
Assessing and Teaching Scope, Mutation, and Aliasing
in Upper-Level Undergraduates

Kathi Fisler
WPI

kfisler@cs.wpi.edu

Shriram Krishnamurthi
Brown University

sk@cs.brown.edu

Preston Tunnell Wilson
Brown University

ptwilson@brown.edu

ABSTRACT
Scope, aliasing, mutation, and parameter passing are funda-
mental programming concepts that interact in subtle ways,
especially in complex programs. Research has shown that
students have substantial misconceptions on these topics.
But this research has been done largely in CS1 courses, when
students’ programming experience is limited and problems
are necessarily simple. What happens later in the curricu-
lum? Does more programming experience iron out these
misconceptions naturally, or are interventions required?

This paper explores students’ understanding of these top-
ics in the context of a programming languages class for third-
and fourth-year CS majors. Our pre- and post-tests pose
questions in two programming languages to gauge whether
upper-level students transfer knowledge between languages.
Many students held misconceptions about these concepts at
the start of the course. Students made progress in only some
languages and topics, and cross-language transfer does not
occur naturally. We also discuss various pedagogic activities
we used to engage students with these concepts, and provide
data and student opinion on their effectiveness.

Keywords: scope; mutation; programming; concept inven-
tories; notional machines

1. INTRODUCTION
Programming beyond the beginner level draws on core

concepts such as scope, aliasing, and their interactions un-
der mutation and parallelism. Because these topics are com-
plicated and have many subtle interactions, students learn
about them incrementally across several years.

Past studies conducted at the CS1 level (discussed in § 2)
already demonstrate that students have considerable diffi-
culties with these concepts in isolation. In this paper we
study these questions with third- and fourth-year college
students; by this time, their coursework, internships, and
projects should have greatly improved their knowledge. In
addition to (and because we are) considering the upper-level
curriculum, we have four other novel aspects to our study:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE ’17, March 8–11, 2017, Seattle, WA, USA
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4698-6/17/03. . . $15.00

DOI: http://dx.doi.org/10.1145/3017680.3017777

• We study the interaction between the key features of scope,
mutation, and aliasing.

• We conduct a study across two semantically very similar
but syntactically different languages, to measure transfer
across languages.

• We examine the impact of multiple forms of both teaching
and assessment of these features.

• We include more features than in prior studies, even briefly
considering closures (which are now a part of most main-
stream languages, including Python, Java, etc.).
Concretely, we present the design of a multi-language quiz

on scope, mutation, and aliasing. We administer this quiz
as a pre- and post-test in an undergraduate programming
languages course, and examine how the course impacted stu-
dents’ understanding. The two languages used in the quiz
are Java and Scheme, which have identical semantics [4] de-
spite very different syntaxes and surface-level concepts.

Our findings, which we discuss in detail, are as follows:
• Despite their advanced status in their education, students

did poorly on the pre-test, even in Java, which they had
used in several courses and in software engineering projects.
The results here are similar to those from CS1 courses
(elsewhere), despite the students’ having two to three more
years of programming experience.

• Students improved significantly by the end of the course.

• Most of the improvement was in Scheme, not in Java.
Though the course did program in a variant of Scheme
called Racket, it did not itself use the features being tested—
rather, it showed how to implement them. Therefore, it
raises the question of whether seeing how to implement a
language feature might be more useful than having expe-
rience with it in limited settings.

• The improvements were not uniform across features, ei-
ther. There was significant improvement in the under-
standing of scope and of variable mutation, but only bor-
derline improvement on questions involving mutation of
function/method parameters.

• The changes in performance did not correlate well with
the different kinds of teaching and assessment. Neverthe-
less, in surveys, almost all students reported finding these
techniques at least somewhat useful.

