)
if s′ was successful: print(s′)
c := step(c)

4.1 Matching and Substitution
During desugaring and resugaring, our system will match terms
against patterns, producing a substitution from holes αi to sub-
terms, and then apply this substitution to another pattern.

Σ ::= ε | αi → t | Σ1 ◦ Σ2

We will overload the notations • and ◦ to also refer to substitu-
tion, and will define symmetric composition the same way as for
permutations:

(Σ1 + Σ2) • α =


Σ1 • α if α 6∈ dom(Σ2)

Σ2 • α if α 6∈ dom(Σ1)

t if Σ1 • α = Σ2 • α = t

Substitution is defined in Fig. 5. Unlike permutations, substitutions
do not form a group because they typically do not have inverses.

A term can be matched against a pattern to produce a substi-
tution, as shown in Fig. 6. Matching and substitution are nearly

To appear in ICFP’15 6 2015/7/14

R(t) 7→ t

R(t) = fst(R1(t)) (where fst(t ↑ σ) = t)

U(t) 7→ t

U(t) = renameThreats(t, f) where S = findThreats(t, ∅)
and f(xu) = new y. y for xu ∈ S
and f(xu) = x otherwise

R1(t) 7→ t ↑ σ
R1(val(val)) = val(val) ↑ ε
R1(ref(xu)) = ref(xu) ↑ ε
R1(decl(xu)) = new u′. decl(xu′) ↑ (xu ↔ xu′)
R1(tagC⇒C′ t) = tagC⇒(t′//C′) t

′ where t′ = R1(t)

R1(nodea(n,−→si)) = new b. nodeb(n,
−−−−−−−−→
JβiK (−→σj) • ti) ↑ JβK (−→σj) when

−−−−−−−−−−−→
R1(si) = ti ↑ σi

and sign(n) =
−−→
(βi) ↑ β

t //C 7→ C

t //αi = αi
val(v) // val(v) = val(v)
decl(xu) // decl(xv) = decl(xu)
ref(xu) // ref(xv) = ref(xu)

nodea(n,
−→
ti) // nodea(n,

−→
Ci) = nodea(n,

−−−−→
ti //Ci)

findThreats(t, {xu, ...}) 7→ {xu, ...}
findThreats(val(val), S) = ∅
findThreats(ref(xu), S) = {xu} when {xu′ ∈ S | u 6= u′} 6= ∅
findThreats(ref(xu), S) = ∅ otherwise
findThreats(decl(xu), S) = ∅

findThreats(nodea(n,
−→
ti), S) =

⋃ −−−−−−−−−−−−−−−−−−−−−−−−−−→
findThreats(ti, S ∪ JβiK (

−−−−−−−→
exports(tj))) when sign(n) =

−−→
(βi) ↑ β

renameThreats(t, xu 7→ xu) 7→ t

renameThreats(val(val), f) = val(val)
renameThreats(ref(xu), f) = ref(f(xu))
renameThreats(decl(xu), f) = decl(f(xu))

renameThreats(nodea(n,
−→
ti), f) = node(n,

−−−−−−−−−−−−−−→
renameThreats(ti, f))

exports(t) 7→ {xu, ...}
exports(val(val)) = ∅
exports(ref(xu)) = ∅
exports(decl(xu)) = {xu}
exports(nodea(n,

−→
ti)) = JβK (

−−−−−−→
exports(ti)) when sign(n) =

−−→
(βi) ↑ β

Figure 4. Resolution and Unresolution

t /C 7→ Σ

t / αi = αi → t
val(v) / val(v) = ε
decl(xu) / decl(xu) = ε
ref(xu) / ref(xu) = ε

nodea(n,
−→
ti) / nodea(n,

−→
Ci) = t1 /C1 + t2 /C2 + ...

Figure 6. Matching

inverses of one another: substitution is an inverse of matching and,
given a reasonable precondition, matching is an inverse of substi-
tution. Recall that we call the “pattern variables” in a pattern holes,
and let holes(C) be the set of all holes in the pattern. Then:

Lemma 3. For all patternsC and substitutions Σ, if domain(Σ) =
holes(C), then (Σ • C) /C = Σ

Proof. Induct on C. In the inductive case,

(Σ • nodea(n,
−→
Ci)) / nodea(n,

−→
Ci)

= nodea(n,
−−−−→
Σ • Ci) / nodea(n,

−→
Ci)

= (Σ • C1) /C1 + (Σ • C2) /C2 + ...
= Σ1 + Σ2 + ... (by I.H.)
= Σ

where Σi is Σ restricted to the holes of Ci. The last step relies on
holes occurring at most once in C.

