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Abstract 
 
Programming is a central concern of computer science, so its medium—programming 
languages—should be a focus of computing education. Unfortunately, much of the 
community lacks useful tools to understand and organize languages, since the standard 
literature is mired in the ill-defined and even confusing concept of paradigms. 
 
This chapter suggests the use of notional machines, i.e., human-accessible operational 
semantics, as a central organizing concept for understanding languages. It introduces 
or re-examines several concepts in programming and languages, especially state, 
whose complexity is understood well in the programming languages literature but is 
routinely overlooked in computing education. It identifies and provides context for 
numerous open problems worthy of research focus, some of which are new twists on 
long-running debates while others have not received the attention in the literature that 
they deserve. 
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Introduction and Scope  
 
Programming is central to computing. It is both the practical tool that actually puts the power of 
computing to work, and a source of intellectual stimulation and beauty. Therefore, programming 
education must be central to computing education. In the process, instructors need to make 
concrete choices about which languages and tools to use, and these will depend on their goals. 
Some emphasize the view of programming as a vocational skill that students must have to 
participate in the modern digital economy. Some highlight programming as an exciting creative 
medium, comparable to classical media such as natural language, paint, and stone. Irrespective 
of the motivation for teaching programming, from a professional computing perspective, 
programs are a common medium for representing and communicating computational processes 
and algorithms. 
 
Different languages have different affordances. As many people have remarked, programming 
languages are a human–computer interface. At the same time, programming languages are 
executed by computers, which work with an unyielding logic that is very different from that of 
most human-to-human communication. This tension between human comprehension and 
computer interpretation has manifested in many CEdR studies over the years. Indeed, 
navigating that tension (and helping students learn to do the same) is one of the great 
challenges of computing education, and hence CEdR. 
 
Computing educators need a lexicon and criterion through which to make, discuss, and teach 
choices about programming languages. Historically, much of our vocabulary has centered 
around a notion of “paradigms” that clusters languages by a combination of programming style 
and language behavior.1 However, as programming languages and our technical understanding 
of them evolve, this notion is harder to maintain. This chapter therefore moves beyond 
paradigms to more nuanced ways of discussing languages, both amongst educators and with 
our students. We examine criteria and models for understanding languages through the lens of 
prior computing education research, with an eye towards exciting open problems (which will be 
flagged in boldface) that can take the field forward. 
 
This chapter is written for aspiring researchers in computing education. It pushes for a deeper 
understanding of languages than at at the level of syntax (though syntactic mistakes, like using 
= for assignment, deserve their own opprobrium), pointing out that a given syntactic program 
can behave in several different ways (sec. 1). Understanding those behaviors—often captured 
in the concept of a notional machine (sec. 4)—is essential to making sense of the power and 
affordances of languages (sec. 5). The chapter discusses several long-running debates in the 
design and use of languages (sec. 6), including several other topics that remain wide open for 
researchers to investigate (sec. 7) that impact education. Rather than a single section of open 
questions, these are peppered throughout the chapter in context. 
 

                                                
1 In this chapter we use the term behavior to loosely refer to how a program executes, and semantics only 
to refer to a precise, formal description of behavior. 
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1 Beyond Syntax: Discussing Behavior  
 
A lot of discussion about programming languages inevitably centers around syntax, because 
this is the most easily visible aspect of the language and the one that programmers primarily 
manipulate. A major challenge in programming, however, is mapping syntax to behavior, 
because computer behavior is hard to see and control. Furthermore, the ultimate goal is to 
create programs that behave in a particular way. Therefore, we will discuss many behavioral 
aspects of programs in this chapter. 
 
We can make our discussion more concrete if we can refer to example programs. This section 
distills these into two examples. Consider the following two programs written in a generic 
syntax. For each one, predict what answer will be printed at the end of program execution: 
 
Program 1: 

y	=	0	

x	=	y	+	5	

y	:=	7		//	change	y	

print(x)	

 
Program 2: 

o	=	{x:	1,	y:	12}		//	o	is	an	“object”	with	two	fields,	x	and	y	

	

procedure	p(v):	

		v.x	:=	5	

end	

	

p(o)	

print(o.x)	

 
Now that you have made your prediction, please revisit each program and ask whether it could 
reasonably produce a different value: what would that value be and how might it come about? 
 
Stop! Did you make your predictions? If not, go back and do so first! 
 
Most readers would expect the first program to print 5 and the second to also print 5, because 
this is the outcome produced by the corresponding programs in languages like Java and 
Python. However, here are alternate explanations: 

1. In the first program, x is defined to be 5 more than the value of y whatever that value 
might be. Thus, when y changes to be 7, the value of x automatically updates to 12. 

2. In the second program, the modification to the x field is strictly local to p. When 
computation returns from p, the value of o is left unchanged (most probably, p received 
and changed a copy of o). Thus, the program prints 1. 
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These alternate behaviors might strike some readers as natural but others as eccentric, so let 
us discuss them in more depth.  
 
In Program 1, most readers probably find the answer 5 so obvious as to not even consider 
another possible outcome. Yet, when presented with the same program in a spreadsheet—
where the variable become cells, = is a reference, and assignment to y becomes an update to 
its cell—nobody would expect anything but the other behavior, where x becomes 12. Yet the 
spreadsheet behavior of automatically updating references is also found in textual programming 
languages, such as reactive languages (Bainomugisha et al., 2013). (It’s worth noting that some 
of the odd student expectations mentioned in Pea’s “Superbug” paper (1986) can just as well be 
interpreted as students expecting the language to behave reactively.) 
 
In Program 2, the behavior comes down to a question of aliasing (Smaragdakis and Balatsouras 
(2015) provide a useful summary): when is a name (here, v) just an alias for another (here, o). 
Numerous studies have found that students (and even professional programmers) do not have 
a clear understanding of aliasing (Fleury, 1991; Ma, 2007; Tunnel Wilson, Fisler & 
Krishnamurthi, 2017) and that languages behave in ways that confound their expectations 
(Miller et al., 2017; Tunnel Wilson, Pombrio & Krishnamurthi, 2017). Yet aliasing is a crucial 
issue in programming, and one we will return to later in this chapter (sec. 5.2). 
 
What these examples show is that syntax does not inherently determine behavior, as others 
have noted in the past (Plum, 1977; Fitter, 1979). Furthermore, though experienced 
programmers may have been primed to expect certain behaviors, (a) novices are not 
necessarily so primed (the reactive version of the first program shows that), and (b) even 
experienced programmers may not all agree (Tunnel Wilson, Pombrio & Krishnamurthi, 2017) 
—the aliasing disagreement in the second program shows that. Irreconcilable variation between 
syntax and behavior is par for the course, independent of efforts to make them align better in 
particular cases (Stefik & Siebert, 2013). Therefore, we need to investigate language behavior 
as a topic beyond the bounds of syntax. 
 
2 Paradigms as a Classical Notion of Classification 
 
To structure the study of languages, many authors have used the notion of “paradigm”. 
Paradigms are supposedly groups that differentiate one class of similar languages from others 
in some high-level way, usually focused on features that exhibit common behaviors. Authors 
conventionally list a few major paradigms: imperative, object-oriented (henceforth “OO”), 
functional (henceforth “FP”), and logic, and other authors tend to add one or more of scripting, 
Web, database, and/or reactive. 
 
We have already seen an example of reactive programming in the alternate interpretation of 
Program 1: in reactive languages, the program expresses dependencies but the language 
handles updating the values of variables in the presence of mutation. Similarly, in logic and 
database paradigms, programs express logical dependencies between elements of data, but 
determining answers is done through an algorithm that is hard-coded into the language. (Some 
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authors dub all these as “declarative” languages and imply that programmers can think only 
about the logic of problem-solving independent of algorithms, but in reality programs often have 
to be modified to adjust to the algorithms built into the language—sometimes even to ensure 
something as basic as termination.) 
 
OO is a widely-used term chock-full of ambiguity. At its foundation, OO depends on objects, 
which are values that combine data and procedures. The data are usually hidden 
(“encapsulated”) from the outside world and accessible only to those procedures. These 
procedures have one special argument, whose hidden data they can access, and are hence 
called methods, which are invoked through dynamic dispatch. This much seems to be common 
to all OO languages, but beyond this they differ widely: 

● Most OO languages have one distinguished object that methods depend on, but some 
instead have multimethods, which can dispatch on many objects at a time. 

● Some OO languages have a notion of a class, which is a template for making objects. In 
these languages, it is vital for programmers to understand the class-object distinction, 
and many students struggle with it (Eckerdal & Thune, 2005). However, many languages 
considered OO do not have classes. The presence or absence of classes leads to very 
different programming patterns. 