2. RELATED WORK
Our quiz is a first step towards a concept inventory for

scope, mutation, aliasing and their interactions. A concept

inventory is a collection of questions that test understand-
ing of how a particular concept works; the Force Concept
Inventory in Physics [2] is the classic example; similar ef-
forts are underway for a few areas in CS [7]. An inventory
is typically a set of multiple-choice questions in which each
option has been validated to indicate a specific incorrect
conceptual model; these incorrect models are called mis-
conceptions. The validation process is time-consuming and
typically requires several iterations. The quiz we discuss in
this paper has not yet been validated, as we are in the first
phase of identifying questions on which upper-level students
perform poorly. The incorrect answers in our quiz are based
on two decades of teaching this material and observing cer-
tain consistent patterns of mistakes that students make, and
therefore offer a useful starting point towards eventually ar-
riving at a concept inventory.

Several projects have studied misconceptions about vari-
ables and parameter passing [7, 9]. These typically use
short CS1-style programs containing a sequence of assign-
ment statements; students are asked to explain the pro-
gram’s behavior. These studies show that students gener-
ally have both incorrect and inconsistent models of these
concepts—particularly the underlying model of how memory
works—early in a CS curriculum. Futhermore, Sorva [13]
showed that students have many models of how objects
are created and stored in memory. Memory models are
necessary but not sufficient in our work, which also stud-
ies scope (and its interaction with mutation). Fleury [5]
found that many students assumed dynamic scope when
confronting unbound variables in Pascal. Our questions also
check whether students use dynamic scope when there are
multiple bindings to the same name. We have not found
prior studies that target the interaction of scope and muta-
tion with an emphasis on nested scopes.

Chi [1] suggests that misconceptions, once identified, can-
not simply be replaced with correct models. Cognitively,
misconceptions need to get layered over with new informa-
tion that is retrieved more often than prior models. The
nature and extent of learning to layer over misconceptions is
an open question [6, 12], particularly in the context of com-
puter science. We report on four instructional techniques
that we used to help students refine their understanding of
scope, mutation, and aliasing, though we do not attempt to
measure (beyond student opinions) which is most effective.

Students’ models of program behavior are closely tied to
notional machines [3], which are abstract models of how a
system (such as a specific programming language) should
behave. Notional machines can under-approximate the full
semantic behavior of a language, giving students a partial
conception of constructs that is consistent with what they
have learned so far. We conducted our study in a program-
ming languages course in which students wrote interpreters
to explore the workings of certain constructs. In writing
interpreters, students had to explicitly write notional ma-
chines in code. It is not clear, however, whether the act
of writing these machines helps students understand the re-
sults of running them. That question is among those we are
exploring in this work.

3. BACKGROUND: SCOPE AND ALIASING
We start by explaining the key concepts of scope, aliasing,

variable mutation, and object mutation, on which our quiz
tests students.

Variables and Aliasing.
Consider the following Java program:

void m(C o) {
int x = 3;
int y = x;
x = 4;
o.f = 5;

}

The method m takes an object o (of type C) as a parame-
ter. It defines local variables x and y. There are then two
assignment statements: one updates the value of x, while
the second changes a field (f) of object o. We call the first
variable mutation and the second object mutation.

These two forms of mutation are quite different, even
though they appear similar syntactically. In most languages,
variables do not alias. That is, changing x above changes
the value of x only, and does not alter the value associated
with y. In Java and Scheme (the languages in this study),
function calls do, however, alias objects. In this example,
suppose we run m(p), where p is some object of type C.
Once the method completes, the value of p.f will also be
5, even though the program contained no statement of the
form p.f = This is because o aliases p.

Aliasing is a vexing problem in complex programs. It is
especially thorny in parallel and concurrent programming,
where aliases greatly expand the sets of readers and writers
(and can therefore hurt thread-safety). For this reason, enor-
mous research effort has gone into reining in aliases ([10] is
an illustrative example); industrial languages like Mozilla’s
Rust now provide “ownership” annotations for this purpose.
Therefore, it is important to gradually convey this important
idea to students, due to its impact on the understandability,
efficiency, and parallel behavior of their programs.