Lemma 4. For all terms t and patterns C, if t /C exists then
(t /C) • C = t

Proof. Induct on C. In the inductive case,

To appear in ICFP’15 7 2015/7/14

(nodea(n,
−→
ti) / nodea(n,

−→
Ci)) • nodea(n,

−→
Ci)

= (t1 /C1 + ...) • nodea(n,
−→
Ci)

= nodea(n,
−−−−−−−−−−−−→
(t1 /C1 + ...) • Ci)

= nodea(n,
−−−−−−−−→
(ti /Ci • Ci)

= nodea(n,
−→
ti) (by I.H.)

(The second to last step is valid because for
nodea(n,

−→
ti) / nodea(n,

−→
Ci) to exist, (t1 /C1 + ...) must all be

disjoint, and ti /Ci binds all holes in Ci.)

4.2 Desugaring and Resugaring
Now we can define desugaring and resugaring operations that
translate ASDs in the surface language to ASDs in the core language
and back.

Desugaring uses a helper function called expand that expands
a single piece of syntactic sugar in a term. Expand looks up a
desugaring function to apply based on the term’s topmost node and
applies it. This function can be Turing-complete, and is written
in the host language. In order for resugaring to work, however,
desugaring must be compositional, i.e., it must be parametric over
its subterms. Hence, instead of expanding the entire term t at once,
expand will first split it into a pattern and subterms, and then only
expand the pattern C to a new pattern C′. Expand then returns the
pair (C,C′) of the old and new pattern.

Desugaring of a term t thus proceeds by calling expand(t) to
obtain the pair of patterns (C,C′), using matching and substitution
to rewrite C to C′, and recursively substituting the desugared
subterms of t. The newly desugared term will be wrapped in a tag
noting the original and new patterns. Later, resugaring will make
use of these tags to undo each of the desugaring functions.

Desugaring makes use of two operations over nodes.
sugars(n)(C) looks up the desugaring function associated with
node type n and applies it to pattern C, and head(t) splits the term
t to obtain the pattern C to be desugared. The pattern returned by
head(t) may need to be more than just the topmost node of t. Take,
for instance, a multi-armed let construct like let x = 4, y = x
in x + y. One way of representing this term in our system is:

node(Let,
node(Bind, decl(x), node(Num, val(4)),
node(Bind, decl(y), ref(x)),

node(EndBinds))),
node(Plus, ref(x), ref(y)))

It would be important for Let’s desugaring function to be given all
of its bindings, so the pattern returned by head in this case should
be:

node(Let,
node(Bind, α1, α2,

node(Bind, α3, α4,
node(EndBinds))),

α5)

While head could in principle be a complicated function, we be-
lieve in practice it is sufficient to partition nodes into primary nodes
like Let that can stand on their own, and secondary nodes like Bind
and EndBinds that are merely part of the node above them; thus we
define head in terms of a is-primary predicate. is-primary will re-
turn true for values, declarations, and references; it is language
specific for nodes.

Desugaring is formally defined in Fig. 7, and resugaring in
Fig. 8.3 Desugaring and resugaring are overloaded to act on substi-

3 Notice that resugaring begins with a resolve step: this is only really
necessary in case evaluation copies a term, thus breaking the invariant that
variable declarations in resolved terms all have unique subscripts.

desugar(t) 7→ t

desugar(t) = ⇓ (R(t))

⇓ nodea(n,
−→
ti) = tagC⇒C′ (⇓ (t /C) • C′)

when expand(t) = (C,C′)

where t = nodea(n,
−→
ti)

⇓ t = t otherwise

expand(t) 7→ (C,C)

expand(nodea(n,
−→
ti)) = (C,C′)

when head(nodea(n,
−→
ti)) = C

andR(sugars(n)(C)) = C′

head(t) 7→ C

head(nodea(n,
−→
ti)) = nodea(n,

−−−−−−→
headrec(ti))

when is-primary(n)

headrec(nodea(n,
−→
ti)) = nodea(n,

−−−−−−→
headrec(ti))

when not(is-primary(n))
headrec(t) = new i. αi otherwise

Figure 7. Desugaring

resugar(t) 7→ t or FAIL

resugar(t) = U(⇑ (R(t)))
⇑ (tagC⇒C′ t) = (⇑ (t /C′)) • C

(or FAIL if t /C′ does not match)
⇑ nodea(n,

−→
ti) = FAIL

⇑ t = t otherwise

Figure 8. Resugaring

tutions in the obvious way, e.g., ⇓ (α→ t) = α→ (⇓ t). Desugar-
ing and resugaring are inverses of one another, up to a permutation
of variables.