● Most OO languages have a notion of inheritance, wherein an object can refer to some 
other entity to provide default behavior. However, there are huge variations in 
inheritance: is the other entity a class or another (prototypical) object? Can it refer to 
only one entity (single-inheritance) or to many (multiple-inheritance), and if the latter, 
how are ambiguities resolved? Is what it refers to fixed or can it change as the program 
runs? 

● Some OO languages have types, and the role of types in determining program behavior 
can be subtle and can vary quite a bit across languages. 

● Even though many OO aficionados take it as a given that objects should be built atop 
imperative state, it is not clear that one of the creators of OO, Alan Kay, intended that: 
“the small scale [motivation for OOP] was to find a more flexible version of assignment, 
and then to try to eliminate it altogether”; “[g]enerally, we don’t want the programmer to 
be messing around with state” (Kay, 1993). 

In general, all these variations in behavior tend to get grouped together as OO, even though 
they lead to significantly different language designs and corresponding behaviors, and are not 
even exclusive to it (e.g., functional closures also encapsulate data). Thus, a phrase like 
“objects-first” (sec. 6.1) can in principle mean dozens of wildly different curricular structures, 
though in practice it seems to refers to curricula built around objects as found in Java. 
 
Finally, FP also shows up often in education literature, popularized by the seminal book by 
Abelson and Sussman (1985). In FP, programmers make little to no use of imperative updates. 
Instead, programs consume and produce values, and programming is viewed as the 
arrangement of functions to compose and decompose values (some have even dubbed FP as 
“value-oriented programming”). Due to the lack of mutation (sec. 4.1), aliasing problems (sec. 1) 
are essentially non-existent. FP is characterized by two more traits: the ability to pass functions 
as values, which creates much higher-level operations than traditional loops (an issue that 
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manifests in plan composition (sec. 6.3)), and tail-calls, which make loop-like recursive solutions 
just as efficient as loops, thus enabling recursion as a primary, and generalizable, form of 
looping. The two main variations in FP are whether the language is typed or not, and whether 
computation is eager or lazy, each of which leads to a significant difference in language flavor 
and programming style. 
 
3 Beyond Paradigms 
 
While paradigms have been in use for a long time, it is worth asking what they contribute to our 
understanding. First of all, should we view paradigms as classifiers that lump languages into 
exclusive bins? They are certainly interpreted that way by many readers, but two things should 
give us pause: 

● As we saw in Program 1, being imperative does not preclude being reactive. Therefore, 
these cannot be viewed as independent. Reactivity simply gives an additional 
interpretation to an imperative update; furthermore, functional reactive languages have 
reactive behavior without explicitly imperative features, and reactivity can also be added 
to objects (Bainomugisha et al. (2013) provide a useful survey). Put differently, while OO 
and FP are statements about program organization, reactivity is a statement about 
program behavior on update. These are essentially orthogonal issues, enabling reactivity 
to be added to existing languages. 

● Languages do not organize into hierarchical taxonomies the way plants and animals do; 
they are artificial entities that can freely be bred across supposed boundaries. Language 
authors can pick from several different bins when creating languages, and indeed 
modern mainstream languages are usually a mélange of many of these bins. Even 
archetypal OO languages like Java now have functional programming features  (Gosling 
et al., 2015). 

Furthermore, the paradigm bins sometimes conflate syntax and behavior. For instance, some 
authors now think of visual, block-based languages as a paradigm; however, blocks are purely a 
matter of program syntax and construction, whereas the other paradigms are about behavior. 
Indeed, block interfaces exist for imperative, OO, and FP. Thus it is unclear whether blocks 
should even be listed as a paradigm—which further highlights the confusion that this term 
creates. 
 
Another source of confusion is whether “paradigms” are statements about programming 
languages or about programming styles. For instance, one might argue that they are 
programming in an “FP style” in a language that is not normally thought of as “functional”. These 
claims have a little validity, but must be viewed with some skepticism. For instance, a C 
programmer who is passing around function pointers is simulating a superficial level of 
functional programming, but in the absence of automatic closure construction and 
corresponding garbage collection, this is a weak and often unsatisfying simulation. Similarly, 
Python’s lack of tail call elimination makes many natural FP patterns unusable in practice. 
Nevertheless, the possibility of such simulations makes it even harder to understand what 
paradigms are. 
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Yet another source of confusion is between the language and the operating environment. In a 
“batch” program, the program has a well-defined beginning and end. It may periodically pause 
to accept input, but the program determines when that happens. In contrast, in an event-driven 
program, it is the operating environment that is in charge; each event (whether a keystroke, a 
screen touch, a Web request, a network packet arrival, or the tick of a clock) causes some part 
of the program to run in response. After responding to the event, the program (usually) returns 
to quiescence, and “wakes up” on the next event. Such a program has no well-defined 
beginning or end, and in principle runs forever. The programmer’s challenge is to arrange how 
state is transferred between the events. This can be done in several ways: imperatively, using 
objects, functionally, reactively, and so on. Thus event-driven programming is another cross-
cutting notion that is independent of and orthogonal to the program’s organization—rather, it is a 
statement about the program’s relationship with its operating environment. Lacking a clear 
definition of “paradigm”, it is therefore entirely unclear whether even-driven-ness is one. 
 
Thus, even though paradigms are widely used by authors and in the literature, some authors—
especially in the programming languages research community—question or even reject their 
use (Krishnamurthi, 2008). Our examples and discussion points illustrate why a focus on 
behavioral properties and features provides a more meaningful framing.  
 
4 Notional Machines 
 
Whereas a programming-languages researcher captures program behavior through semantics, 
computing education researchers instead use the idea of notional machines (du Boulay, 1986; 
Sorva, 2013; Guzdial, 2015). A notional machine is a crisp, human-friendly abstraction that 
explains how programs execute in a given language or family of closely-related languages—i.e., 
a model of computation. While notional machines are usually viewed as a tool for learning to 
write and trace programs, they are also a useful way for us to think about language 
classification: essentially, the similarity between two languages is the extent to which a notional 
machine for one gives an accurate account of the behavior of the other. Seen this way, many 
eager FP languages have very similar notional machines (and may even share 
implementations); many “scripting” languages have strong similarities in some respects (but 
notable differences in others); while many OO languages actually have significantly different 
notional machines (for instance, a semantics of Java (Flatt, Krishnamurthi & Felleisen, 1998) 
and of JavaScript (Guha, Saftoiu & Krishnamurthi, 2010) are vastly different). There can be 
many notional machines for a given language, reflecting different goals, degrees of 
sophistication, levels of abstraction, and so forth.  
 
Novice programmers do not infer accurate notional machines just from writing programs, as 
established from the literature on misconceptions. They sometimes see a program just as 
syntactic instructions, without a clear sense of how the instructions actually control some 
underlying device (du Boulay, 1986). The idea that a program controls a device, and thus has 
dynamic behavior, has been identified as an essential concept in learning about programming 
(Schwill, 1994; Shinners-Kennedy, 2008). Notional machines concretize this idea in a specific 
behavioral model. This suggests that teaching about notional machines and semantics is 
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important (though some who take an extreme constructivist perspective might disagree 
(Greening, 1999)). Sorva's (2013) survey article on notional machines covers various theoretical 
framings for why students need to learn a semantics.  
 
Despite some noticeable treatment in the literature, notional machines do not feature 
prominently in curricula or texts for computing courses. While execution models are often 
implicit in visualization and debugging tools (Hundhausen, Douglas & Stasko, 2002; Naps et al., 
2003; Sorva, 2012; Kölling, Brown & Altadmri, 2015), few papers present notional machines 
explicitly alongside teaching programming constructs. Research suggests, however, that 
teaching notional machines early could have significant value. Cognitively, building a new 
mental model (in this case, of program execution) is significantly easier than updating an 
existing (flawed) one (Schumacher & Czerwinski, 1992; Slotta & Chi, 2006; Gupta, Hammer & 
Redish, 2010). Building accurate and effective models is more likely to occur through activities 
that engage explicitly with the content (in contrast to passively working with visualizations, for 
example) (Kessel & Wickens, 1992; Savery & Duffy, 2001; Freeman et al., 2014). Practically, 
Nelson et al. taught students tracing through a notional machine at the very start of a 
programming course (Nelson, Xie & Ko, 2017). These students performed better on the Second 
CS1 Assignment (SCS1) test of CS knowledge (Parker, Guzdial & Engleman, 2016)  
than students who did code-writing tutorials rather than tracing. diSessa and Abelson (1986) 
leveraged user interface (UI) design to convey aspects of the notional machine (such as 
scoping) with their Boxer system, noting that learning a notional machine is a necessary 
challenge. They also raised questions about which notional machine to teach to end-users who 
are learning programming in order to control computational media at a small scale, compared to 
those preparing for professional software practice. 
 