Binding and Scope.
Scoping rules determine the extent to which a binding

to a variable name stays in effect, as well as which one is
used when multiple variables share a name. Consider the
following program in a hypothetical language:

def f():
x = 3
g(x)

def g(y):
print(y + x)

Assuming g was called from f, what happens at the print

line? Does x still have the value 3—which corresponds to
dynamic scope—or is it an error because x is not bound
(corresponding to static scope)? Most languages have cho-
sen the latter interpretation; indeed, even some languages
that began with dynamic scope (Lisp, JavaScript, etc.) in
some situations have switched to static scope. Yet in our
experience, some students are truly confused while many
assume the language will have dynamic scope.

Scope can become especially significant when program-
ming with closures (a.k.a., “anonymous functions”, “dele-
gates”, etc.). While closures may have seemed idiomatic only
of functional programming, they are now widely found in all
manner of languages. For instance, they are in JavaScript,
Scala, Python, and are now even a part of the standard
library interfaces in Java 8. Therefore, understanding the
interaction of scope and aliases, and both of them with mu-
tation, is increasingly important in all the families of lan-
guages that students will encounter.

Sidestepped Subtleties.
Simply in the interaction of scope, mutation, and aliasing,

there are many more issues we could consider. For instance,
languages like JavaScript and Python have complex “lift-
ing” rules for variable declarations that are not provided at
the beginnings of blocks. In Python, many scope rules are
subtle, and certain nested declarations are surprising, es-
sentially breaking the expectation—established since Algol
60—that static scope is lexical [11, § 4]. In some languages,
attempting to set a variable’s or field’s value before defining
it results in an error, but in many “scripting” languages, this
usually just introduces the variable or field; in some of them,
even accessing a missing field does not signal an error. We
consider all these and other such issues outside the scope of
our study, though we can certainly extend this work to cover
more of these topics, and certain instructors who do rely on
such language features should consider doing so.

4. A QUIZ ON SCOPE AND ALIASING
For this project, we focused on the behavior of scope and

aliasing (exercising them through mutation and parameter
passing) in two languages with similar semantics for these
topics: Java and Scheme. Working with two languages lets
us assess whether students understand these issues concep-
tually, beyond the context of a particular language. We
chose Scheme and Java because our student population had
been exposed to both during their coursework. Many other
languages share the Java/Scheme semantics of scope and
aliasing, so our quiz can be adapted to other languages.

Our quiz targets understanding of the following concepts:
• If there are multiple bindings (scopes) for the same vari-

able name, which one is referenced at a given use? Which
are affected by an assignment to that name? These cover
static, dynamic, and nested scopes.

• When a variable name is used as an actual parameter, are
the variable and the parameter aliases?

• When an object is passed as an actual parameter, does the
parameter reference the passed object or a copy of it?

• When one local variable is assigned to another, are they
aliases? Does changing one affect the other?
Concretely, our quiz contained 18 multiple-choice ques-

tions: 12 in Scheme and 6 in Java. (We used more Scheme
examples because they are far more concise than those in
Java.) Each question asked for the result of running a short
(4-10 line) program, giving 4-6 answer choices. Figure 1
shows two examples.1 The given choices captured each in-
terpretation or misconception we could identify through the
literature, our experience, and brainstorming. In some cases,
we added implausible answers to check whether students
were merely guessing instead of taking the quiz seriously.

5. STUDY LOGISTICS
We tested our quiz in a programming languages course for

third- and fourth-year undergraduate CS majors at WPI.
Students used Scheme for programming activities through-
out the course, following the “definitional interpreter” model
used by several books, including the course text [8]. The vast
majority of students had used Scheme in their introductory
course (though that knowledge was rusty at the start of this

1The details are on the Web at cs.brown.edu/research/
plt/dl/sigcse2017/.

Question Set (size) Pre Post p-value
Scheme (12) 66% 88% 2.529402e-09

Java (6) 65% 69% 0.1452405

Scope (7) 66% 86% 2.536865e-06
Param Mutation (5) 62% 70% 0.05071296

Var Mutation (7) 67% 85% 3.198021e-06

Table 1: Class averages (N=66) on subsets of quiz
questions. Significance of the gains was calculated
using a Wilcoxon signed-rank test.

course); all had Java experience from one or more of the CS2
course, the software engineering course, and internships.

