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Abstract. The PLT Scheme Web Server uses continuations to enable a natural, console-like program
development style. We describe the implementation of the server and its use in the development of an appli-
cation for managing conference paper reviews. In the process of developing this application, we encountered
subtle forms of interaction not directly addressed by using continuations. We discuss these subtleties and
offer solutions that have been successfully deployed in our application. Finally, we present some details on
the server’s performance, which is comparable to that of the widely-used Apache Web server.

1. The Structure of Web Programs

Consider the following sequence of Web interactions:

1. A user examines a list of books.

2. The user requests the page for book A.

3. The user presses the “buy now” button on the page showing book A.

As expected, the application registers a purchase for book A. This behavior, which corre-
sponds to a traditional console application, seems entirely reasonable. Consider, however,
the following sequence with the same implementation (the Wi name browser windows):

1. The user examines a list of books (W1).

2. The user requests the page for book A in a new browser window (W2).

3. The user switches to W1.

4. The user requests the page for book B in a new browser window (W3).

5. The user switches to W2 and presses the “buy now” button on it.

In some implementations, this sequence of interactions can result in a purchase of book B
rather than of A. This is obviously not at all what the user intended.

∗ This research is partially supported by multiple NSF grants. Preliminary versions of parts of this
material have appeared in print [11, 18, 20, 23].

† Current Affiliation: Google, Inc.
‡ Current Affiliation: Galois Connections, Inc.

c© 2006 Springer Science+Business Media, Inc. Manufactured in The Netherlands.

paper.tex; 30/12/2006; 13:10; p.1



2

This behavior is sadly not hypothetical. Several of the authors have encountered it on
multiple Web sites, including major commercial applications such as travel sites [24]. This
has resulted, for instance, in colleagues being booked on the wrong flights. One particular
travel Web has since fixed their software, but only slightly: as of September, 2004, this
scenario results in an error instead of the wrong purchase.

Why do Web applications, even those built by corporations that depend heavily on
their Web presence, behave thus? Two factors complicate the development of Web software
relative to traditional console software. The first is that the Web browser gives users the
ability to traverse a web of interaction through the use of back and forward buttons, window
cloning operations, and so on. The second is that, for scalability, the Web is built atop a
stateless interface, which complicates the structure of interactive Web software.

How does the statelessness of the Web’s cgi protocol [32] (and of related apis such
as that for Java’s servlets [42]) influence program structure? A Web server invokes an
application on request from a client, and sends the application’s intermediate output to
the client awaiting further inputs and other decisions. Because of statelessness, however,
the application then terminates. It therefore becomes the responsibility of the application
writer to store enough information—both the control context and data bindings—to then
restore the computation if the user ever chooses to interact.1 In response to this constraint,
Web programmers have developed some standard patterns for codifying an interactive Web
computation:

− Programmers develop programs that have several distinct, root-level entry points, one
per interaction point. That is, the Web application either consists of several small
programs or of one program that uses some piece of the input to decide which main
function to call.

− Programmers use a variety of mechanisms, such as “hidden fields” and “cookies”, to
record the data and control contexts. These data must be conveyed from one fragment
of computation to the next, either by storage on the server or by being sent to and
returned from the client. Developers must be careful to not confuse these different
mechanisms for each other.

While programmers try to adhere to these conventions, it is clear that following these
rules produces unnatural—indeed, inverted—code. Because of this structural inversion, it
becomes onerous to maintain and evolve code through bug fixes and requirements changes.

A semantic explanation of the first pattern is due to Christian Queinnec [38]. According
to Queinnec, Web browsing in the presence of dynamic Web content generation is the
process of capturing and resuming continuations.2 With this suggestion in mind, we can
now name the cgi program design pattern: continuation-passing style (cps) [13]. Roughly

1 In this paper, we use “interaction” to refer to one communication between a Web application and its
user; “interaction point” to refer to a syntactic expression in the Web application that enables interaction
to take place; and “computation” to refer to a run of the Web application, which usually consists of a
sequence of interactions.

2 This idea also appears in Hughes’s paper on arrows [21] and Paul Graham’s work on Viaweb [17].
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speaking, a function in cps receives its inputs and its continuation (another function); then
it performs its task; and finally, it hands off the result of this task to the continuation. If
each continuation has a name, turning a program in cps into a cgi program is straightfor-
ward. When a function has performed its task it outputs the result and the name of the
continuation. The browser, in response, submits this name and inputs to the server, and
the program’s entry point dispatches to the function of this name.

The dual problems of code inversion and improper data serialization cause many of
the Web application failures we have discussed. We have therefore explored an alternative
framework for writing Web applications and report on our results in this paper. Specifically,
we present the PLT Scheme Web Server [18], a server written in PLT Scheme [12] that
uses first-class continuations to enable direct-style programming [10] for Web applications.
In addition to describing the server, we present its use as an application platform through
several illustrative examples, including a production-quality application for conference pa-
per management called Continue. We also demonstrate that building this application
has helped us design and integrate better paradigms for programming interactive Web
applications.

In describing this work, the paper presents several contributions. We demonstrate weak-
nesses in the simple continuation-based pattern, and show how to extend it to richer
patterns through new primitives. We show that the continuation-based framework naturally
results in interesting functionality such as one-shot urls. We discuss the nature of Web
data and explain errors such as those discussed at the beginning of this section. Finally,
we present a non-trivial system with two tiers—the server and Continue—implemented
entirely in PLT Scheme, as an illustration of a real-world use of a functional language.
(Indeed, using the continuation-based programming style increases the functional nature
of the application code.)

This paper is organized as follows. Section 2 describes the PLT Scheme Web Server. It
describes static and dynamic document service followed by the rich set of control primitives
offered by the server. It presents our resource management strategies, and finally offers a
performance comparison to some other Web programming frameworks. Section 3 describes
the Continue application, highlighting an instance where the Web Server’s primitives
were especially or insufficiently useful. Section 4 identifies and then addresses the problem
we encountered implementing Continue: the use of one continuation to represent multiple
futures depending on the user’s choice. Section 5 summarizes what we have learned from
several years of experience about programming style and its interaction with the different
flows of data on the Web. The remaining sections discuss related work and offer concluding
remarks.

2. The PLT Scheme Web Server

This section outlines the use of the PLT Scheme Web Server. We focus primarily on the
generation of dynamic content, describing the primitives offered by the server. We also
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(unit/sig () (import servletˆ)
(define TITLE ”My first Web page”)
‘(html (head (title ,TITLE ))

(body
(h1 ,TITLE )
(p ”Hello, world!”))))

Figure 1. A servlet that defines a title and uses it to produce a simple Web page containing a message.

discuss some of the problems and solutions pertaining to resource management and browser-
supported user interactions.

2.1. Serving Static Pages

A Web server responds to http requests by reading Web pages from files on disk. The PLT
Scheme Web Server uses the common approach of specifying a directory to be the root of
static content and mapping urls directly to the filesystem structure beneath. Section 2.7
discusses the performance of the server on static content.

2.2. Serving Dynamic Content

The server specifies a separate directory for dynamic content generators (“servlets”). Each
file in the directory is a Scheme program that defines a PLT Scheme module called a
unit [15]. When invoked, this unit produces a Web page.

Servlets can leverage Scheme’s list-manipulation primitives by describing Web pages as
X-expressions [11, 25]—S-expressions that represent xml [6]—instead of as strings.3 Figure
1 is a complete servlet that uses quasiquote [37] (abbreviated by a single open quote or
“back-quote”) to create an xhtml4 page, with unquote (abbreviated by a comma) to
reference the definition of TITLE . (The suffix ‘ˆ’ in servletˆ is a syntactic convention used
to designate names of interfaces.) More general servlet forms, not shown here, allows the use
of other content generation mechanisms, ranging from more sophisticated html-creation
tools to servlets that produce content in formats entirely unrelated to html.