Research evidence on which notional machines to teach and when is sorely lacking in the 
computing education literature. Some work has evaluated specific models while checking for 
specific student misunderstandings (Ma, 2007; Tessler, Beth & Lin, 2013; McCauley et al., 
2015), but this body of research is not substantial enough to support general conclusions. 
Furthermore, there is scant attention to how notional machines evolve as students gain 
sophistication in upper-level computing courses. Sometimes, upper-level students even need to 
correct inaccurate models that formed in earlier courses (Tunnell Wilson, Krishnamurthi & Fisler, 
2018); mechanisms for doing so are an open problem that need attention in computing 
education research. 
 
4.1 The Challenge of Mutation and State 
 
Notional machines are a useful lens through which to explore the complexities of reasoning 
about state (program behavior in the presence of mutation). Stateful programming has been 
taken by many as a sine qua non of programming education (for instance, it is virtually never 
mentioned as an assumption or threat to validity or generalizability). At the same time, 
numerous studies show that students struggle with this concept (du Boulay, 1986; Goldman et 
al., 2010; Sirkiä & Sorva, 2012), both as novices and as upper-level students (through 
interactions between state and other language features) (Tunnell Wilson, Krishnamurthi & 
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Fisler, 2018), while students working in non-stateful paradigms sometimes perform well on 
problems that are challenging in stateful contexts (Fisler, Krishnamurthi & Siegmund, 2016). 
Taken together, these observations make comparative studies between stateful and non-
stateful features one of the most significant understudied topics in computing education. 
 
If state is so challenging for students to learn, why is it so popular in introductory contexts? 
Purely as a language feature (setting aside pedagogy for a moment), state has many benefits: 

● It provides cheap communication channels between different parts of a program. 
● It trades off persistence for efficiency. 
● It appears to have a relatively straightforward notional machine, which lends itself to 

familiar-looking metaphors (like “boxes”). 
● It corresponds well to traditional control operations like looping. 

However, these benefits of state become far less clear once we broaden our scope beyond very 
rudimentary programming. For instance: 

● State introduces time and ordering (as Program 1 reveals) and forces students to think 
about them. 

● State reveals aliasing (as Program 2 reveals). Aliasing is particularly problematic in the 
case of parallelism/concurrency, which is increasingly a central feature in programming. 

State thus requires a complex notional machine to account for all these factors. The apparent 
simplicity of stateful notional machines arises because most computing education literature 
usually just ignores some of these features (e.g., compound data with references to other 
compound data). This results in notional machines that are not faithful to program behavior, and 
hence are either useless or even misleading to students. 
 
Thus, we believe it is worthwhile to revisit our basic assumptions about stateful programming’s 
role in education: perhaps as an advanced introductory concept rather than as the most 
introductory one. State is a powerful tool that must be introduced with responsibilities. In short, 
while the community continues to have a debate about “objects-first” (sec. 6.1), it is also worth 
having a “state-first” debate. Making progress on this issue is an open challenge in this field, 
but it will require educators with deep-seated beliefs to be willing to reexamine them. 
 
It is worth noting that such shifts in conventional wisdom are feasible. For decades, automatic 
memory management (often called garbage collection) was considered a fringe feature, and 
most mainstream languages did not offer it. Students were therefore forced to confront memory 
management operations relatively early in their curriculum. As garbage collection has become 
widespread, and the problems caused by poor manual memory management have become 
better known, this topic has moved to more advanced courses, where it is hopefully taught with 
more care. The growing understanding, in industrial practice, of the problems with unfettered 
state may therefore similarly result in many more “state-later” curricula. 
 
4.2 Notional Machines for Related Disciplines and Transfer  
 
When computing is used or taught in conjunction with another discipline (a model frequently 
proposed to scale pre-college computing education (Stanton, et al., 2017)), it is important for the 
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computing curricula to align well with the (sometimes implicit) behavioral models used in the 
other discipline. This seems necessary both to avoid confusing students and to eventually 
achieve transfer. For instance, using programming to teach algebra suggests programming with 
a notional machine that matches what students see in their math classes: one whose functions 
pass the “vertical line test” (i.e., they truly are functions), whose function application 
corresponds to algebraic substitution, whose variables behave like algebraic variables rather 
than stateful ones, and so on. Similarly, in physics, it is standard to model systems in terms of 
differential equations, which suggests different models of reactive programming (Felleisen et al., 
2009) than traditional imperative event-driven code. In a data science curriculum, it may be 
important to first acquaint students with query operations before loops. It is therefore not only 
important to adjust the notional machine of computing to match those of other disciplines in 
interdisciplinary contexts, it is also worth wondering whether insights about computational 
models from other disciplines may lead to a less onerous study path for students of computing. 
 
5 Human-Factors Issues  
 
Thus far, our discussion of languages has taken a technical perspective, framed largely by 
semantic behavior. Some debates about paradigms have invoked human-factors issues, such 
as whether one paradigm provides a more “natural” way to think about programs (Lister et al. 
1986; Wiedenbeck, et al., 1999) or whether some constructs align better than others with how 
novices conceive of computations (Miller, 1981). Human-factors questions arise around each of 
syntax, behavior, and integrated development environments (IDEs) for programming languages, 
both in isolation and in their interactions (Kelleher & Pausch, 2005). Programming involves 
many tasks—reading, writing, debugging, and modifying code—and each has its own human-
factors nuances. Furthermore, not all programming education has the same end-goal: different 
environments are designed to, for instance, help novices with mainstream languages (e.g., 
Greenfoot, https://www.greenfoot.org/), prepare students for professional practice (e.g., Eclipse, 
http://www.eclipse.org/), motivate students to play with computing (e.g., Scratch (Resnick et al., 
2009)), or help students visualize program behavior dynamically as code is edited (e.g., 
Learnable Programming (Victor, 2012)). A meaningful discussion of programming languages in 
educational contexts must account for human-factors issues, including the differing goals and 
abilities of the target student audience. 
 
5.1 Interference between Human Language and Behavior 
 
Programming languages use terminology from human languages (such as “if” or “while”) that 
suggest the desired behavior of particular constructs. In practice, programming languages have 
more precise semantics for these terms than does human language. Many early and recent 
studies have identified gaps between programming semantics and humans’ intuited semantics. 
For example: 

● Pea’s classic “Superbug” paper (1986) proposed that students ascribe an intelligent 
“hidden mind” to program execution that would make programs behave in accordance 
with human communication patterns.  
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● Soloway, Bonar and Erlich (1983) showed differences in how novices interpreted 
program results based on different structural organizations of repeat loops in Pascal. 
More recent studies by Stefik and his colleagues show confusion due to keyword 
choices (Stefik & Gellenbeck, 2011) and leverage user-studies to design constructs to 
be more intuitive for novices (Stefik & Siebert, 2013). Most of these works identified 
problems with the specification of control-flow in programs.  

● Miller’s studies of how non-programmers expressed computations (Miller, 1974; Miller, 
1975) highlighted various ways in which complex control-flow raised significant 
differences between human languages and programming languages: among the issues 
he cited were the need to specify initialization and exceptional cases in programming 
(neither of which are common in everyday human communication), and the precision 
required to bound iteration in programming (where human language often leaves such 
bounds vague).  

Pane’s dissertation (2002) provides more extensive coverage of this topic, including survey 
instruments and details results from multiple user studies (some of which worked with children). 
 
5.2 Inferring Mental Models of Notional Machines 
 
Interference between natural language and programming semantics matters because it affects 
users’ construction of mental models of program execution. Ideally, programming education 
would help users form an accurate model of a notional machine for the language they are using. 
In practice, programmers often construct mental models of computation that are inconsistent 
with the actual behavior. This inconsistency seems unavoidable for many reasons. For instance, 
the mapping from the surface syntax to intended behavior may not be obvious or may have 
multiple reasonable interpretations (see the programs in sec. 1). In addition, programmers 
develop their understanding of languages incrementally (Findler, et al., 2002, sec 3.1), and their 
initial models may clash with some later behavior they have not yet learnt. Sorva’s detailed 
review of literature on notional machines and mental models explains that “a novice’s mental 
model of a notional machine is likely to be—typically of mental models in general—incomplete, 
unscientific, deficient, lacking in firm boundaries, and liable to change at any time” (Sorva, 2013, 
p10).  
 
Inaccuracies in inferred mental models reflect misconceptions about program execution. The 
computing education literature abounds with evidence and descriptions of misconceptions about 
program execution, particularly among novice programmers. An entire chapter of this handbook 
focuses on this topic. From the perspective of this chapter, misconceptions are interesting 
because they can manifest differently across programming languages or notional machines for 
those languages.  
 