To show this, we will rely on terms having honest tags:

Definition 3. A term has honest tags when for each subterm of the
form tagC⇒C′ t, t = (t /C′) • C′.

Lemma 5. For all terms t with honest tags, if ⇑ t 6= FAIL then
⇓⇑ t ' t.

Proof Sketch. Proceed by induction on t. The interesting case is
when the term t is tagged:

⇓⇑ tagC⇒C′ t = ⇓ ((⇑ (t /C′)) • C)
with (C,C′) = expand(t′) for some t′

= tagC⇒C′′ ⇓ ((⇑ (t /C′)) • C) /C) • C′′

where expand(⇑ (t /C′)) = (C,C′′)
and C′ ' C′′

= tagC⇒C′′ ⇓⇑ (t /C′) • C′′
by Lemma 3

' tagC⇒C′′ (t /C′) • C′′
by I.H.

' tagC⇒C′ t
by Lemma 4

The first step (which introduces t′) relies on the tags having been
produced by a call to expand.

Lemma 6. For all terms t, ⇑⇓ t = t.

To appear in ICFP’15 8 2015/7/14

Proof. Proceed by induction on t. The interesting case is where the
term t is not atomic:

⇑⇓ t = ⇑ tagC⇒C′ (⇓ (t /C) • C′)
with expand(t) = (C,C′)

= ⇑ ((⇓ (t /C) • C′) /C′) • C
= ⇑⇓ (t /C) • C by Lemma 3
= (t /C) • C by I.H.
= t by Lemma 4

(The side condition for Lemma 3 uses the fact that
domain(t /C) = holes(C) = holes(C′).)

Lemma 7. For all terms t,R(⇑R(t)) ' ⇑R(t)

Proof. The witness permutation is the mapping the second R en-
acts on variable declarations. This mapping exists since resugar-
ing can neither drop nor duplicate variables. Now we must show
that variable references are acted upon by the second R the same
way as their corresponding declarations. This amounts to asking
weather each variable reference ref(xu) is in scope of exactly
its declaration decl(xu). It is: it cannot be in scope of any other
declaration, because the first call to R gave them all distinct sub-
scripts, and it cannot be out of scope of its decl(xu) because that
would mean that resugaring caused an identifier to become un-
bound, which could only happen if the initial program contained
an unbound identifier.

The previous paper on resugaring gave three properties that help
define its correctness. We mirror them here.

The first property, Emulation, says that the resugared sequence
is faithful to the core sequence it is supposed to represent.

Theorem 1 (Emulation). Every surface term desugars to (a term
isomorphic to) the core term it purports to represent.

Proof. We want to show that if a surface term t′ = resugar(t) is
shown, then desugar(t′) ' R(t).

desugar(t′) = desugar(resugar(t))
= ⇓ (R(U(⇑ (R(t)))))
' ⇓ (R(U(R(⇑ (R(t)))))) by Lemma 7
' ⇓ (R(⇑ (R(t)))) by Lemma 1
' ⇓ (⇑ (R(t))) by Lemma 7
' R(t) by Lemma 5

The second property, Abstraction, says that surface terms are
not “made up”, but rather originate from the initial program. We
give a stronger statement about Abstraction here than was given in
the previous work; this is possible because nodes have identity.

Theorem 2 (Abstraction). If a term is shown in the reconstructed
surface evaluation sequence, then each non-atomic part of it orig-
inated from the original program and has honest tags. (Assuming
that evaluation does not modify tags.)

Proof. Let R(t) be the original program, let t0 = ⇓R(t), and
suppose the program took i steps t0 → ... → ti before being
shown as t′i = ⇑ ti. For resugaring to have succeeded, ti must be
composed from patterns of the form tagC⇒C′ C

′ (implying that
the tags of t are honest). After resugaring, the atomic terms are left
as they are, and each pattern tagC⇒C′ C

′ becomes C. Likewise,
each pattern tagC⇒C′ C

′ can be traced back through evaluation to
the desugaring of the original program, so tagC⇒C′ C

′ appears in
t0 and C appears inR(t).

The third property, Coverage, says that “as many surface evalu-
ation steps are shown as possible”. It was dealt with purely infor-
mally in the previous paper, but now we formally give in Section 5
a sufficient condition for surface steps to be shown.