Units are first-class values, so servlets can be stored in a cache by the server. This
cache significantly speeds up execution by avoiding I/O, parsing, and compilation for each
invocation. In addition, it also allows servlets to maintain local state across invocations. A
servlet that takes advantage of this is shown in figure 2.

3 There are other Scheme representations of xml including those by Kiselyov [22] and Nørmark [33].
4 xhtml [49] is a reformulation of html 4.0 into an XML language. We employ xhtml because it forces

the use of balanced tags, which simplifies recursive document generation by eschewing special cases.
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(define count 0)
(unit/sig () (import servletˆ)

(set! count (add1 count))
‘(html (head (title ”Counter”))

(body
(p ”This page was generated by a computer program.”)
(p ”The current count is ” ,(number→string count)))))

Figure 2. A servlet to demonstrate state saved across invocations.

send/suspend : (url → X-Expression) → http-Request
request-bindings : http-Request → listof Binding
exists-binding : Symbol × listof Binding → Boolean
extract-bindings : Symbol × listof Binding → listof String
extract-binding/single : Symbol × listof Binding → String

Figure 3. Contracts for the PLT Scheme Web Server functions.

2.3. Servlets that Interact

As we noted above, interactions between users5 and servlets can be understood as capturing
and resuming continuations. Our server takes advantage of Scheme’s first-class continua-
tions to provide servlet developers with a key primitive for creating interaction points:
send/suspend .

A servlet can use send/suspend to send an xhtml page to the client and to suspend
execution until the client issues a request.6 The send/suspend function captures and stores
the servlet’s continuation, suspends the servlet, then sends the xhtml page (which is the
heart of the response) to the client’s browser. The function also generates a unique url
that it associates with this continuation. The servlet typically embeds this url in the
generated Web page; when the user responds to the page by clicking a link to the unique
url or submitting a form whose action attribute is the unique url, the server resumes
the continuation and send/suspend returns with the user’s request. As we demonstrate in
section 3.1, however, there are cases when a servlet may choose to not use the url in the
generated document, but rather send it to the user by other means.

As figure 3 shows, send/suspend consumes a function of one argument, which itself
consumes a unique url and generates an xhtml page. The unique url, conventionally

5 Two categories of people “use” a server: the end-users who interact with a Web application running
on the server and the developers who create them. In this paper, we will use the term “users” to refer to
the former group, and “developers” for the latter.

6 In the terminology of http, a message from the browser to the server is a request, while one from the
server to the browser is a response. This does not always match the colloquial use of these terms, because
the user operating the browser may be “responding” to information from the server, e.g., choosing a book
from a list of presented choices. Nevertheless, in this paper we adhere to the http convention.
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(unit/sig () (import servletˆ)
;; helper function
(define (get-number which-number)

(define req
(send/suspend
(lambda (k-url)

‘(html (head (title ,which-number ” number”))
(body
(form ([method ”post”] [action ,k-url ])

”Enter the ” ,which-number ” number: ”
(input ([type ”text”] [name ”number”]))
(input ([type ”submit”]))))))))

(string→number (extract-binding/single ’number (request-bindings req))))
;; main body
‘(html (head (title ”Product”))

(body
(p ”The product is: ”

,(number→string (∗ (get-number ”first”) (get-number ”second”)))))))

Figure 4. An interactive servlet for curried multiplication.

called k-url , serves as the key to the stored continuation: when the browser requests it,
the continuation is resumed and send/suspend returns. Section 2.5 will describe how the
urls are constructed and how the server maps requests for these urls to their associated
continuations.

The return value from send/suspend holds information from the browser’s request,
including the requested uri, http headers, and a list of bindings. The bindings, accessible
via the request-bindings function, are the combined parsed representations of the url’s
query string and http post data, which are the two mechanisms for transmitting form
data to the server. The value or values bound to a particular key can be retrieved with the
extract-bindings and extract-binding/single functions; the latter function is more convenient
when the key is guaranteed to be present and unique (and checks for this fact).

Figure 4 presents Queinnec’s illustrative servlet. This code implements curried multi-
plication, asking for each number on a separate page. Notice how this Web program is
written in a natural, direct style, despite its two interaction points. In general, direct-style
programs naturally accommodate the flow of information between client and server. These
programs are easier to match to specifications, to validate, and to maintain than their
equivalent cps or cgi versions.

paper.tex; 30/12/2006; 13:10; p.6



7

script user

script user script user

(a)

(b) (c)

Figure 5. The effect of user interactions.

2.4. Additional Interaction Primitives

Besides allowing sequential execution, Web browsers give users the flexibility to bookmark
intermediate continuations and explore various choices. Figure 5 presents this graphically.
Here, each vertical bar represents the relative timeline of an agent (i.e., the sequence of
events), with time increasing downward. The horizontal bars represent a message sent
from the tail to the head of the arrow. The idea is that each message resumes the other
computation in the state it was in earlier—as if it had suspended in time waiting for
this message. Figure 5 (a) presents the traditional client-server sequence of interactions,
which reflects classical coroutine behavior. Figure 5 (b) shows the use of the back-button
(the dotted-line). This allows the user to return to a prior coroutine resumption point.
Pressing the back-button is, furthermore, a silent action, because the browser does not
notify the server of the button-press; the application must either infer this from the next
user interaction, or be robust enough to not care. Figure 5 (c) illustrates the use of cloning,
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Table I. Additional interaction primitives.

primitive contract resumable backtrackable

send/suspend (url → X-Expression) → http-Request yes yes

send/forward (url → X-Expression) → http-Request yes no

send/back X-Expression → Void no yes

send/finish X-Expression → Void no no

which now generates two copies of the same running computation, each with additional
browsing power.

This navigation power demands a careful specification of program behavior. Although
it is desirable to allow a user to use the back button and to resubmit forms while a
computation is in progress, once the computation is complete, resubmission of interme-
diate forms may cause problems. When a program finishes interacting with the user it
may record the final outcome of the computation by updating persistent state, such as a
database. These updates must happen at most once to prevent catastrophes. For instance,
one of the authors of this paper encountered this type of error when renewing two Internet
domain name registrations. The penultimate page of the registration program indicated
that the user should wait for the server to finish processing the renewal request. After a
moment, it automatically proceeded to the final page, confirmed the renewal, and billed
the author’s credit card. Hitting the back button (to renew the second domain) returned
to the processing page, which billed the credit card again, renewing the first domain for an
additional year. Another author had a similar experience when saving a receipt page: the
act of saving reloaded the page, which resulted in a double-billing.

To support fine-grained control over user interactions, the PLT Scheme Web Server
provides the following primitives in addition to send/suspend . To support terminating a
computation, the server provides send/finish. When a program invokes this primitive, the
server releases all continuations associated with that servlet instance. When a user attempts
(e.g., via a bookmark) to access a reclaimed continuation, a page directs them to restart the
computation. If a servlet must prevent a consumer from backtracking amidst a session—as
the domain registar should have done after updating the persistent state—the send/forward
primitive will clear the servlet’s suspended continuations before inserting a continuation
to correspond to the current interaction. This enables consumers to proceed forward, but
not repeat previous interactions. The most basic primitive is send/back , which does not
generate a fresh url; the other primitives are built atop send/back (see, for instance,
figure 15). Table I compares the navigational capabilities of these interaction primitives.

These operators do not properly cover one other standard browser operation, reloading,
which is triggered not only by the reload button but also by actions such as saving,
printing, cloning, or even hitting navigation buttons like back and forward (if the page
has not been cached or the cached copy has expired). Reloading re-sends the request that
generated the current page, thereby re-executing code starting from the previous interaction
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point. Because of state, however, this fragment of computation may not produce the same
output as before; furthermore, it may have side-effects (which can be arbitrarily complex,
such as charging a credit-card). This is a well-known problem with the http protocol, to
which a popular solution is to use the “post-redirect-get” pattern. Herman [19] shows that
this pattern can be easily encoded as an abstraction atop the PLT Scheme Web Server.
In general, the later a servlet can defer updates to external persistent state (such as a
database), the more they can avoid unexpected interactions in the face of user behavior.
Where such updates happen, it is best to use a primitive such as send/forward to invalidate
the prior interactions.