Understanding how different notional machines for the same language impact formation of 
mental models of program execution is a significant open problem. The potential implications 
are even more interesting: if some notional machines prove easier or more robust for students 
to learn at first, should that affect the order in which we introduce language features, even if it 
means moving away from the models that currently underlie most introductory curricula?   
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Different notional machines may also demand different cognitive loads; we are not aware of 
any existing research that contrasts the cognitive loads or demands of different notional 
machines for different programming-related activities (such as authoring versus debugging). In 
fact, we conjecture that the cognitive loads of different styles of programming may vary by 
activity: it may be that imperative programming is much easier for writing programs quickly 
(since state provides convenient communication channels between parts of a program), but 
these same benefits make subsequent reasoning and debugging much harder; functional 
programming may have the opposite affordances. 
 
These questions of cognitive load are not just a question for novice programmers: aliasing, for 
example, has proven difficult to reason about even for professional programmers working with 
parallel programming (Cooper et al., 1993). Understanding these issues along all these different 
dimensions should give us a much more nuanced and sophisticated understanding of the 
impact of paradigms, programming styles, and notional machines than we currently find in the 
literature (where, for instance, it is very uncommon to find a paper that asks students to explain 
their own programs six months later and see how well they are able to fare). 
 
Research is also needed well beyond the early curriculum. Student misconceptions about 
programming concepts can persist into the upper-level curriculum: one recent study found 
juniors and seniors holding substantial misconceptions about aliasing in Java, despite  taking 
several programming courses (and having other experiences) that used the language (Fisler, 
Krishnamurthi & Tunnell Wilson, 2017). As students move beyond the first year or into jobs, they 
often learn new programming languages. Do students take their old notional machines with 
them, even if the new languages have different features that contradict the behavior of the 
notional machine that they knew?  How do we teach students to adapt existing models to 
accommodate new features?  How do we migrate students to an entirely new notional machine 
when needed (such as when moving from non-reactive to reactive programming), or when 
starting to confront parallelism?  There are significant open problems and opportunities for 
research that explores how notional machines and students’ informal programming models can 
and do evolve across languages, features, and complexity of problems. 
 
5.3 Visual and Blocks-based Languages  
 
Blocks-based or visual notations provide a significantly different user interface than textual 
languages. These notations do not inherently correspond to new language features. Visual 
notations can, however, have rich interactions with behavior that affect how users interact with 
or evaluate programs. Early work in visual languages used spatial relationships among syntactic 
features to convey semantic relationships between concepts and constructs (Haarslev, 1995). 
Different visual notations were suited to reflecting different semantic relationships. In some 
languages (Kahn & Saraswat, 1990), program execution was reflected in transformations of the 
visual notation (similar in spirit to what a substitution model (Plotkin, 1975; Felleisen & Hieb, 
1992) allows); in such cases, the program syntax also provided syntax for the state of the 
notional machine. Sorva’s dissertation (2012) provides a detailed discussion of tools and 
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taxonomies for integrating visual representations with behavior or program evaluation in a 
pedagogical context. 
 
Blocks languages such as Scratch, Alice, Snap!, and Blockly use visual representations to 
simplify syntax and convey grammatical features, rather than to illustrate behavior or program 
execution. Blocks syntax for imperative languages, for example, uses different shapes or 
connectors to distinguish statements (such as assignment operators or control flow) from value-
producing expressions. In contrast, blocks syntax for a functional language might use color or 
shape to distinguish datatypes, restricting block nesting to cases in which the expected and 
provided types match up (Code.org, n.d.; Vasek, 2012; Schanzer, Krishnamurthi & Fisler, 2015). 
Blocks typically introduce an additional syntactic layer between the programmer and an 
underlying textual language (used for compilation or interpretation): this provides expressive 
flexibility for designers of blocks languages to create constructs or keywords from natural-
language phrases that may not exist in an underlying textual language (Weintrop & Wilensky, 
2015a). 
 
Multiple studies contrast blocks and textual languages and find differences with respect to 
misconceptions, program comprehension, and learning outcomes. Weintrop and Wilensky 
(2015b; 2017a) tested high-school students on program-tracing questions given in each of Java 
syntax and Snap!. Students generally performed better with blocks. The reason, however, may 
be due to issues beyond the mere use of blocks. For example, Snap! labels its repetition block 
as repeat, while Java uses for: studies of loop-naming in textual languages suggest that for 
is not an intuitive term for repetition among novice programmers (du Boulay, 1986; Stefik & 
Gellenbeck, 2011). A followup study contrasted student work using isomorphic blocks and 
textual environments; students in the blocks condition performed better on a content 
assessment than those in the text condition (Weintrop & Wilensky, 2017a). This study identified 
some concrete affordances of blocks. For example, students were more likely to (correctly) 
assert that only one branch of an if/else expression would be evaluated when working in block 
syntax. This may be due to the shapes of blocks, in which a multi-line statement or expression 
is part of a single visual element, rather than spread across separate lines of text. Other 
observations about misconceptions around variables and function calls appear attributable to 
block-syntax features (Weintrop & Wilensky, 2015b). Grover and Basu (2017) found 
misconceptions about variables and loops in their study of block syntax with middle-school 
students. Lewis (2010) contrasted attitudinal and learning outcomes between Scratch and Logo 
with 10-12 year-old novice programmers. The Scratch students showed improved performance 
at interpreting the behavior of conditionals, but not at interpreting loops. These studies reinforce 
that blocks do not inherently address long-standing challenges that students have with 
comprehending and evaluating core programming constructs. 
 
Students who continue beyond an early blocks-based introduction to computing confront the 
transition to textual syntax. This transition is multifaceted: while the syntax clearly changes, the 
notional machine may change as well if the textual language has a richer or different feature set. 
In addition, the switch to textual syntax often accompanies an increased complexity in 
programming tasks. The program-construction habits that students developed for simple blocks 
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programs may not scale to larger problems, a problem that Meerbaum-Salant et al. (2011) 
observed with Scratch students. Powers, Ecott and Hirshfield (2007) tracked issues that arose 
as tertiary students transitioned from Alice to one of Java or C++. They hypothesized that 
differences in code organization between the Alice IDE (which uses different panels for different 
concepts) and textual code might explain the considerable difficulties that students 
demonstrated in writing and understanding the textual programs. Armoni, Meerbaum-Salant and 
Ben-Ari (2015) did not observe such problems when using Scratch as the initial blocks language 
with middle-school students (who later transitioned to C++ or Java). Their data show students 
performing better on questions about looping when working in Scratch (a result that contradics 
that of Lewis (2010)), though measures on other constructs were not statistically significant.  
These and other studies (Malan & Leitner, 2007; Grover & Basu, 2017) generally show blocks 
as having positive impact on some combination of performance, motivation, or retention (though 
not for all students, as authenticity can be a concern, as we discuss momentarily). The main 
take-away from these studies is that blocks have many affordances, but also some notable 
challenges in the larger scope of early computing education. 
 
Several efforts attempt to ease the transition through hybrid environments that allow students to 
switch between blocks and textual notation: some hybrid tools interleave blocks and textual 
notation (Bau et al., 2015; Kölling, Brown & Altadrmi, 2015, Mönig, 2015), while others let 
students switch their view of the same code between blocks and textual syntax (Homer & Noble, 
2014; Bau et al., 2015). Ongoing research into the affordances of each modality considers many 
criteria, including student learning gains, attitudes, and preferences (Weintrop & Wilensky, 
2017b). Evidence suggests that the hybrid tools enable students to construct code more quickly 
and with fewer errors than in purely textual tools (Price et al., 2016), but each modality appears 
to support some tasks and goals better than the other (Weintrop & Wilensky, 2017b). In general, 
careful attention to pedagogy and design is needed to create tools through which students learn 
to migrate across notations (Dann et al., 2012).  
 
Although much of the research on blocks focuses on students’ initial programming experience, 
some work looks at the longer-term impacts of starting in blocks. Weintrop and Wilensky’s 
(2017a) studies with high-school students showed that differences between starting in blocks 
versus text faded after 10 weeks of programming in Java. This suggests that blocks may not be 
as critical for all student audiences. Another concern arises from a human-factors perspective. 
Students gain more confidence, and sometimes interest, in programming when they perceive 
what they are learning as authentic (relative to their perceptions of programming practice) 
(Lewis et al., 2014). Both DiSalvo’s (2012) Glitch Game Testers work and Weintrop and 
Wilensky’s (2015a) studies with high-school students reveal that students sometimes view 
blocks as an inauthentic programming experience. Identifying an appropriate interplay of textual 
and visual notations in early programming education thus remains an important open problem 
for future research. 
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5.4 Accessibility of Program Authoring and Environments 
 
Discussions about learning languages can easily mask hidden assumptions that all 
programmers are similarly abled. Programming notations, whether text or blocks, tend to rely on 
the ability to manipulate code visually. Drag-and-drop programming tools demand fine-motor 
skills. Cognitive loads from debugging could differ dramatically across users who process 
information differently, simply based on the nature or amount of information that an IDE expects 
a programmer to remember. A programmer may not know the human language or alphabet 
from which keywords are taken, thus depriving them of context. Supporting differently-abled 
users obviously depends on interface design for IDEs, but technical decisions regarding syntax 
and behavior can limit or enhance how interface designers support differently-abled users. In 
keeping with this chapter’s focus on behavioral features, we focus this section on the interplay 
of technical decisions, interface decisions, and user abilities. 
 