4.3 Hygiene
Finally, we can show that desugaring and resugaring are hygienic
in the sense put forward by Herman and Wand [7]. They proposed
the strong statement that if two terms in the surface language are α-
equivalent, then their desugarings are α-equivalent; we will prove
this for our system.

Recall that we define s =α t to mean that R(s) ' R(t);
thus the question of whether a function respects α-equivalence can
sometimes be reduced to one of whether it is equivariant: whether it
respects terms that only differ up to a permutation of their variables.
(Equivariance is a concept from Nominal Logic [5].) ⇓ and ⇑ are
equivariant.

Lemma 8 (⇓ is equivariant). If s ' t, then ⇓ s ' ⇓ t.

Proof sketch. head is equivariant, and sugars(n) is trivially equiv-
ariant when applied to the patterns obtained from head since they
do not contain variables. Thus expand is equivariant, in the sense
that if s ' t and expand(s) = (Cs, C

′
s) and expand(t) = (Ct, C

′
t),

then ∃σ∗, Cs = σ∗ • Ct and C′s = σ∗ • C′t. To show that ⇓
is equivariant, we have to show that for all σ and t, ⇓ (σ • t) =
σ′ • ⇓ t for some σ′.

If t is not a node, ⇓ (σ • t) = σ • t = σ • ⇓ t. Otherwise,
let expand(t) = (C,C′) and expand(σ • t) = (σ∗ • C, σ∗ • C′).
Then:

⇓ (σ • t) = tagσ∗•C⇒σ∗•C′ (((σ•t) / (σ∗•C)) • (σ∗•C′))
= tagσ∗•C⇒σ∗•C′ σ

∗ • ((t /C) • C′)
= σ∗ • tagC⇒C′ ((t /C)•C′)
= σ∗ • ⇓ t

(The second step uses the fact that σ and σ∗ must be identical when
restricted to the variables of C.)

Lemma 9 (⇑ is equivariant). If s ' t, then ⇑ s ' ⇑ t.

Proof. It suffices to show that ⇑ (σ • s) = σ • ⇑ s for all s and σ.
Induct on s; in the inductive case s = tagC⇒C′ t:

⇑ (σ • s) = ⇑ tagσ•C⇒σ•C′ σ • t
= (⇑ (σ • t / σ • C′)) • (σ • C)
= (σ • ⇑ (t /C′)) • (σ • C) (by I.H.)
= σ • ((⇑ (t /C′)) • C)
= σ • ⇑ tagC⇒C′ t
= σ • ⇑ s

While U is not equivariant (for example, it transforms
(λx1. x1)(λx2. x2) into (λx. x)(λx. x)), it does respect
α-equivalence.

Lemma 10 (U respects α-equivalence of resolved terms). If s =α

t and s = R(s′) and t = R(t′), then U(s) =α U(t).

Proof. By the definition of (=α), we want to show thatR(U(s)) '
R(U(t)), knowing just that R(s) ' R(t). First, use Lemma 1 to
see that:

R(U(s)) = R(U(R(s′))) ' R(s′) = s

R(U(t)) = R(U(R(t′))) ' R(t′) = t

Thus,R(U(s)) ' R(R(U(s))) ' R(s) ' R(t) '
R(R(U(t))) ' R(U(t)) (using the fact that R(R(t)) = t for all
terms t).

To appear in ICFP’15 9 2015/7/14

Theorem 3 (Hygiene). If s =α t then desugar(s) =α desugar(t).
Likewise, if s =α t then resugar(s) =α resugar(t).

Proof.

desugar(s) = ⇓ (R(s)) ' ⇓ (R(t)) = desugar(t)

The middle step is valid because R(s) ' R(t) by the assumption
that s =α t and because ⇓ is equivariant by Lemma 8.

resugar(s) = U(⇑ (R(s)))
' U(R(⇑ (R(s)))) by Lemma 7
' ⇑ (R(s)) by Lemma 1
' ⇑ (R(t))
' U(R(⇑ (R(t)))) by Lemma 1
' U(⇑ (R(t))) by Lemma 7
= resugar(t)

5. From Individual Terms to Evaluation
Sequences

We have proved three properties about resugaring: Emulation, Ab-
straction, and hygiene. All three of these properties, however, only
talk about individual terms, not entire evaluation sequences. In par-
ticular, not every core step will be resugared to a surface evaluation
step; sometime a core term cannot be resugared so the correspond-
ing surface step will be skipped. Recall the final example (column
3) in Fig. 1. The third core evaluation step (where the outer if
is evaluated away) is skipped. We can now better justify it being
skipped: showing a surface term for it would violate Abstraction,
since this term does not have honest tags — the tag claims that the
if node has one identity (which originated from sugar), while it
actually has another (which originated from user code).