2.5. Implementation

The Web server is written entirely in PLT Scheme. The core of a Web server is a wait-serve
loop that waits for requests on a designated tcp port. For each request, it creates a thread
that serves the request. Then the server recurs:

;; server-loop : TCP-Listener → Void
(define (server-loop listener)

(define-values (ip op) (tcp-accept listener))
(thread (lambda () (serve-connection ip op)))
(server-loop listener))

For each request, the server parses the first line and the optional headers:

;; serve-connection : Input-port × Output-port → Void
(define (serve-connection ip op)

(define-values (meth url-string major-version minor-version)
(read-request ip op))

(define headers (read-headers ip op))
(define url (string→url url-string))
(define host (find-host (url-host url) headers))
(dispatch meth host port url headers ip op))

The procedure read-request consumes a request from an input port, parses it, and responds
with the request type (get or put), the url, and protocol versions. If parsing fails, it
raises an exception and closes both ports. The actual code also includes a loop to support
http stay-alive, but the code above represents its essence.

When the request is for a static file, a dispatcher uses this information to find the correct
file corresponding to the given url. If it can find and open the file, the dispatcher writes
the file’s contents to the output port; otherwise it writes an error message.

The implementation of send/suspend captures the current continuation, stores it in a
table, and generates a url that contains a reference to that table entry. The table that
stores continuations actually has two tiers. The first tier tracks instances of servlets: every
initiation of a servlet creates a new entry in this tier. (This corresponds to the notion of a
“session” used by some Web apis, but does not require the user to explicitly instantiate the
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session.) The second tier tracks continuations within an instantiation of a single servlet. In
essence, the tables are structured as follows:

servlet instance table

instance-id context × continuations-table

… …

instance-id context × continuations-table

continuations-table

continuation-id continuation

… …

continuation-id continuation

The context keeps track of the current ports and the content of the http-Request. When
a user submits a Web form, the server invokes the corresponding continuation with the
context information. A subsequent use of send/suspend within that execution extends the
same continuation table.

A typical continuation url looks like this:

http://www/servlets/send-test.ss;id38*1*839800468

This url has two principal pieces of information for resuming computation: the servlet
instance-id (id38) and the continuation-id (1). The random number at the end serves as a
nonce to prevent users from guessing continuation urls.

2.6. Resource Management

The cgi interface is designed to make the Web server (the application, not the machine
that runs it) stateless: because the servlet must terminate upon every interaction, it must
store all its pertinent state either in permanent storage on the server machine or transmit
these data to the client. In either case, the Web server itself is not responsible for the state,
which means if the user never resumes a computation, the server does not bear the burden
of reaping resources associated with that user. In practice, however, this simply shifts the
burden to the servlet and its creator.7

By storing continuations on the server, we introduce a garbage collection problem. Every
url created by send/suspend is a reference to a value in the server’s heap. Without further
restrictions, garbage collection cannot be based on reachability (because the server cannot,

7 Naturally, data stored on the heap are susceptible to server failures. PLT Scheme provides interfaces
to persistent storage on the server (such as odbc-compatible databases) and client (such as cookies [26])
so servlets can better tolerate faults.
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for instance, read the bookmark file of every past user). To make matters worse, these
continuations could also hold on to resources, such as open files or tcp connections (to a
database, for example), which the server may need for other programs.

The PLT Scheme Web Server presents two mechanisms that servlet authors can employ
to manage resources:

− Each instance of a servlet has a predetermined lifetime after which its continuations
are automatically reaped. Each use of a continuation updates this lifetime. A running
computation may change the duration of this lifetime, which is measured in real time,
by invoking the adjust-timeout! operator; as a special case, this timeout can be set to
infinity.

− When the servlet terminates, all the continuations associated with that instance of
the servlet are released.8 A user who attempts to access a reclaimed continuation
is redirected to an error page that allows the user to restart the computation. This
policy allows the server to manage resources and to prevent the user from restarting
computations that have completed.

The two-tier structure of the tables facilitates clean-up. When the time limit for an
instance of a servlet expires or when the servlet computation terminates, the instance
is removed from the servlet instance table. This step, in turn, makes the corresponding
sub-table of continuations inaccessible and thus available for garbage collection.

In principle, a mere timeout is not sufficient. While the timeout has the effect of removing
references to the continuations, this does not cover all the possible resources the servlet
instance may be consuming: for instance, it does not cover ports that refer to an external
service such as a database. As a result, these resources would still appear to be consumed,
making them unavailable to other servlets. To avoid this leakage, the Web server needs to
treat the servlet instance as a resource principal, thereby accounting for and eventually
releasing all the resources it consumes.

Fortunately, PLT Scheme has facilities for fine-grained resource management: custodi-
ans [16]. A custodian records a collection of resources such as files and network ports,
sockets, and network listeners, and provides a single primitive for closing them and re-
turning them to the system. The timeout mechanism for shutting down the servlet works
because the reaper and the servlet’s thread share the same custodian.

There are actually numerous custodians in use at any instant by the server. In addition
to the custodians governing each servlet instance, there are custodians for each connection
and for the server itself. Figure 6 depicts the layout of custodians within the Web server.
The entire server runs within a single, top-level custodian, so the administrator can easily
shutdown the entire server. Each time the server listens for a new tcp connection on
the http port, the server first creates a new custodian to manage the connection. After
creating new io ports for the connection, the server loop starts a new thread within the
connection custodian to process the connection. That is, even though in our particular

8 The server uses locks to guard accesses to its data structures. It does not, however, automatically
impose a locking discipline on the servlets.
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Figure 6. Organization of custodians.

custodian strategy there is a one-to-one correspondence between threads and custodians,
the parent thread allocates new network ports within the child’s custodian before the child
thread exists. Thus, the separation of threads and custodians helps with the situation. This
illustrates why custodians, or resource management in general, should not be identified with
individual threads.

An additional reason custodians should not correspond to threads is related to the
resource utilization of servlet instances. Because servlet instances must handle multiple
requests, and thus multiple connections, the birth and death of connections and servlets
proceed independently.

Servlet instances are like procedures that transform requests into responses. As men-
tioned earlier, in version 1.1 of http there may be multiple requests per connection.
Similarly there will be multiple responses per connection in these cases. During the course of
operation, there may be connection errors, or chunked encoding demands, and, of course,
the servlet may not be programmed correctly and may thus leave the connection in an
erroneous state.

To deal with these complications and their resource utilization demands, the thread for
each connection creates a new custodian for each new servlet. Then, the connection thread
locates the appropriate continuation and activates it. The value that the connection thread
receives from this invocation is the response that is sent to the user. The connection thread
may invoke the servlet multiple times, perform operations on either the request or the
response, and manage other aspects of the connection that is unrelated to the computation
that the servlet performs, protecting the servlet from such concerns.
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2.7. Performance

It is easy to write compact implementations of systems with high-level constructs, but
we must demonstrate that we don’t sacrifice performance for abstraction. In this section,
we therefore present experimental evidence in support of our server’s performance. Our
initial focus has been on small- to medium-sized groups of users, such as a small online
communities, research groups, and small intranets.9 All experiments were conducted on
Linux 2.6.7 using Apache/1.3.33, libapache-mod-perl 1.29.0.3-8, and PLT Scheme version
299.402. We used all these systems in their standard configurations.