Most IDEs require users to leverage sight to navigate through and skim code, to scan a display 
of options in interfaces that support discoverability, and to validate code while typing. To 
communicate with visually-impaired users, IDEs use auditory information, often delivered 
through screen readers. Reading code one token at a time, however, provides too much 
information for high-level navigation and comprehension tasks (Stefik, 2008). Effective auditory 
tools instead attempt to convey high-level code structure (Baker, Milne & Ladner, 2015). 
Abstract syntax trees (ASTs) capture this structure, but ASTs are difficult to create for in-
progress or buggy programs that don’t properly parse (an issue that can arise with textual, but 
not blocks, syntax). So-called bicameral syntax (Krishnamurthi, 2006)—such as the 
parenthetical structure of Lisp-ish languages or the distinction between well-formedness and 
validity in XML—splits adherence to the grammar into two phases rather than one.This provides 
an intermediate level of lexical structure, which can enable navigation of code that satisfies the 
intermediate syntax even though it does not yet properly parse. Quorum (Stefik, 2008) uses 
particular keyword orders to direct screen readers to relevant tokens through which to convey 
code structure (without requiring bicameral syntax). Languages designed to interface with 
screen readers must consider the representation of program output as well as source code: if a 
program produces a tree, an image, or a video, for example, the screen reader must be able to 
explain all those outputs to a user (Bootstrap, 2017). 
 
Research on instructional design (Mayer & Moreno, 2003) shows that users with full access to 
both their visual and auditory channels can process information from both channels 
simultaneously. Some tools (Stefik & Gellenbeck, 2009) provide both verbal and auditory 
information during program execution, finding that purely auditory tools are less effective for 
sighted users. Stefik, Hundhausen, and Patterson (2011) found that well-designed auditory cues 
could enable (sighted) users to approach the effectiveness of programmers working without 
visual cues. More novel approaches have attempted to create musical renditions to 
communicate program-execution behavior (Vickers & Alty, 2002). How to convey program 
execution and notional machines for differently-abled users is a significant open question.  
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Other substantial other work in IDE design impacts how differently-abled users construct (rather 
than read) programs. These include creating structured editors or simplified spoken-language 
commands to enable voice-driven code construction (Begel & Graham, 2005), 
internationalization support to customize menu entries, replacing English keywords with ones in 
other languages, or writing new languages for speakers of human languages other than English. 
These efforts are too broad to treat comprehensively in this chapter, but they represent the 
myriad ways in which designers of languages and tools can accommodate the needs of diverse 
users. 
 
In short, language design for differently-abled users is an open area. Accessible interfaces 
cannot simply be bolted on to existing designs: language design determines what needs to be 
communicated in the first place, which in turn affects the mechanisms that can be used. 
Developing programs requires tasks beyond coding—such as tracing, debugging, and 
navigating documentation—that require tool support (Ko, Myers & Aung, 2004). Practitioners 
should consider the needs of users and students when selecting tools. Researchers should 
assess the abilities being assumed in their tool designs, both theoretically and with user studies. 
Such studies have value beyond supporting accessibility: tools that accommodate users with 
severe impairments often benefit significant numbers of users with milder, less visible, 
impairments of the same type, as well as non-impaired users (a user-interface design principle 
called Universal Design (Mace, Hardie & Place, 1991)). 

 
6 Long-Running Debates and Questions  
 
Many topics in computing education have been discussed for a long time and at great length, 
but remain unresolved. Several of these pertain to language features, either directly or 
indirectly. We briefly discuss a few of these that fit particularly well with the themes of this 
chapter. 
 
6.1 Objects-First Debate 
 
Introductory computer-science pedagogy largely used procedural languages (such as COBOL, 
Basic, Pascal, and C) until the late 1990s. As C++ and Java gained hold in industry, both 
industry partners and parents pressured schools to transition to teaching OO in CS1 (de Raadt, 
Watson & Toleman, 2002). Independently, some instructors began questioning whether OO 
programming could foster better software design skills than procedural programming in CS1 
students (Decker & Hirshfield, 1994). The resulting educational interest in OO led to significant 
discussion of the affordances and limitations of objects-first or objects-early pedagogies and 
curricula. Although objects-early pedagogies frequently use Java (which really presents a class-
oriented view of programming rather than a purely object-oriented one), many languages 
support programming with classes and objects. Different instructors have used the term 
“objects-early” for at least three different curricular goals: using objects, defining and 
implementing classes, and using other features of OO (such as inheritance) (Bennedsen & 
Schulte, 2007). 
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Proponents of objects-early claim that classes and objects effectively model real-life problems 
and interactions (Hu, 2004), which should enable introductory courses to motivate and situate 
content better than with procedural languages. Some researchers have questioned whether OO 
is indeed a natural way for humans to view systems (Pane, Ratanamahatan & Myers, 2001). 
Furthermore, not all data that get modeled through objects have real-world analogues. Skeptics 
of objects-first argued that focusing on objects early squeezes out time used for basic 
programming constructs (Reges, 2006) and algorithmic thinking and problem solving (Lister et 
al., 2006). Programming with objects can involve both basic imperative constructs as well as 
defining methods (functions), leading some to question whether OO demands more than either 
imperative or functional programming would (Cooper, Dann & Pausch, 2003; Sajaniemi & 
Kuittinen, 2008). A notional machine that supports objects is more complicated than one 
supporting only procedures over atomic data (Sajaniemi & Kuittinen, 2008). Different 
researchers have argued for different notional machines for objects: some based just on 
message passing, others on conventional models of state (Sorva, 2012). In 2004, a heated 
debate about objects-first erupted on the SIGCSE email list: Bruce (2005) summarized the 
discussion in an article that touches on teacher preparation, IDEs, order of content, OO learning 
goals, and other factors that faculty use in considering first programming languages. The 
summary also called for educational research to study questions about first programming 
languages more systematically. 
 
Research on the objects-first debate largely attempted to compare objects to procedural 
programming for introductory students. Wiedenbeck and colleagues showed that students 
instructed in a procedural pedagogy were better at comprehending (short) programs than 
students instructed in an objects-early pedagogy, though students instructed in an objects-early 
pedagogy were better at understanding functions at the individual class level (Wiedenbeck & 
Ramalingam, 1999; Wiedenbeck et al., 1999). Yet other studies (Vilner, Zur & Gal-Ezer, 2007; 
Ehlert & Schulte, 2009) have shown that objects-first versus objects-later lead to similar learning 
gains. Students in these populations differ only in terms of perceived difficulty of topics. 
Additionally, the amount of scaffolding required for teaching objects early is greater than that for 
a procedural pedagogy (Nordström & Börstler, 2011). Some argue that instructors have to work 
harder in order to come up with pedagogically-appropriate examples when starting with objects 
(Nordström & Börstler, 2011). Ideally, studies would also examine the cognitive load of starting 
with objects. One study (with upper-level software engineering students) has shown that 
inheritance leads to increase mental overhead (Cartwright, 1998), but not all objects-first 
curricula address inheritance early on. 
 
Objects are sometimes taught with visual environments that illustrate the behavior of programs. 
The Alice programming environment (www.alice.org) teaches programming in the context of 
microworlds, where each visible entity in the world corresponds to a object within an OO 
program. Cooper, Dann & Pausch (2003) argue that visualizations and simulations are an 
important technique for controlling the complexity that students would otherwise have to 
confront when working with objects early in their programming education. 
 
Despite the amount of work published on both sides of the debate, there is no definitive 
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evidence that objects-early is better than procedural or some other approach (Bailie et al., 2003; 
Tew, McCracken & Guzdial, 2005; Sajaniemi & Kuittinen, 2008). One key challenge in studying 
this question arises because an objects-first curriculum may focus on different skills or styles of 
programs than curricula that start with other approaches: these differences can make it hard to 
run studies in which students from different approaches are asked to attempt the same 
questions. Given that studies have nevertheless compared objects-early to imperative 
counterparts, it is unclear why there are few if any studies against the long-standing tradition of 
teaching functional programming. Conducting them remains an open problem. 
 