Here is the full core evaluation sequence. We omit a couple
of evaluation steps where a constant simplifies to a value, such as
VERBOSE→ true. We also omit node subscripts, since they won’t
be relevant to the discussion:

let port = 80 in
[C1 ⇒ C2]
let port = if true then

(if VERBOSE
then STDERR
else DEVNULL)
else DEVNULL in

write("Port: " + to str(•), •)
↓

[C1 ⇒ C2]
let port = if true then

(if VERBOSE
then STDERR
else DEVNULL)
else DEVNULL in

write("Port: " + to str(80), •)
↓

[C1 ⇒ C2]
let port = if VERBOSE

then STDERR
else DEVNULL in

write("Port: " + to str(80), •)
↓

[C1 ⇒ C2]
let port = STDERR in
write("Port: " + to str(80), •)

↓

write("Port: " + to str(80), STDERR)
↓

write("Port: " + "80", STDERR)
↓

write("Port: 80", STDERR)
↓

void

The surface evaluation sequence, however, is much more sparse:

let port = 80 in
log "Port: " + to str(•)
to (if VERBOSE then STDERR else DEVNULL)
when true

↓
log "Port: " + to str(80)
to (if VERBOSE then STDERR else DEVNULL)
when true

↓
void

We have argued that it is good that the third core evaluation step
was not resugared. But it should be worrisome that all the other
steps were skipped as well. It would be nice, for instance, to show
evaluation steps for the string being logged:

log "Port: " + to str(80)
to (if VERBOSE then STDERR else DEVNULL)
when true

↓
log "Port: " + "80"
to (if VERBOSE then STDERR else DEVNULL)
when true

↓
log "Port: 80"
to (if VERBOSE then STDERR else DEVNULL)
when true

These steps were not shown, however, since it would break the
Emulation property. Since the sugar’s let has been substituted
away by the time these string operations are performed, these
hypothetical surface steps would not desugar into the actual core
evaluation steps.

Fortunately, the log sugar can be refactored to show these steps,
simply by let-binding the message to be printed:

log α to β when γ
⇓

let msg = α in
let port = if γ then β else DEVNULL in

write("Port: ", msg, port)

After this change, the reductions for the message argument to
log are shown. We will not show the entire evaluation sequence,
but one of the core steps is:

[C1 ⇒ C2]
let msg = "Port: " + "80" in
let port =

if VERBOSE then STDERR else DEVNULL in
write(msg, •)

which gets resugared to the surface term:

log "Port: " + "80"
to (if VERBOSE then STDERR else DEVNULL)
when true

While this particular instance of calling the log sugar shows
nice surface steps, the fact that the sugar had to be rewritten begs

To appear in ICFP’15 10 2015/7/14

the question of whether it must in all cases. We will use the phrase
coverage to talk about the number of steps a sugar shows: a sugar
with good coverage shows many steps in the reconstructed surface
evaluation sequence. In this section, we introduce theory to help
show when this is the case. For this particular sugar, we will be
able to apply the general theory to show that, whenever α→ α′,

log α to β when γ → log α′ to β when γ

Towards this end, we will first talk about evaluation contexts (a
traditional concept) and non-evaluation contexts (a new concept),
then state a general Coverage theorem, and then show how that
theorem can be applied in this case.

Terminology Switch To better match typical terminology, we will
now switch to calling patterns C as contexts, and write the substi-
tution of α1 → t1, ..., αk → tk into the context C as C[t1, ..., tk].

5.1 Evaluation Contexts and Non-evaluation Contexts
Evaluation contexts [4] are contexts of a single hole obeying certain
syntactic criteria. In our setting, it is possible that the terms plugged
into the evaluation context’s hole depend on the evaluation context;
hence we will instead work with enclosing evaluation contexts
E, t1, ..., tk, where E is an evaluation context and t1, ..., tk are
terms (that may depend on E and each other). Evaluation contexts
typically enjoy the following properties, which we will make use
of:

Step If E[t] takes a step, then E[t]→ E[t′] for some t′.

Composition If E1 and E2 are evaluation contexts, then so is
E1[E2].