2.7.1. Static Content
In principle, we would like our server to transfer content from files at about the same rate
as a widely-used server such as Apache [45]. We believed that this goal was within reach
because most of the computational work involves parsing http requests, reading data from
disk, and copying bytes to a (network) port.10

To verify this conjecture, we compared our server’s performance to that of Apache on
files of three different sizes. For each test, the client requested a single file repeatedly.
This minimized the impact of disk speed because the underlying buffer cache should keep
small files in memory. Requests for different files would even out the performance numbers
according to Amdahl’s law [1] because the total response time would include an extra disk
access component that would be similar for both servers.

The results in table II show how the PLT Scheme Web Server compares against Apache.
The client and server software each ran on an AMD Athlon 64 3000+ processor with 512
Mbytes of memory, running Linux 2.4.27, connected by a standard 100 Mbit/s Ethernet
connection. Each ratio column compares the previous two (PLT/Apache). The results were
obtained using the S-client measuring technology [3]. For the historically most common
case [2]—files between six and thirteen kB—our server’s performance is comparable to
Apache’s, especially for small numbers of users. For larger files, which are now more
common due to increasing use of multimedia, the performance of the two servers is quite
comparable. In particular, the files statically served by our Continue Web application—
academic papers in PDF format—range from several hundred kilobytes to more than a
megabyte, and the number of clients tends to be small (roughly, the number of program
committee members assigned to review each paper).

For one and ten kB files, the measurement client’s requests caused both servers to
consume all available cpu cycles. For the larger 100 kB files, both servers drove the network
card at full capacity, so additional measurements would not be instructive.

The space usage of both systems was comparable. The PLT Scheme Web Server con-
sumes about 13 megabytes of memory after thousands of static requests. Apache has a
comparable fixed cost of about 25 megabyes, and an additional cost of about 3 megabytes
per child process. The difference between these numbers does not appear to be significant.

9 As of September 2005, a company in the UK is considering offering Web hosting for users who want
to write their applications atop the PLT Scheme Web Server.

10 This assumes that the server does not use a large in-memory cache for frequently-accessed documents.
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2.7.2. Dynamic Content
A Web server provides operating system-style services. Like an operating system, a server
runs programs (namely servlets). Like an operating system, a server should protect these
programs from each other. And, like an operating system, a server manages resources (such
as network connections) for the programs it runs. Most existing Web servers rely on the
underlying operating system to implement these services: they create a fresh OS process for
each incoming request which necessitates the creation of a new address space, loading code,
and so on. The PLT Scheme Web Server instead uses user-level threads,11 and relies on the
operating system-like facilities provided by the underlying language to offer protection to
individual servlet instances (as discussed in section 2.6). For these two reasons, we should
expect higher performance from our Web server than from conventional servers that use
cgi.

To evaluate dynamic performance, we measured our server against cgi programs written
in C and in Perl, run by the mod perl extension to Apache. Table III clocks a C program’s
binary in cgi and a Perl script in mod perl against a Scheme script producing the same
data. (The table does not contain performance figures for responses of 100 kB and larger
because for those size the network bandwidth becomes the dominant factor just as with
static files.) The C version measures the maximum performance developers can expect of
cgi programs in Apache, while the mod perl version provides a more realistic benchmark
of how Apache is used to serve cgi programs for the same class of applications as PLT.

Our experiments confirm that our server handles more connections per second than cgi
programs written with mod perl in the limit, and particularly for small response sizes.

The table also indicates that each server’s performance degrades with larger responses.
We conjecture that this owes to each server copying the response multiple times. We note
that this problem is orthogonal to the slowdown our server experiences in the face of
concurrent clients, but we need to perform additional experiments to study this question
in more depth. Of course, as computations become more intensive, the comparison becomes
one of compilers and interpreters rather than of servers and their protocols.

These dynamic experiments were designed to test throughput. Because these tests do
not engage in meaningful interactions, the space consumption numbers are not relevant.
We instead report on space consumption in the application context below.

In future we expect to rework our io strategy to handle higher request rates, potentially
in a style similar to Flash [35].

2.7.3. Application Resource Usage
In addition to benchmarks, it is useful to analyze the server on a working application. Here
we present statistics gathered from uses of Continue.

When running Continue we disable timeouts to maximize usability and minimize
frustration, especially close to the deadline. A conference in 2003 of 60 paper submissions
consumed 49 cpu minutes and 159 megabytes. For a more recent conference (early 2005) of

11 The term “user” is used here in the conventional sense when describing thread packages, i.e., as opposed
to system-level threads.
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Table II. Performance for static content service (requests/second).

1kB file 10kB file 100kB file

Clients PLT Apache Ratio PLT Apache Ratio PLT Apache Ratio

2 368.3 311.9 118.1% 368.9 299.4 123.2% 298.0 174.0 171.2%

4 518.9 633.0 82.0% 320.0 402.2 79.6% 319.8 243.3 131.4%

8 325.0 679.9 47.8% 311.2 673.2 46.2% 281.4 300.9 93.5%

16 310.0 740.0 41.9% 315.8 724.2 43.6% 273.2 379.9 71.9%

32 329.2 1099.0 30.0% 311.0 920.0 33.8% 287.3 430.2 66.7%

64 333.4 1357.7 24.6% 314.8 914.1 34.4% 272.5 467.5 58.2%

128 349.8 1187.5 29.4% 254.9 912.5 27.9% 301.5 481.2 62.6%

Table III. Performance for dynamic content generation (re-
quests/second).

C CGIl ModPerl PLT

Clients 1kB 10kB 1kB 10kB 1kB 10kB

8 33.06 30.38 32.05 29.18 146.50 23.42

16 33.29 30.58 33.09 20.80 153.80 22.80

32 33.55 30.74 26.90 11.90 155.80 23.24

40 submissions, the submission and review process required 4427 hits, each of which would
have created a fresh, unreaped continuation.12 For this conference, the server consumed 72
minutes of processor time and 63.8 megabytes of memory. Currently (late 2005), Continue
is concurrently serving four conferences with a total of 256 papers. These have generated
just over 25,000 requests. This has consumed 280 minutes of cpu time and 96 megabytes
of memory. As such, therefore, the memory consumed by this application is extremely
reasonable by modern server standards, and has further been reducing over time reflecting
improvements to the server and to the underlying implementation.

3. Continue

The Continue application, written by the first three authors, supports the paper submis-
sion and review phases for academic conferences. This application, whose user interface is

12 The ratio of hits to papers might look abnormally high, but recall that continuations are generated
not just for each paper, but for each view: every login, listing of unreviewed papers, and so on generates a
fresh continuation.
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;; ask-email : () → Email
;; ask-paper-info : Email → Paper-Info
;; save-paper : Email × Paper-Info → Void
;; send-confirmation-email : Email × Paper-Info → Void
;; show-confirmation-page : Paper-Info → Void

(define email (ask-email))
(define paper-info (ask-paper-info email))
(save-paper email paper-info)
(send-confirmation-email email paper-info)
(show-confirmation-page paper-info)

Figure 7. The skeleton of Continue’s paper-submission code.

discussed elsewhere [23], has been used successfully for several conferences and workshops
spanning diverse communities, including the Computer Security Foundations Workshop,
the International Symposium on Software Testing and Analysis, the ACM Symposium on
Software Visualization, and others. Its performance and stability demonstrate the utility
of the PLT Scheme Web Server.

Most of the application is written in a functional style. The use of send/suspend makes it
possible to create natural abstractions over Web interactions. In this section, we present two
families of code examples from Continue. The first presents a strength of the continuation-
based paradigm for implementing useful functionality. The second points to a deficiency in
the straightforward use of continuations; section 4 presents the solution eventually deployed
in Continue.