Similar questions about commensurability arose in earlier language-choice debates as well 
(Johnson, 1995; Brilliant & Wiseman, 1996). Social factors (such as which languages have 
currency in industry) may also affect linguistic choices in some settings. This is a different 
aspect of the debate which arises as people discuss the rationale for broad efforts to expose all 
students to computing (Guzdial, 2015).   
 
6.2 Repetition: Iteration, Recursion, and More 
 
Repetition is a central concept in programming: processing a collection of data requires some 
form of repetition. A long-standing debate has been which forms of repetition to use. Most 
curricula focus heavily on iteration, as manifest in features like loops, while some curricula 
depend instead on recursion, characterized by procedures that directly or indirectly invoke 
themselves. A great deal of literature has been written about the differences between the two. 
Rather than recapitulate this literature, we instead highlight important issues that arise from a 
programming languages perspective, but have been largely overlooked in existing research. 
 

● The study of recursion has been negatively impacted by inane examples such as 
Fibonacci and factorial functions, which have little computational value and confuse 
issues such as performance with the notion of recursion. In contrast, recursion arises 
naturally in the processing of recursive data such as trees or recursively-defined lists. 
Since many introductory curricula do not cover these data, the research literature on this 
topic is often missing the point of using recursion in the first place. 

● Repetition often interacts in interesting ways with mutation. For instance, consider 
building a calculator application, which displays a panel of ten buttons, pressing each of 
which prints the corresponding digit. One might write the following loop: 
 
for	(i	=	0;	i	<	10;	i	++):	

		buttons[i].set-handler(lambda():	print	i)	

 
Contrast this to the seemingly equivalent recursive solution: 
 
map(lambda(i):	buttons[i].set-handler(lambda():	print	i),		

				[0	..	9]) 
 
The latter programs works exactly as desired but the former program, when run in a 
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conventional imperative setting, is buggy: every button will result in the output 10, 
because of aliasing (sec. 1). (The reader may find it instructive to consider why these 
programs behave as they do.) 

● Even the study of recursion on recursive data has important distinctions. A structurally 
recursive solution follows the structure of the data precisely—just as a loop does over a 
linear structure—resulting in simpler code and predictable performance and termination. 
A generatively recursive solution computationally creates new sub-problems on 
recursive calls, and hence lacks the advantages of structural recursion (Felleisen et al., 
2001). Therefore, structural recursion is much simpler and a gentler way to introduce 
students to recursion, while still enabling sophisticated programs. Unfortunately, many 
popular introductory recursive problems (such as fractals, Euclid’s algorithm, Newton-
Raphson, etc.) are generative, thereby creating artificial complexity that confuses the 
outcome of studies. 

 
In addition to iteration and recursion, there are more forms of repetition used widely in 
programming but rarely studied in introductory programming. For instance, programmers in 
languages from Haskell to Python can use comprehensions, which are inspired by the 
mathematical notation of set theory. Big-data programmers use abstractions such as 
MapReduce (Dean & Ghemawat, 2004) that consume high-level descriptions of behavior. The 
users of these abstractions do not perform explicit iteration; that is hidden inside the 
implementation of the abstraction, freeing it up to parallelize and otherwise optimize execution. 
Similarly, every database programmer using SQL makes extensive use of repetition patterns 
through queries. To an iterative thinker a query might look like loops and to a recursive thinker 
they might appear to be higher-order recursive operators, but the query writer does not write 
any explicit repetition at all. Thus, students exposed to SQL-style interfaces can possibly begin 
to program repetition—and hence tackle interesting data sets—quickly and with a much higher-
level notional machine that does more behind the scenes. (Curricula that use high-level 
operators before teaching iteration or recursion include Harvey and Wright’s (1999) Simply 
Scheme and Bootstrap:Data Science (Bootstrap, 2018), both of which use high-level operators 
before teaching iteration or recursion.) As computing curricula increasingly embrace big data, 
the need for alternate and richer notions of repetition will grow in importance. 
 
6.3 Plan composition  
 
Soloway (1986) proposed the Rainfall problem in the early 1980’s in the context of studying how 
students composed code for the subtasks of a problem into a cohesive program (a process he 
termed plan composition). Roughly, Rainfall asks for the average of non-negative numbers that 
occur in the input before some sentinel value (such as -999). Soloway’s group introduced a rich 
vocabulary of plans, goals, mechanisms, and explanations (Soloway, 1986). Their finding that 
students struggled to develop solutions to this problem spawned many subsequent efforts to 
understand students’ successes and failures with so-called plan composition, with multiple 
studies corroborating the initial results (Ebrahimi, 1994; Simon, 2013). 
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By and large, the first 25 years of research on plan composition did not consider the influence of  
programming languages on how students structure code. Ebrahimi (1994) considered that 
language might make a difference, and had students trained in different programming 
languages solve Rainfall; the results were uniformly weak across languages. However, 
Ebrahimi’s students worked within the imperative model in each language (including Lisp), 
rather than consider other models such as functional; this limited the potential impact of looking 
at different languages. In 2014, Fisler (2014) published the first study of Rainfall with students 
who were trained in functional programming (with higher-order functions and without 
assignment statements, using the How to Design Programs curriculum (Felleisen et al., 2001)). 
The students in her study performed much better than in prior studies; more interestingly, 
however, these students produced solutions with very different high-level structures and task 
clustering than in earlier studies. In particular, whereas students in earlier studies tried to solve 
the entire problem in a single traversal of the data (using a for- or while- loop), Fisler’s 
participants often used built-in or higher-order functions to implement some subtasks. This 
created solutions that performed multiple passes over the input data, often to clean out 
unwanted data before computing the average. 
 
Subsequent studies of Rainfall in diverse programming paradigms (Seppälä et al., 2015; Fisler, 
Krishnamurthi & Siegmund, 2016) suggest that languages affect planning in two ways: different 
languages have different idioms and provide different built-ins. FP teaches students to compose 
short functions for specific tasks; this style often creates intermediate data. With procedural 
programming, students often learn to create fixed-size arrays. For typical planning programs, 
the sizes of intermediate arrays are often only determined on the fly; this could steer students 
away from multi-traversal solutions. Students who know library functions that transform entire 
lists or strings may use them instead of creating loops to manually traverse these data 
structures as arrays; in a later study (Fisler, Krishnamurthi & Siegmund, 2016), students working 
in Java who knew such library functions produced multi-traversal solutions akin to those in 
functional programming. Iterators with task-specific or semantically-rich names, such as map 
and filter, may suggest different decompositions than generically-named constructs such as 
for. Efforts to teach novices named patterns (Muller, Ginat & Haberman, 2007) and strategies 
(de Raadt, Watson & Toleman, 2009) have shown promise in helping students implement multi-
task programs from the plan-composition literature. The potential influence of built-in language 
constructs that provide these patterns has yet to be studied in detail. All of these points raise 
hypotheses about languages and planning that warrant further investigation. Such studies 
should also explore potential pitfalls to richer language support, such as the challenges of 
tracing higher-order control flows.  
 
In summary, fine-grained details of languages and idioms—as well as problems that students 
have solved previously (Pirolli & Anderson, 1985; Spohrer & Soloway, 1989; Rist 1991)—all 
appear to impact how students plan programs. Researchers conducting or reporting studies in 
this area should include details on the code patterns students were taught, the built-in operators 
that they had seen, and where the planning problems fit into a course’s larger curricular 
sequence. Merely reporting on the language used for a study does not provide sufficient 
context.  
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7 Some (Other) Open Questions  
 
Some linguistic topics highly pertinent to computing education have not gotten the attention we 
believe they deserve. We introduce them below as a spur to future research. 
 
7.1 Sublanguages and Language Levels 
 
Consider a typical programming textbook. It begins with a small core of a language and 
gradually expands the size of the language as the student progresses in their learning. Yet most 
language implementations (compilers, programming environments, …) do not mirror this growth. 
As a result, a student may accidentally—even by means as innocent as a typo—stumble upon 
parts of the language they have not been taught. This can either result in a program “working” 
(i.e., producing an answer, which the student has no way of understanding) or resulting in an 
error that can be baffling. (Similarly, an errant mouse click in an IDE may launch a tool that 
bewilders the student.) 
 
As an illustrative example, consider this code fragment (taken from a classroom observation by 
the first author’s team): a student early in the semester, tasked with computing a wage, writes 
the seemingly reasonable 
 
wage	*	hours	=	salary	

 
However, this program is meant to be in C. Not only does this not mean what they expect, in the 
full C language, it is actually valid to write * on the left side of an assignment, due to pointers—a 
concept that the student will not confront for many more months. Depending on the compiler this 
can result in an error about “lvalues”, a concept that may not be introduced until much later in 
the course, making this error message baffling to students. 
 