Independence If E[α, t1, ..., tk] is an evaluation context over
α and E[t, t1, ..., tk] → E[t′, t1, ..., tk], and E[α, t′1, ..., t

′
k]

is also an evaluation context over α, then E[t, t′1, ..., t
′
k] →

E[t′, t′1, ..., t
′
k]. (In other words, the reduction of a redex does

not depend on things outside of it, except insofar as they may
cause the redex to be located elsewhere.)

In our running example, for any terms t1 and t2, the context
E[α] defined by:

let msg = α in
let port = if t1 then t2 else DEVNULL in

write("Port: ", msg, port)

is an evaluation context.
To state the Coverage theorem, we will need a related but new

concept, called a non-evaluation context. A non-evaluation context
is the opposite of an evaluation context: its redex (the next subterm
within it to be reduced) is outside of its holes. Using the same
example, for any term t that can take a step, the context C[β, γ]
defined by:

let msg = t in
let port = if β then γ else DEVNULL in

write("Port: ", msg, port)

is a non-evaluation context. In general, a non-evaluation context is a
contextC[α1, ..., αn] that can be written asC′[t, α1, ..., αn] where
for all t1, ..., tk, C′[α, t1, ..., tn] is an evaluation context over α.

5.2 Evaluation Steps for Non-evaluation Contexts
The Coverage theorem we will use to prove that a sugar will show
certain steps will be built up in two parts. First, we will lift the
notion of evaluation to apply to non-evaluation contexts, so that it
makes sense not only to talk about a term taking a step t → t′,
but also of a non-evaluation context C taking a step C → C′. The
Coverage theorem will then lift this notion to surface terms as well.

Lemma 11. Let C be a non-evaluation context.

If ∃E, t1, ..., tk. E[C[t1, ..., tk]]→core E[C′[t1, ..., tk]]
then ∀E, t1, ..., tk. E[C[t1, ..., tk]]→core E[C′[t1, ..., tk]]

Proof. Let E, t1, ..., tk be the existentially quantified variables and
E′, t′1, ..., t

′
k be the universally quantified ones. By the definition

of non-evaluation contexts, C[α1, ..., αk] = E∗[t∗, α1, ..., αk]
(for some E∗, t∗, where E∗ is an evaluation context over its first
hole). By the composition property above, E[E∗] and E′[E∗] are
evaluation contexts. By the step property, there exists a term t∗∗

such that:

E[C[t1, ..., tk]] = E[E∗[t∗, t1, ..., tk]]
→ E[E∗[t∗∗, t1, ..., tk]]
= E[C′[t1, ..., tk]]

and by the independence property,

E′[C[t′1, ..., t
′
k]] = E′[E∗[t∗, t′1, ..., t

′
k]]

→ E′[E∗[t∗∗, t′1, ..., t
′
k]]

= E′[C′[t1, ..., tk]]

When this holds, we will say thatC → C′, and whenC1 → C2 →
... → Cn, we will say that C1 →∗ Cn. Thus we can talk about
evaluation steps for non-evaluation contexts in the core language.

Finally, we can state the Coverage theorem that generalizes the
previous lemma to also work on surface terms that must be desug-
ared before being evaluated (→∗core refers to actual evaluation steps
in the core language, and→∗surf refers to reconstructed evaluation
steps in the surface language):

Theorem 4 (Coverage). If desugar(C) →∗core desugar(C′), then
∀E, t1, ..., tk, E[C[t1, ..., tk]]→∗surf E[C′[t1, ..., tk]]

Proof. We just have to show that ⇓ (E[C[t1, ..., tk]]) →∗core
⇓ (E[C′[t1, ..., tk]]), given the hypothesis. Using the above lemma
and the fact that desugaring is compositional:

⇓ (E[C[t1, ..., tk]]) = ⇓E[⇓C[⇓ t1, ...,⇓ tk]]
→∗core ⇓E[⇓C′[⇓ t1, ...,⇓ tk]]

= ⇓ (E[C′[t1, ..., tk]])

Similarly to the previous lemma, when this holds, we will say
that C →surf C

′, and when C1 →surf C2 →surf ... →surf Cn,
we will say that C1 →∗surf Cn. Thus we can talk about evaluation
steps for non-evaluation contexts in the surface language.