3.1. Scenario: Implementing Paper Submissions

The paper submission process is a clear example of the programming convenience that
continuation-based Web programming engenders. The top-level code for paper submission
is shown in figure 7. Thanks to send/suspend , we can write this code in a direct, mostly-
functional style. Both ask-verified-email and ask-paper-info interact with the user, but that
does not prevent them from being treated as abstractions that return values. In contrast,
in a traditional cgi or Java servlet Web application, a function would not be able to both
send a page to the user and handle the user’s subsequent request.

An author who visits the paper submission servlet is first prompted to enter a name
and email address in a form. Submitting this form leads to a second form, for entering
metadata and actually uploading the paper. This form is generated and processed by the
ask-paper-info function. Once the paper is saved to persistent storage with save-paper , the
author sees a confirmation page and receives a confirmation email.

The ask-email function is shown in figure 8. It first presents the paper author with a
form for entering an email address. If the author submits the form without entering an
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(define (ask-email)
(define contract-request

(send/suspend
(lambda (k-url)

‘(html . . .
(form ([action ,k-url ])

. . .
(input ([name ”email”]))
. . .)

. . .))))
(define contact-bindings (request-bindings contact-request))
(define email (extract-binding/single ’email contact-bindings))
(if (string=? email ””)

(ask-email)
email))

Figure 8. A simple implementation of the ask-email function.

email address, it asks again. Otherwise, it returns the email address to its caller, which in
this case is the code from figure 7.

While this implementation of ask-email is acceptable in theory, it is unsatisfactory in
practice because it makes no attempt to validate the email address. The program chair
would ideally like to have a verified email address for every submitted paper, so we imple-
ment the following strategy. When the author submits an email address, the servlet sends a
message to that address. The response Web page simply requires the author to read email;
it does not provide any means to continue the dialog. The author can, however, use the
back button to re-enter the address, if the original submission contained an error.

The email message contains a url that the author must submit via a browser. Since
this url encodes the continuation, the act of submitting it takes the place of clicking on a
Web page element, and thereby resumes the dialog. Because the PLT Scheme Web Server
generates unique urls, the servlet can reasonably assume that

− the email message was legitimately read, and

− the recipient of the email message was indeed the person who intended to submit a
paper to the conference.

In short, the act of resuming the computation itself validates the author’s email address
and intent.13

Figure 9 presents the corresponding code, which has two noteworthy aspects:

13 This pattern of authentication is used much more broadly than just for conference software. It
commonly occurs when registering users to mailing lists and other services.
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(define (ask-email) ;; now returns a validated address!
(define contact-request

(send/suspend
(lambda (k-url)

‘(html . . .
(form ([action ,k-url ])

. . .
(input ([name ”email”]))
. . .)

. . .))))
(define contact-bindings (request-bindings contact-request))
(define email (extract-binding/single ’email contact-bindings))
(if (string=? email ””)

(ask-email)
(begin

(send/suspend ; return value is irrelevant
(lambda (mailed-url)

(send-verifying-email email mailed-url)
‘(html . . .)))

email)))

Figure 9. A more robust implementation of ask-email that verifies the author’s email address.

− Continuations preserve lexical environments, so no extra effort is needed on the part
of the developer to preserve the value of email , even though it is used on either side
of an interaction point.

− The url that send/suspend supplies to the page-generating function (called mailed-
url in this code) need not be used in the resulting Web page.14 Though the Web
page generated by the second use of send/suspend in ask-email is a dead end, the
continuation of this Web interaction point is available via the url sent to the author’s
email address.

The continuation of the send/suspend in the main body of the procedure simply returns
the email address for use in the rest of the computation.

3.2. Scenario: Multiple Links on a Single Page

The paper submission process has a linear flow (save for barring the submission of empty
email addresses), so it can be implemented in a straightforward manner with send/suspend .

14 We expose the send/suspend primitive for such uses, even though in the common case it is easier
to employ an abstraction that automatically binds the continuation, endows the generated form with an
action attribute, and binds the attribute to the continuation.
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This is not, however, the case for all servlets. In this section, we examine two examples
from Continue that highlight the problem caused by more complex control flows.

3.2.1. Generating Links to Papers
Consider the code that generates the reviewer interface to Continue (see figure 10). In
this interface, each paper title is a link to a page that shows that paper’s reviews. Since
the number and content of reviews changes over time, clicking each link causes further
dynamic content generation. In principle, therefore, each link should have a unique url
that represents the generation of that paper’s current review information.

In keeping with the notion that there is always a single continuation, the PLT Scheme
Web Server generates only one url at each suspension point. Since each paper’s link is
derived from the same url, however, each link will resume the same continuation. The
continuation must therefore contain code to dispatch between these choices; the dispatcher
must interpret, from the browser’s request, which link the user clicked on.15

Early versions of Continue generated the links by appending a query string to the url
generated by the server. The dispatch code used the request bindings to determine which
paper the user clicked on, then called the review page function with the paper number
as an argument. Figure 11 shows the relevant pieces of this implementation. (The format
command replaces instances of the substring ”˜a” in its first argument, the format string,
with the content of the additional arguments provided to it.)

3.2.2. Implementing Tabs
The dispatching process in figure 11 is relatively simple, because the papers are automat-
ically indexed by paper numbers. Sometimes, however, the developer must generate an
artificial index for the purpose of dispatching. Consider the navigational tabs included on
pages generated by Continue, such as those shown in figure 10. In the interest of good
program design we wish to abstract over their presentation, which means we intend to
reuse both the code that generates them and the code that dispatches on them.

The code in figure 12 augments the code in figure 11 to implement the tabs shown in
figure 10. The addition of tabs demonstrates that dispatching is not always immediate.
When an indexing scheme is not readily available, the developer has to create more intri-
cate dependencies between the code generating the links and the code dispatching on the
results. In effect, the developer is manually programming a multiplexer (augmenting the
generated urls) and a demultiplexer (the dispatcher). The multiplexer and demultiplexer
must conspire to satisfy a common invariant, so one must not be changed without updating
the other to match. This is shown pictorially in figure 13. Writing this dispatcher therefore
requires the manual application of a programming pattern. Furthermore, the developer
should, in principle, validate the index on submission of the user’s request: a malicious
user might have modified the indices, which may cause the software to expose protected
information or even to crash.

15 The dispatch step is an example of “leakage,” a term coined by Lawall and Friedman [28] for particular
instances of a function caller repeating the work of the function it called.
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Figure 10. Continue’s interface for a sample conference, from a reviewer’s perspective.
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(define (show-reviews-list)
(define request

(send/suspend
(lambda (k-url)

‘(html . . .
,@(map (lambda (paper)

‘(. . .
(a ([href ,(format ” ˜a?paper= ˜a”

k-url
(paper-number paper))])

,(paper-title paper))
. . .))

(all-papers))
. . .))))

(show-paper-reviews
(string→number
(extract-binding/single ‘paper (request-bindings request)))))

Figure 11. Pattern based on send/suspend in early versions of Continue.

The discussion above shows how to add tabs to one particular page generator (showing
the list of reviews). The same tabs must, however, also appear on other pages, such as those
showing the list of papers. To avoid copying code, the developer must therefore abstract
over the generation of tabs, and over their dispatching. Doing this in the natural manner,
however, forces generation and dispatching to reside in different functions, which must
now jointly maintain an invariant. Furthermore, the Web forces all url query strings, and
therefore request bindings, to reside in the same namespace. It is not hard to imagine that
two separate interface elements (or the same element included twice) could use the same key
to store their data in the query string. The resulting collision during dispatch would likely
cause unexpected behavior. Furthermore, it is difficult for the developer who composed
these two elements onto the same page to detect this problem ahead of time without
studying the respective implementations, i.e., the developer cannot treat the abstractions
as reusable black-boxes.