We can view this problem through the lens of notional machines. Students (at least implicitly) 
learn notional machines as they progress through computing, and these grow increasingly 
sophisticated. Ideally, the language they are using matches the notional machine they have 
been taught until then. The errors we are discussing here are the result of a mismatch, where 
the implementation provides a much more complex notional machine. 
 
As a result of such observations, many researchers have recognized (Holt & Wortman, 1974; du 
Boulay, O’Shea & Monk, 1999, p. 268; Findler et al., 2002) the need for sublanguages. Some 
call for it because they feel that almost any programming language that is useful for constructing 
real systems probably also contains features that would confuse a beginner. Alternatively, they 
might want to present all of the language but introduce it gradually, growing the language with 
the student’s learning. In either case, they expect the sublanguage to also provide feedback—
such as error messages—at a level appropriate to the student’s knowledge. In the C example 
above, for instance, an early language level would not have pointers at all, the grammar of 
assignment would be restricted, and the compiler would be expected to report that expressions 
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can only go on the right of an assignment. In short, the notional machine provided by the 
implementation would match that being used in education. 
 
There are many ways to design restricted languages. As the example above shows, it could be 
based on syntactic complexity or the omission of certain features. One particularly useful design 
criterion—consistent with the principles of this chapter—is to layer the complexity of the notional 
machine. In DrRacket (Findler et al., 2002), for instance, progressive student levels correspond 
to increasingly complex notional machines, with concepts like mutation and aliasing—which 
require a much more detailed notional machine, one that effectively reveals memory layout—
appearing only after students have gained familiarity with basic programming techniques. 
 
7.2 Errors and Error Messages 
 
Programming environments present error messages in response to several kinds of errors, 
including syntax errors, type errors, and run-time errors. (In languages with suitable support, 
there could also be test-failure errors (Felleisen, et al., 2014), algorithm errors (Sudol, 2011; 
Rivers & Koedinger, 2015), and more). Several studies have attempted to catalog the kinds of 
errors that students make in different languages and curricula (Hristova et al., 2003; Jackson, 
Cobb & Carver, 2005; Jadud, 2006; Marceau, Fisler & Krishnamurthi, 2011; Altradmri & Brown, 
2015; Tirronen, Uusi-Mäkelä & Isomöttönen, 2015). Each of syntax, semantic, and type errors 
arise frequently in these studies, with some variation (unsurprisingly) across programming 
languages (run-time errors are less frequent, as many of these studies worked with only with 
compilation logs). 
 
Getting students to actually read error messages may be difficult in practice (Denny, Luxton-
Reilly & Carpenter; 2104) (though this is not necessarily true of developers (Barik et al., 2017)). 
Some of the difficulty arguably arises from usability issues with error messages (Traver, 2010; 
Barik et al., 2014). In languages that support professional-grade programming, for example, 
error messages default to terminology that experienced programmers understand (such as 
“lvalue”) that may be beyond novices’ experience with and understanding of the language—
once again, reflecting a mismatch between the notional machine of the implementation from that 
of the education. Some projects attempt to rewrite error messages in beginner-friendly terms 
(Denny, Luxton-Reilly & Carpenter, 2014), though such rewrites do not necessarily lead to 
reduced time to resolve errors (Denny, Luxton-Reilly & Carpenter, 2014; Pettit, Homer & Gee, 
2017). Other projects have gone further, creating semantically-meaningful subsets of languages 
(sec. 7.1) that omit constructs or some behaviors of constructs to match what students have 
learned in various points in a curriculum; these projects produce error messages that are 
tailored to the language subset and student skill level. These projects use the traditional high-
level user-interface for error messages: a textual message anchored to a fragment of code 
through hyperlinks or highlights. Marceau et al. observed that highlights and anchors may have 
inconsistent meanings across messages within the same language (Marceau, Fisler & 
Krishnamurthi, 2011), and proposed guidelines for using multiple highlights as a part of 
consistent principles for connecting error terminology to code. 
 



 
 

 24 

Lee and Ko’s (2011) Gidget project explores a vastly different interface for error messages, one 
in which the problem of debugging is framed as helping a character find problems in code. This 
work suggests that an anthropomorphic compiler increases users’ willingness to figure out error 
messages. Such a tool also proposes an interface for presenting notional machines, which in 
turn leads to issues in debugging. Debugging is beyond the scope of this chapter, but existing 
surveys provide overviews of work on debugging in an educational context (Fitzgerald et al., 
2008). 
 
Overall, creating error messages that engage and support novice, casual, or end-user 
programmers remains an open question in computing education. There are many possible 
goals for error messages, from aiding in debugging, to identifying misconceptions, to reinforcing 
terminology about a language. Such work requires attention to many human factors issues, 
including interface design, cognitive alignment, and user motivation; technical issues are also at 
play, as a user’s errors may reveal misunderstandings of parsing or program execution 
processes that are not explicit in the user’s mental model of how programs run. 

 
7.3 Cost Models 
 
A cost model tells us how much resource a computation will consume. We usually think of 
resources as time and space, but many others are also relevant such as energy, network 
bandwidth, and so on. 
 
Cost models of computation are not routinely covered in the computing-education literature. 
This may be because so much of the literature is devoted to introductory courses, and the cost 
of computation—such as big-O models—is sometimes not covered at this level. However, there 
is some evidence that students do form opinions about the cost of computation before they have 
been instructed to do so and even when they are explicitly instructed to ignore it (Fisler, 
Krishnamurthi & Siegmund, 2016). 
 
Cost models are inextricably tied to notional machines, because they depend on the semantics 
of the language. For instance, consider the time cost of evaluating this expression: 
 
f(g(x),	h(y))	

 
In most languages, each of g(x) and h(y) must first reduce to answers, which are then passed 
to f. Thus, the cost just to start running the body of f is the time to evaluate each of the 
arguments, and a constant for applying f itself. In contrast, in a lazy semantics (used by 
languages such as Haskell), neither g(x) nor h(y) is evaluated right away; rather, they are 
turned into closures, which take essentially constant time, before f begins to evaluate. (The full 
cost model is more involved.) A reactive model can be even more complicated, since it depends 
not only on which arguments change, but also on whether the change to the argument results in 
a change to the result. 
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A study of cost models thus parallels that of notional machines and recapitulates it. Students 
form their own models based on brief observations as well as commentary they hear from peers 
and other sources (e.g., about certain languages being “efficient” or otherwise). They 
sometimes form flawed models because of a simplistic understanding of the mapping of “lines of 
code” to operations (sometimes missing that a “line” can be complex and hence take non-
constant time (Cooper et al., 2013)), which in turn can impact the way they write code (Fisler, 
Krishnamurthi & Siegmund, 2016). Understanding student cost models and determining how we 
can improve their understanding remains an open question. 
 
7.4 Static Types 
 
A source of some debate in programming education is when one should introduce and use 
static types. There are natural benefits to types: in addition to the common experience of 
catching errors early (Tichy & Prechelt, 1998), they also provide an alternate and simpler 
representation of a program’s behavior, making it possible to study a program and communicate 
its meaning at a high level. For instance, it should be fairly clear which compositions of the 
following functions are valid just from their type signatures, without looking at their 
implementations (indeed, it may be easier from looking at the types than at the 
implementations): 
 
open	::	()	->	InputPort	

close	::		InputPort	->	()	

read	::	InportPort	->	String	

 
However, types can also be viewed as problematic for a few reasons. At a time when students 
may already be struggling with one language they effectively introduce a second one (Tirronen, 
Uusi-Mäkelä & Isomöttönen, 2015). This language has its own grammar and its own notional 
machine (a type-checker traverses a program differently than does a compiler or interpreter 
(Krishnamurthi, 2006)). Furthermore, the checker is essentially invisible except when students 
make an error—a time when they may already feel nervous or demoralized—and demands to 
be understood at this fraught time. On the other hand, by catching errors early, it saves 
significant time and pain later. A thorough study of these tradeoffs does not seem to have been 
done and remains open. 
 
Part of the difficulty in having a discussion about types is that it surely hinges on what notion of 
types is under consideration. Educators of a certain age may remember the weaknesses of 
Pascal’s type system, which at least in some quarters earned it a reputation for inflexibility. As 
one of the creators of SNAP!, Brian Harvey (1993), wrote, "Pascal is part of the same machinery 
as hall passes, dress codes, advisors' signatures, single-sex dorms, and so on". Part of its 
inflexibility was due to a lack of parametric polymorphism. In contrast, parametric polymorphism 
is a natural part of languages like ML and Haskell. In addition, the support these languages offer 
for type inference lets a programmer write a function as if it has no types, and yet get the benefit 
of static typing (but at the cost of even more complicated type errors, a long-standing open 
problem in programming languages (Wand, 1986)). Any study of types must therefore take the 
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richness of the type system into account. Studying the use of type inference in education 
remains especially open. 
 