Let us illustrate this theorem with our log example. Suppose
that t → t′ for some terms t and t′. Since the context E[α] given
by

let msg = α in
let port = if t1 then t2 else DEVNULL in

write("Port: ", msg, port)

is an evaluation context, we know that E[t]→ E[t′].
Next, define Ccore[β, γ] to be the non-evaluation context given

by:

let msg = t in
let port = if β then γ else DEVNULL in

write(msg, port)

and C′core[β, γ] to be the non-evaluation context:

let msg = t′ in
let port = if β then γ else DEVNULL in

write(msg, port)

To appear in ICFP’15 11 2015/7/14

Likewise, define Csurf [β, γ] to be a context in the surface
language that desugars to Ccore:

log "Port: " + t to β when γ

and C′surf to be the surface context with t′:

log "Port: " + t′ to β when γ

By Lemma 11, Ccore → C′core. And by the coverage theorem,
using the fact that ⇓Csurf = Ccore and ⇓C′surf = C′core, we
learn that for all β and γ,

log t to β when γ → log t′ to β when γ

6. Implementation
We have implemented a prototype of this system and tested it on
a simple language. Implementing this system for a real language
in the wild requires the same effort as that discussed in previous
work [13, section 7]. In particular, a core evaluation sequence needs
to be obtained; this sequence is the starting point for resugaring
(which attempts to resugar each core term). This can be obtained
by instrumenting the evaluator, or by modifying the program be-
fore evaluating it. Any system that works by syntactic rewriting
and exposes intermediate syntactic terms—such as some theorem
provers and term-rewriting systems—would be even easier to adapt
to work with our resugarer, so long as it is amenable to representing
terms as ASDs.

7. Related Work
There is a long history of trying to relate compiled code back to
its source. This problem is especially pronounced in debuggers for
optimizing compilers [6]. The previous work on resugaring [13]
describes these in more detail and explains why they address a
strictly weaker problem (relating locations rather than reconstruct-
ing terms, and not providing semantic guarantees); the same rela-
tionship applies to our work. Compared to the previous resugaring
work, we have discussed the use of ASDs and scope resolution in
order to (i) achieve hygiene, and (ii) give stronger formal proper-
ties: see Coverage in Theorem 4 and Abstraction in Theorem 2.

Van Deursen et al. [17] formalize the concept of tracking the
origins of terms within term rewriting systems (which in their case
represent the evaluator, not the syntactic sugar as in our case).
They go on to show various applications, including visualizing pro-
gram execution, implementing debugger breakpoints, and locating
the sources of errors. Their work does not involve the use of syntac-
tic sugar, however, while our work hinges on the interplay between
syntactic sugar and evaluation. Nevertheless, we have adopted their
notion of origin tracking for our transformations.

We now list several related works that served as inspiration for
or are related to our work, or could be used in place of some of our
components. None of these, however, actually offers resugaring,
which is our principal focus.

Specifying Binding Structure There is a plethora of languages
for specifying the binding structure for a programming language.
We choose the binding algebra of Romeo [16] because it is pow-
erful enough to specify, e.g. let, let*, and letrec, while still
being strongly compositional in a way that allows ourR and U op-
erations to have a simple inductive definition. There are, however,
many other binding specification languages of equal merit. Bind-
ing specification in the Ott semantic engineering tool [14] is very
similar to Romeo’s. Likewise, Weirich et al. give a set of binding
combinators in Haskell of similar power [18].

Neron et al. [11] introduce scope graphs as a formal representa-
tion for binding structure. Scope graphs are more powerful than

other binding structure representations in that they handle mod-
ule scope. While scope graphs represent binding structure, how-
ever, they do not specify how to obtain it (a crucial requirement
for our use): this is left for other systems such as the group’s pre-
vious NaBL name binding language [9]. While NaBL itself lacks
expressive power—it cannot describe the binding structure of, e.g.,
let*—we believe our work could be adapted to work with scope
graphs on top of a different binding declaration language.

In contrast to these efforts, the typed HOAS [12] and PHOAS [2]
efforts are excellent representations of abstract syntax, but do not
say how to construct that syntax in a language-agnostic way. We
therefore believe it would take much more effort to utilize them for
scope resolution. Nevertheless, our work is largely agnostic to the
differences between these systems so long as they can satisfy the
core needs of scope resolution: taking a surface term and the scop-
ing rules for the surface language and assigning fresh subscripts to
all variable declarations.

Hygienic Transformations A detailed comparison of our ap-
proach to hygiene against traditional hygienic algorithms is given
in Section 3.