4. Demultiplexing Continuations

Finding a solution to the problems discussed in section 3.2 requires re-examining the
relationship between send/suspend ’s model of a Web page and our conceptual model of
the show-reviews-list page. A careful comparison shows that the problem is an impedance
mismatch. The procedure send/suspend provides a single url to a given page-generation
function, with the implication that the generated page has only one continuation to resume.
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(define (show-reviews-list)
(define request

(send/suspend
(lambda (k-url)

‘(html . . .
(ul ([id ”tabs”])

(li (a ([href ,(format ” ˜a?tab=all” k-url)])
”All Papers”))

(li (a ([href ,(format ” ˜a?tab=review” k-url)])
”Review”))

(li (a ([href ,(format ” ˜a?tab=bidding” k-url)])
”Bidding”)))

. . .
,@(map (lambda (paper)

‘(. . .
(a ([href ,(format ” ˜a?paper= ˜a”

k-url
(paper-number paper))])

,(paper-title paper))
. . .))

(all-papers))
. . .))))

(define bindings (request-bindings request))
(cond

[(exists-binding? ’tab bindings)
(case (extract-binding/single ’tab bindings)

[(”all”) (show-papers-list)]
[(”review”) (show-reviews-list)]
[(”bidding”) (show-bidding-list)])]

[(exists-binding? ’paper bindings)
(show-paper-reviews (string→number (extract-binding/single ’paper bindings)))]
[else (error . . .)]))

Figure 12. Extending show-reviews-list with tabs.

This is true at the implementation level. Conceptually, however, pages generated by pro-
cedures such as show-reviews-list refer to several “virtual” continuations—in the example,
one for each paper and tab—and the user has the power to choose which one the servlet
should “resume”. To reflect this, such pages must refer to several, distinct urls.
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(show-papers-list)

(show-reviews-list)

(show-bidding-list)

(show-paper-reviews …)

k-url

all
review

bidding

paper=…

all

review

bidding

paper=202

paper=208

paper=136

paper=153

Figure 13. Multiplexing and demultiplexing requests.

4.1. A New Interaction Primitive

Our solution is a new interaction primitive, dubbed send/suspend/dispatch [20], whose im-
plementation we discuss in section 4.2. Conceptually, this new primitive does automatically
what the developer earlier did by hand. It maintains a mapping from keys to procedures
representing the rest of the computation; it then generates a fresh key upon demand.
When the user submits a request, the primitive intercepts the request, extracts the key,
and invokes the procedure associated with that key.

To make this process transparent, send/suspend/dispatch has a different interface than
send/suspend :

;; send/suspend/dispatch : ( (http-Request → any) → url → X-Expression) → any

Whereas send/suspend invokes its page-generation function with a single unique url,
send/suspend/dispatch invokes its page-generation function with a function that gener-
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ates unique urls on the fly. This url-generating function, which is the boxed portion of
the interface above and is conventionally called embed/url , consumes a function of one
argument and produces a unique url. When the user requests one of these urls, the
associated function is invoked with the browser’s request datum as its argument.

Figure 14 presents the rewritten version of show-reviews-list , along with a single-function
implementation of tabs. In Figure 12, the developer had to generate a distinguished url
in the page generator:

‘(. . . (li (a ([href ,(format ”˜a?tab=all” k-url)])
”All Papers”)) . . .)

This embedded name, ”all”, was then used to dispatch upon receiving the user’s response:

[( ”all” ) (show-papers-list)]

As a result, the developer had to (a) devise a unique name, (b) manually synthesize a
url, and (c) maintain an invariant between two different fragments of code. While some
of these problems can be ameliorated by helpful abstractions, the third problem remains.
In contrast, as Figure 14 shows, send/suspend/dispatch permits the two code fragments to
be combined:

‘(. . . (li (a ([href ,(embed/url (lambda (show-papers-list)))])
”All Papers”)) . . .)

Notice that embed/url is just a procedure, so it can be passed as an argument to other
procedures, such as tabs. This shows how it is possible to define abstractions for visual
elements and yet incorporate them into a single page.

The argument supplied to embed/url is a function that consumes the request and runs an
arbitrary computation. Because the paper list doesn’t depend on the details of the request,
only which tab or link was clicked, the procedure supplied by the developer ignores its
argument. (This supplied procedure does, however, needs to be a genuine closure: in show-
reviews-list it closes over paper , the iteration variable mapping over paper identifiers.) The
use of send/suspend/dispatch avoids the need to serialize the paper number in the query
string, and also eliminates the need to invent names for the tags.16

While this example uses embed/url to generate anchor elements (links) only, it is cer-
tainly possible to use it to generate a url in any other valid context, such as in the
action field of a form. Unfortunately, because the action is associated with a form, not
with a button, send/suspend/dispatch cannot distinguish between different form buttons:
this must still be done manually in the style of figure 12. Therefore, some users prefer to
use links rather than buttons to represent different choices for the next page.

16 The former is important because it greatly reduces the likelihood that a user (in the case of Continue,
a reviewer) might forge a url and thereby gain access to a document that he should not have seen (such as
reviews for a paper with which he has a conflict of interest). While a general access-control mechanism is
necessary to prevent such attacks, and we have been incorporating one [14], an obscure reference mechanism
provides a baseline of protection.

paper.tex; 30/12/2006; 13:10; p.24



25

(define (tabs embed/url)
‘(ul ([id ”tabs”])

(li (a ([href ,(embed/url (lambda (show-papers-list)))])
”All Papers”))

(li (a ([href ,(embed/url (lambda (show-reviews-list)))])
”Review”))

(li (a ([href ,(embed/url (lambda (show-bidding-list)))])
”Bidding”))))

(define (show-reviews-list)
(send/suspend/dispatch
(lambda (embed/url)

‘(html
. . .
,(tabs embed/url)
. . .
,@(map (lambda (paper)

‘(. . .
(a ([href ,(embed/url

(lambda
(show-paper-reviews (paper-number paper))))])

,(paper-title paper))
. . .))

(all-papers))
. . .))))

Figure 14. show-reviews-list written in terms of send/suspend/dispatch.

A keen reader may notice that the tabs function from figure 14 contains code reminiscent
of continuation-passing style, a practice that we spent the beginning of this paper denounc-
ing. While the argument to embed/url is a closure representation of a continuation, this
represents a purely local transformation, unlike cps, which is global. The vast majority
of the servlet code is still written in direct style. Furthermore, this style of embedding
code is strongly reminiscent of the page-centric Web design methodology espoused by
languages such as ColdFusion or Java Server Pages, where a Web page’s source mixes
presentation with control behavior. While page-centric methods suffer from problems of
scale and maintenance, if at all such a style is natural, send/suspend/dispatch offers an
approximation of it.
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(define (send/suspend/dispatch response-generator)
(let/ec escape

(define (callback→url callback)
(let/ec return-url

(escape (callback (send/suspend return-url)))))
(send/back (response-generator callback→url))))

Figure 15. Implementation of send/suspend/dispatch.

4.2. Implementation

Our initial instinct might be to implement send/suspend/dispatch by creating a hash-table
to maintain the keys, generating fresh entries in the hash-table upon demand, synthesizing
a url that refers to the fresh key, looking up the hash-table on receipt of a request, and
dispatching to the indexed entry of the hash-table. This is the solution we presented in our
prior work [20].

Fortunately, there is a far simpler implementation of the same primitive, which we
present in figure 15. This employs the Scheme form let/ec, which captures an escaping
continuation and binds it to the name specified in the first sub-form (here, respectively,
escape and return-url). Escaping continuations are active only during the dynamic extent
of the expression that created them; they cannot be used to re-enter that extent. As such,
escaping continuations are analogous to conventional exceptions (in behavior and in cost).

The implementation of send/suspend/dispatch in figure 15 works as follows.

− After establishing escape, it defines the procedure callback→url . This procedure is
passed to response-generator , and is thus the value conventionally called embed/url .

− Suppose response-generator invokes embed/url on a callback function. The body of
callback→url generates a fresh url using send/suspend , then returns this url (via
return-url) to the context that invoked embed/url , typically for association with a Web
page link.