7.5 Non-Standard Programming Models 
 
An enormous amount of attention in computing education has focused on traditional CS1 
courses. However, the context of computing is changing rapidly: some CS1 courses are 
evolving and new courses are being created that deserve just as much attention. Earlier we  
briefly mentioned the demands of data science (sec 4.2). Another important topic is embedded-
systems programming, which is relevant to robotics, the Internet of Things, and so on. 
Embedded programs are very different from traditional ones in a few ways. First, they follow an 
event-driven structure with inverted control (Myers, 1991). Second, they are largely non-
terminating computations, with no “beginning” and “end”. Third, their debugging needs are very 
different from those of conventional programs. In both topics, notice that the programming 
models may use quite different notional machines than students are already used to, and these 
models of computation are far less developed in the literature. Therefore, understanding the 
needs, difficulties, and misconceptions of students in these courses is wide open and an 
important and pressing task. 
 
Indeed, we will soon need to look even farther, as even the popular press has noticed (Somers, 
2017). Program-creation techniques such as program generation from specifications and other 
formal models (broadly, “synthesis” (Green, 1969)) have already seen industrial success in 
mission-critical systems and are now reaching maturity in a variety of areas (Gulwani, Polozov, 
and Singh (2017) offer a useful summary of the state of the art), fueled by advances in various 
computing technologies from SAT-solving to machine-learning (which introduce entirely new 
notional machines!). What synthesis techniques consume, however, are not programs in a 
traditional sense, but rather specifications, which are declarative and require holistic thinking 
about all possible behaviors of a system—an open topic rarely studied in computing education, 
though there is some knowledge in the broader computing community about the human-
computer interaction (HCI) challenges of these techniques (Dix, 2013). This technological 
advance, with the potential for wide-ranging impacts on all forms of programmers, thus 
represents entirely new challenges for CEdR. 

 
8 Implications Moving Forward 
 
This chapter argues that the conventional focus on “paradigms” is too limited. Today’s 
programming languages embrace features from across the conventional paradigms, and the 
problems we observe in education tie more to features and particular kinds of notional machines 
than to the paradigms themselves. 
 
Just as we should embrace going beyond coarse paradigms, we must also stop presenting 
courses and research with phrases like “we taught the course in language X”. This description is 
too broad. We must discuss the features we presented, which problems and examples our 
course taught and assigned, and which explanations (if not notional machines) we used to 
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describe program behavior to students. Knowing that a course was taught in Python, for 
example, does not convey whether students learned imperative programming, list 
comprehensions, or an integration of the two, yet these distinctions are critical to understanding 
what kind of programming students are learning. 
 
If we embrace that students should learn to program in different sets of linguistic features over 
their education, we should better understand how students do and do not evolve their 
understanding of notional machines and program semantics over time. There has been some 
work looking at how students transfer knowledge from one language to another (Scholtz & 
Wiedenbeck, 1990), but this work only rarely extends into upper level curricula (Fisler, 
Krishnamurthi & Tunnell Wilson, 2017) or looks at how students maintain different mental 
models of notional machines and language features. This is part of a broader need to extend 
CEdR beyond first-year courses and novice experiences. 
 
Once we accept that different language features engender different mental models of program 
evaluation, our studies of how students are learning must try to account for (or at least report) 
the perspectives that students bring into a new course. For example, a student learning Java 
after a course in functional programming may well program with different patterns than a student 
whose prior experience was entirely imperative. Our studies need to consider what programs 
students had been exposed to previously, and the extent to which certain problems arise more 
naturally with some language features than with others. 
 
Giving up on “language independent” programming assessments—including those using 
pseudocode—is another necessary casualty of embracing different models for different sets of 
language features. Language-“independent” assessments typically depend on a common 
(subset of a) notional machine, even if the surface syntax changes dramatically; this naturally 
leaves out all languages that aren’t well explained by that machine, thereby undermining any 
claims of being “independent” of language. Indeed, assessments that accommodate each of 
imperative, functional, and reactive models after a first computing course can have little 
common behavior to draw on (beyond perhaps the behavior of a conditional or interpretation of 
boolean operators or a Turing Machine). The AP CS Principles framework in the United States 
(The College Board, n.d.) is an instance of this, boxing curricula into the narrow space of 
imperative notional machines while claiming to be independent. 
 
The overarching take-away for researchers is to think more deeply about linguistic assumptions 
and how they interact with pedagogy of prior and current courses. For teachers, we must 
remember that we choose not just the syntax and IDE in which we will teach; we also choose 
the pedagogy, problems, and notional machine through which students experience our chosen 
language. As computing is applied to more and more domains, more end-users become casual 
programmers, and more languages arise to meet these needs, computing education research 
gains a wealth of interesting problems to explore that are far more nuanced than covered by our 
earlier conception of paradigms. 
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Sirkiä, Teemu, and Sorva, Juha. 2012. Exploring Programming Misconceptions: An Analysis of Student Mis-
takes in Visual Program Simulation Exercises. Pages 19–28 of: Proceedings of the Koli Calling Conference
on Computing Education. ACM.

Slotta, J. D., and Chi, M. T. H. 2006. The impact of ontology training on conceptual change: Helping
students understand the challenging topics in science. Cognition and Instruction, 24, 261–289.

Smaragdakis, Yannis, and Balatsouras, George. 2015. Pointer Analysis. Foundations and Trends in Pro-
gramming Languages, 2(1), 1–69.

Soloway, Elliot. 1986. Learning to Program = Learning to Construct Mechanisms and Explanations. Com-
munications of the ACM, 29(9), 850–858.

Soloway, Elliot, Bonar, Je↵rey, and Ehrlich, Kate. 1983. Cognitive Strategies and Looping Constructs: An
Empirical Study. Communications of the ACM, 26(11), 853–860.

Somers, James. 2017. The Coming Software Apocalypse. The Atlantic, Sept.

Sorva, Juha. 2012. Visual Program Simulation in Introductory Programming Education. Ph.D. thesis, Aalto
University, Department of Computer Science and Engineering.

Sorva, Juha. 2013. Notional Machines and Introductory Programming Education. Transactions on Comput-
ing Education, 13(2), 8:1–8:31.

Spohrer, James C., and Soloway, Elliot. 1989. Simulating Student Programmers. Morgan Kaufmann Pub-
lishers Inc. Pages 543–549.

Stanton, Jim, Goldsmith, Lynn, Adrion, W. Richards, Dunton, Sarah, Hendrickson, Katie A., Pe-
terfreund, Alan, Youngpradit, Pat, Zarch, Rebecca, and Zinth, Jennifer Dounay. 2017 (Mar.).
State of the States Landscape Report: State-Level Policies Supporting Equitable K12 Com-
puter Science Education. Available online at http://www.edc.org/sites/default/files/uploads/
State-States-Landscape-Report.pdf. Last accessed March 26, 2018.

Stefik, A., and Gellenbeck, E. 2011. Empirical studies on programming language stimuli. Software Quality
Journal, 19(1), 65–99.

Stefik, Andreas, and Gellenbeck, Ed. 2009. Using spoken text to aid debugging: An empirical study. In:
IEEE International Conference on Program Comprehension.

Stefik, Andreas, and Siebert, Susanna. 2013. An Empirical Investigation into Programming Language Syntax.
Transactions on Computing Education, 13(4).

Stefik, Andreas, Hundhausen, Christopher, and Patterson, Robert. 2011. An Empirical Investigation into
the Design of Auditory Cues to Enhance Computer Program Comprehension. International Journal of
Human-Computer Studies, 69(12), 820–838.

Stefik, Andreas Mikal. 2008. On the Design of Program Execution Environments for Non-Sighted Computer
Programmers. Ph.D. thesis, Washington State University.

Sudol, Leigh Ann. 2011. Deepening Students Understanding of Algorithms: E↵ects of Problem Context and
Feedback Regarding Algorithmic Abstraction. Ph.D. thesis, Carnegie Mellon University.

8



Tessler, Joe, Beth, Bradley, and Lin, Calvin. 2013. Using Cargo-bot to provide contextualized learning of
recursion. In: Proceedings of the Conference on International Computing Education Research (ICER).

Tew, Allison Elliott, McCracken, W. Michael, and Guzdial, Mark. 2005. Impact of alternative introduc-
tory courses on programming concept understanding. Pages 25–35 of: Proceedings of the Conference on
International Computing Education Research (ICER).

Tichy, Walter F., and Prechelt, Lutz. 1998. A Controlled Experiment to Assess the Benefits of Procedure
Argument Type Checking. IEEE Transactions on Software Engineering, 24(4), 302–312.
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