Traditional approaches to hygiene suffered from an inability to
formally state a general specification for hygiene. The difficulty
is that the real goal for hygiene is for macros (or syntactic sugar)
to preserve α-equivalence, but α-equivalence is typically only de-
fined for the core language. Thus Herman and Wand advocate that
macros specify the binding structure of the constructs they intro-
duce, and build a system that does so [7]. Romeo follows in these
footsteps with a more powerful system. We use Romeo’s binding
algebra to specify surface language α-equivalence, thus allowing
the direct statement of hygiene in Theorem 3: desugaring (and re-
sugaring) preserve α-equivalence.

An interesting alternative approach is put forward by Erdweg
et al. with the name-fix algorithm [3]. name-fix also makes use of
scope resolution, albeit in a different way than we do. Instead of
using scope resolution to avoid capture in the first place, name-fix
uses it to detect capture and rename variables as necessary to repair
it after the fact. Both name-fix and our system assume that nodes
have identity, but we make the additional assumption that variables
have subscripts that can be set by the resolution algorithm. We also
give a general algorithm for resolving scope given scoping rules
for a language, whereas name-fix assumes the resolution function
is provided to it.

A recent piece of work on hygienic transformations by Adams [1]
advances the theory of hygiene by giving a relatively algorithm-
independent notion of hygiene, and using it to derive an elegant
hygienic transformer. We are able to show a more direct definition
of hygiene (preserving α-equivalence), in exchange for requiring
the scope of the surface language to be declared, which Adams
avoids in keeping with the hygiene tradition.

Acknowledgments
We thank Eelco Visser, Sebastian Erdweg, Paul Stansifer, and
our anonymous reviewers for their feedback. We especially thank
Pierre Neron for his extremely detailed comments. This work was
partially supported by the US National Science Foundation.

References
[1] M. D. Adams. Towards the essence of hygiene. In Principles of

Programming Languages, 2015.

[2] A. Chlipala. Parametric higher-order abstract syntax for mechanized
semantics. In International Conference on Functional Programming,
2008.

To appear in ICFP’15 12 2015/7/14

[3] S. Erdweg, T. van der Storm, and Y. Dai. Capture-avoiding and hy-
gienic program transformations. In European Conference on Object-
Oriented Programming, 2014.

[4] M. Felleisen and R. Hieb. The revised report on the syntactic theories
of sequential control and state. Theoretical Computer Science, 103(2):
235–271, 1992.

[5] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with
variable binding. Formal Aspects of Computing, 13(3–5):341–363,
2000.

[6] J. Hennessy. Symbolic debugging of optimized code. Transactions on
Programming Languages and Systems, 4(3), 1982.

[7] D. Herman and M. Wand. A theory of hygienic macros. In European
Symposium on Programming Languages and Systems, 2008.

[8] E. Kohlbecker, D. P. Friedman, M. Felleisen, and B. Duba. Hygienic
macro expansion. In ACM Conference on LISP and Functional Pro-
gramming, 1986.

[9] G. Konat, L. Kats, G. Wachsmuth, and E. Visser. Declarative name
binding and scope rules. In Software Language Engineering, 2012.

[10] P. J. Landin. The mechanical evaluation of expressions. The Computer
Journal, 6(4):308–320, 1964.

[11] P. Neron, A. Tolmach, E. Visser, and G. Wachsmuth. A theory of name
resolution. In European Symposium on Programming Languages and
Systems, 2015. To appear.

[12] F. Pfenning and C. Elliot. Higher-order abstract syntax. In Program-
ming Languages Design and Implementation, 1988.

[13] J. Pombrio and S. Krishnamurthi. Resugaring: Lifting evaluation se-
quences through syntactic sugar. In Programming Languages Design
and Implementation, 2014.

[14] P. Sewell, F. Z. Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar,
and R. Strnisa. Ott: Effective tool support for the working semanticist.
In International Conference on Functional Programming, 2007.

[15] M. Sperber, R. K. Dybvig, M. Flatt, A. van Straaten, R. Findler,
and J. Matthews. Revised [6] Report on the Algorithmic Language
Scheme. Cambridge University Press, 2010.

[16] P. Stansifer and M. Wand. Romeo: a system for more flexible binding-
safe programming. In International Conference on Functional Pro-
gramming, 2014.

[17] A. Van Deursen, P. Klint, and F. Tip. Origin tracking. Journal of
Symbolic Computation, 15(5–6), 1993.

[18] S. Weirich, B. Yorgey, and T. Sheard. Binders unbound. In Interna-
tional Conference on Functional Programming, 2011.

To appear in ICFP’15 13 2015/7/14