− When a user visits one of these urls, control passes to the context surrounding
(send/suspend return-url), thereby invoking the callback procedure. If the callback
ever completes, control escapes to the context of applying send/suspend/dispatch.

In sum, this implementation recognizes that send/suspend already has the power to (a)
generate unique urls, and (b) dispatch on responses; furthermore, it exploits the fact that
send/suspend is built atop first-class continuations.
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5. Web Data and Programming Style

Let us revisit the sequence of Web interactions presented at the beginning of section 1. The
application can easily exhibit the erroneous behavior if the developer stored the information
about the current book in shared state such as a session object. Viewing book B would
update this shared state, and making the purchase from the page for book A would still
buy a copy of book B. In contrast, storing the information about the book in a lexical
binding would lead to two distinct copies, one per page, because continuations close over
their environment. As a result, buying from the page for book A would result in a copy of
book A.

This example partially illustrates a taxonomy of data on the Web:

Page-local data is meta-information about what a specific html page is displaying or
accumulated information from a transaction of which that page is a part. For a page
about a book, one of its page-local data might be the book’s ISBN number. The page-
local data for the confirmation step of a shopping site would include the items being
purchased, shipping, and billing information. Page-local data matches the semantics
of hidden html form fields.

Session data are tied to a particular user and persist across all the pages that a user visits
with the same browser in some time period. The canonical session data example is a
shopping cart, since its state persists no matter what pages a user visits or re-visits
on a site. Though a session is unique to a user, a user could have multiple sessions if,
for example, that user is using several computers, or different browsers on the same
computer. Sessions have reasonable persistence, usually at least until the user quits
the browser, but no guarantee of permanence. Sessions match the semantics of http
cookies, and are usually implemented in terms of them.17

Global data are shared among all invocations of a Web application. Continuing the book-
store example, the set of books and their availability would be global data. So would
the set of past transactions. Global data can be kept in memory, but are commonly
stored in a database.

Because the cgi specification has no native support for data storage, developers using the
cgi protocol typically use hidden form fields, cookies, and a database for these three kinds of
data, respectively. These three options are always available to Web application developers,
regardless of platform, but the difficulty and security risks inherent in serialization—
which is necessary to employ form fields and cookies—leads developers to use alternate
mechanisms when possible.

Not all platforms support all three categories of data natively (see table IV, which refers
to the case of a single server). Consequently, developers sometimes use the mechanisms
that are most convenient, even if these do not neatly fit the desired behavior of the data.

17 Some Web application platforms such as PHP offer other techniques to maintain sessions, such as url
rewriting, but these are generally fallback options for when a user has turned off cookies in the browser.
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Table IV. The taxonomy of Web data, and its implementation on three platforms.

html/http Java Servlets PLT Scheme Web Server

Page-Local urls and hidden form fields hidden form fields the environment

Session cookies HttpSession objects fluid scope

Global external database static member fields the store

For instance, servlet developers using Java often employ session objects because they are
supported well by the Java servlet api, even if the data they are trying to represent are page-
local, for which the developer must employ what is effectively an extra-lingual technique
(of modifying the page generating code, which may not even be under that developer’s
control). This results in the kind of error presented earlier in this section.

In general, session objects engender a stateful programming style, in which variables
and objects are mutated over the course of a users’s interaction with the application. For a
traditional console-based or gui application, this paradigm is reasonable because the user’s
state and the application’s state are inexorably linked. The user has no external means of
affecting the application’s control flow.

As we saw in section 2.4, however, the user has access to silent operations that affect
the client context but are not immediately broadcast to the server. The operations are so
prevalent and intrinsic to how users interact with the Web that Web applications must
behave reasonably in the face of them or risk confusing users with unexpected or erroneous
behavior. Therefore, session objects can only be used safely when the servlet api provides
a mechanism to detect a silent operation and correspondingly roll back the state of all
objects to previously recorded states.18

In the PLT Scheme Web Server, page-local data correspond precisely to information
stored in the current environment, over which lexically-scoped continuations are auto-
matically closed. As a result, programming in a functional style automatically leads to
data obeying the page-local behavior, without the need for further intervention from the
developer. Global information, similarly, corresponds precisely to data in the store, so using
imperative operations such as set! automatically ensures there is a single, global copy of
the datum that the application manipulates (this follows because the continuation does not
close over the store). Using lexical scope to introduce an identifier, and then fluid scope to
modify it, translates to the equivalent of a session. If data need to persist across sessions,
developers can access the cookie functionality of PLT Scheme (which is similar to the apis
provided for this purpose in other Web programming libraries).

18 The Squeak-based Seaside [41] platform has a mechanism to do this, as does Apache’s Cocoon [44].
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6. Related Work

6.1. Content Validation

Many research projects have covered various aspects of static validation, such as ensuring
that the generated document or the accesses to form fields are valid; representative exam-
ples are those by Wallace and Runciman [48] and by Meijer and van Velzen [30]. These
are all essentially orthogonal to the concerns addressed by the PLT Scheme Web Server;
since many of these are defined for functional languages, it should be feasible to port them
to Scheme. In practice, we have found that form field access problems tend to be caught
quickly while testing, and we have found browsers tend to be forgiving with html (the
advent of cascading style-sheets greatly simplifies the html, further reducing the need for
validation). The server would, nevertheless, benefit from some of these tools, and indeed
an early version contained static validation support [25].

6.2. Other Languages with Powerful Interaction Primitives

Seaside [41] is a Smalltalk-based Web development framework with continuation support.
Seaside models a Web page as a tree of nested component objects, each of which can
independently render itself and respond to user interaction. A component can use the
call method to suspend its own processing and replace itself with another component,
which appears in its place on the page. The replacing component may use its answer
method to remove itself, resuming the original component and passing it data. As with
send/suspend/dispatch, Seaside allows Web applications to associate blocks of code with
links, which are executed when the links are clicked. Applications do not, however, have
access to the urls generated for these links, as they do with send/suspend/dispatch, and
therefore cannot re-use them on a page to conserve resources, modify them, employ them in
generated JavaScript, or include them in verification emails. Seaside also supports attaching
blocks of code to form input elements and submit buttons, which get executed automat-
ically when the associated form is submitted. Though Seaside’s object-oriented approach
renders it more susceptible to interaction errors and other inappropriate mutations, it
overcomes this with a mechanism to “backtrack” the state of components if the user clicks
the back button (by sending a pointer into a transaction log that tracks those variables the
programmer has marked as “backtrackable”).

While Seaside’s component-based approach is good for modularizing complex pages, it
suffers from the limitation that a single component cannot interrupt its computation to
send a page to the user without passing control to another component using the call
method. Furthermore, Seaside’s request-processing strategy requires that a component
define a method to return a list of all subcomponents it might render, separate from the
method that actually chooses and renders those components, thereby inhibiting reuse.

The <bigwig> system [5] is a domain-specific language for Web development that in-
cludes statically-checked, higher-order templates and a “session-based” model of a sequence
of Web interactions as a single, coherent flow-of-control. Through flow-based analysis,
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<bigwig> programs are statically checked for template consistency—for example, that
a template includes an expected form field name—and html validity. <bigwig> is imple-
mented with a custom Apache module that allocates and maintains a server process for
each user session.

The <bigwig> system has no analogue to send/suspend/dispatch. It instead provides
a “document reference” operator that allows one template to contain a hyperlink to another,
forming a—potentially cyclic—“document cluster” of the templates. These clusters must
be comprised of templates in the same scope that have identical form elements. Therefore,
although its support for form-based interaction is strong, <bigwig> is unsuitable for
content-focused Web applications.

Additionally, Web applications using <bigwig> do not conform to users’ expectations
of the back button. Because <bigwig> cannot model backtracking in its linear, process-
based model of interactions, it disallows such operations. It accomplishes this by always
redirecting the user’s browser to a consistent url that identifies the session, while the
content at that url changes dynamically. The session only generates a single entry in the
browser’s history, so if the user clicks the back button, the browser goes to the page that
immediately preceded the start of the session. We believe this solution is unsatisfactory as
it does not correspond to a user’s expectations of the back button’s behavior.

JWIG [8] is the Java-based successor to <bigwig>. It is compatible with standard Java
and is implemented with a combination of Java libraries and a preprocessor that converts
the JWIG language extensions into standard Java and performs the static verifications.

WASH/CGI [47] is a comprehensive Web application framework for Haskell whose focus
is to abstract away the creation and processing of html forms. Using Haskell’s type system,
WASH/CGI can determine the expected type for form inputs and automatically validate
them, re-displaying the form with appropriate error messages if necessary. It provides
similar pure-functional, type wrappers around cookies and server-side persistent state.
WASH/CGI and PLT Scheme servlets share a similar syntactic structure, allowing ar-
bitrarily placement of user interaction points. Instead of relying on continuations, however,
WASH/CGI replays the application from the beginning on each interaction. This works
in a purely functional setting, like Haskell, but with the cost of duplicate computation.
Another difference is that applications cannot maintain environment state when users
interact through hyperlinks, without complicated JavaScript that does not scale to url
clients such as in our email verification example.

Apache’s Cocoon framework [44] was developed as part of a project to provide online
documentation for the Apache Software Foundation’s Java libraries. Owing to this history,
Cocoon’s page generation is built around the concept of a “pipeline,” where data, encoded
as an xml document, passes through several transformations (which can be described
using Java or xslt) before it is presented to the user as html, xml, or another format.
One of Cocoon’s unique features among Java frameworks is its support for continuation-
based Web programming. Cocoon allows developers to write controller logic in JavaScript,
which it interprets with an embedded version of the Mozilla Foundation’s Rhino JavaScript
interpreter. Cocoon’s Flowscript JavaScript api provides a sendPageAndWait method that
is analogous to send/suspend . Although the JavaScript code has full access to Java classes
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and objects, Cocoon is limited by the inability to capture a continuation from Java. Once
a JavaScript controller calls sendPageAndWait to invoke a pipeline to generate a page,
the Web application cannot capture any continuations until the user responds to the
page and control passes back into JavaScript. Since the view elements of Cocoon—the
pipelines—cannot dynamically create continuations to tie to links, Cocoon has no analogue
to send/suspend/dispatch.

Struts [46] imposes a model-view-controller architecture to Java servlet programming. It
provides mechanisms for routing http requests to application components in the controller
layer, and connecting those components to appropriate model Java Beans and views. Views
can be written in JSP or any other html-generating system, and Struts provides utilities
for converting between Java Beans and html forms, with appropriate validation and error
reporting. Struts gives developers the full capabilities of Java servlets. Nevertheless, Struts
is based on a session-state model of Web applications and does not provide a mechanism
for state with environment semantics. This makes it very susceptible to interaction errors.

PS3I is a Scheme-based Web servlet framework with continuation support. PS3I is
described by Queinnec [39] as a multi-thread interpreter embedded in a Java Web server.
Unfortunately, it implements only a limited subset of the Scheme language (one that is
“nearly R4RS-compliant”, in the author’s words). As a result, it is of limited practical
utility and, in fact, the author notes that he has used the PLT Scheme Web Server in the
most recent version of the project that motivated PS3I. It is likely that a re-implementation
with SISC [31] as a base would be profitable for developers requiring embedding in Java.

The MAWL project [27] was an early effort to create a statically-typed domain-specific
language, intended for embedding in host languages, for writing Web applications and
avoiding common errors. At the time, the most common errors were of faulty html gener-
ation and incorrectly carrying of state from one page to the next. MAWL solves the first
problem by embedding program code in html in a style similar to languages like PHP and
ColdFusion. In solving the second problem, MAWL effectively implements a continuation-
based approach by automatically supplying the action attribute of forms. Unfortunately,
MAWL offers no primitives such as send/forward for managing continuations; it does not
have a facility for demultiplexing continuations; and, it does not fully implement the equiv-
alent of send/suspend . This last restriction is imposed by disallowing access to continuation
urls, which inhibits applications such as the one presented in section 3.1. Finally, each
service session corresponds to a single thread that waits for the most recent page to return,
which potentially makes the system vulnerable to errors induced by user interactions.

6.3. Performance and Resource Management

The performance problems of the cgi interface has led others to develop faster alterna-
tives [34, 43]. In fact, one of the driving motivations behind the Microsoft .NET initiative
appears to be the need to improve Web server performance, partially by eliminating process
boundaries.19 Apache provides a module interface that allows developers to link code into
the server that, among other things, generates content dynamically for given urls. However,

19 Jim Miller, Microsoft .NET Common Language Runtime team, personal communication, 2000-10-20.
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circumventing the underlying operating system’s protection mechanisms without providing
an alternative within the server opens the process for catastrophic failures.

FastCGI [34] provides a safer alternative by placing each servlet in its own process.
Unlike traditional cgi, FastCGI processes handle multiple requests, avoiding the process
creation overhead. The use of a separate process, however, generates bi-directional inter-
process communication cost, and introduces coherence problems in the presence of state.

IO-Lite [36] demonstrates the performance advantages to programs that are modified
to share immutable buffers instead of copying mutable buffers across protection domains.
Since the underlying memory model of PLT Scheme provides safety and immutable string
buffers, our server automatically provides this memory model without the need to alter
programming styles or apis.

The problem of managing resources in long-running applications has been identified
before in the Apache module system [43], in work on resource containers [4], and elsewhere.
The Apache system provides a pool-based mechanism for freeing both memory and file
descriptors en masse. Resource containers provide an api for separating the ownership of
resources from traditional process boundaries. The custodians [16] in PLT Scheme provide
similar functionality with a simpler api than those mentioned.

Like our server programs, Java servlets [9] are content generating code that runs in the
same runtime system as the server. Passing information from one request to the processing
of the next request cannot rely on storing information in instance variables since the servlet
may be unloaded and re-loaded by the server. Passing values through static variables
does not solve the problem either, since in some cases the server may instantiate multiple
instances of the servlet on the same JVM or on different ones. Instead they provide session
objects that assist the developer with the task of manually marshaling state into and out
of re-written urls, cookies, or secure socket layer connections.

The J-Server [40] runs atop Java extended with operating systems features. The J-Server
team identified and addressed the server’s need to prevent servlets from shutting down the
entire server, while allowing the server to shutdown the servlets reliably. They too identified
the need for servlets to communicate with each other, but their solution employs remote
method invocation (which introduces both cost and coherence concerns) instead of shared
lexical scope. Their work addresses issues of resource accounting and quality of service,
which is outside the scope of this paper. Their version of Java lacks a powerful module
system and first-class continuations.

One shortcoming with our server is the lack of support for marshalling continuations
in the underlying virtual machine, unlike systems such as Kali Scheme [7]. This makes
our server susceptible to outages. In contrast, a purely compiler-based approach [29] does
not suffer from this shortcoming, making it more fault-tolerant. As we add continuation
marshalling to PLT Scheme, however, this will cease to be a concern.
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7. Conclusion

We have studied the construction and a particular use of the PLT Scheme Web Server. The
server is built entirely as a Scheme application atop PLT Scheme, which provides primitives
that enable the server to behave like a host operating system for Web applications. The
implementation of PLT Scheme is sufficient for the server to match the performance of
other servers in popular use.

The server has been used to build several practical applications, the most significant
of which is probably Continue, a conference paper manager that has been employed by
several conferences. Building concrete applications atop the server has identified interest-
ing patterns of use, as well as problems of expression that have helped us build better
abstractions. These applications have opened several avenues for future work, relating to
both performance and better linguistic expressiveness.
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