We gave the quiz during the first week of the course (be-
fore discussing either scope or mutation), then again after
all lectures and activities on scope, mutation, and parameter
passing had been completed. Students took the quiz online
outside of class both times. Students had received auto-
mated grading results on all related activities before they
took the post-quiz. The questions on the post quiz were
identical to those on the pre quiz, but were presented in a
different order. In both the pre- and post-tests, the Scheme
questions appeared before the Java questions.

For both the pre- and post-tests, students were told that
the quiz was a diagnostic that the instructor was using to
check whether the activities were effective at helping them
learn the material. Failure to take the quiz at all would count
against their course grade, but incorrect answers would not.
These statements were designed to incentivize participation
without cheating (by running the programs and entering the
correct answer, which the number of incorrect answers sug-
gests students did not do). Students almost never chose an-
swers that were implausible, suggesting that students were
not randomly guessing either.

6. RESULTS AND OBSERVATIONS

6.1 Comparing Pre and Post
Table 1 summarizes overall class performance on the pre-

and post-quizzes. The table reports on five clusters of ques-
tions: questions on Scheme alone, on Java alone, on scope,
on mutation of (fields of) parameters, and on mutation of
local (non-parameter) variables. Each question on the quiz
is covered in two rows, one based on language and one based
on topic; one question is counted in both the scope and vari-
able mutation topics.

The quizzes suggest that students start out with only mid-
dling knowledge of both languages and better command of
Scheme than Java afterwards. This is somewhat surpris-
ing, since nearly all students had more experience in, com-
fort with, and preference for Java. The least performance
improvement occurs on the topic of parameter mutation,
a topic tested more heavily in Java (4 questions) than in
Scheme (1 question). In contrast, the quiz used Scheme
more to test scope (5 questions versus 2 in Java) or variable
mutation (6 questions versus 1 in Java). We cannot tell from
this data whether the key factor in student performance was
lack of understanding of the topic, greater facility in one of
the two languages, or failure of students to transfer what
they were learning about these constructs from Scheme to
Java (something we discussed during lecture, but did not
exercise explicitly in homework).

(let ([x 3])
(let ([f (lambda (y) (+ x y))])

(let ([x 5])
(f 10))))

Choices: 13 (correct), 15, 18, error

class Question {
static int a = 3;

public static void F5(int b) {
int a = 7;
a = b;

}

public static void main(String [] args) {
int v = 9;
F5(v);
System.out.println(a + v);

}
}

Choices: 10, 12 (correct), 18, error

Figure 1: Sample questions in Scheme (L) and Java (R), both of which distinguish static and dynamic scope.

At the level of individual questions, there were only 3 ques-
tions on which at least 80% of the class was correct in both
the pre- and post-quizzes: these tested basic nested scopes
(Scheme), lack of aliasing between local variables (Scheme),
and aliasing of objects passed as parameters (Java). No
other question had more than 70% of the class correct on
both pre and post. The question with the worst performance
on the post-test explored whether assignments to parame-
ter names were visible in the calling context (Java): over a
third got this question wrong both pre and post, and 12%
lost ground on this question between the two quizzes; only
a third were correct both pre and post. Consistent with ta-
ble 1, the number of students improving on each question
was higher for Scheme questions than for Java ones. Losses
were also more frequent on the Java questions (though losses
occurred on every question sans one).

These data tell us that the quiz identified concepts that
many students did not understand well, despite being upper-
level and having significant programming experience (par-
ticularly in Java). The data also suggest that students did
not learn to apply what they were (supposedly) learning in
Scheme to understanding Java, despite the languages having
a common semantics and this being discussed in class. To
better understand these trends, we need to look at whether
students had consistent misconceptions about concepts, and
how often students used different interpretations of the same
constructs across Scheme and Java.

6.2 Are Students’ Models Consistent?
Some core topics (such as static scope) and potential mis-

conceptions (dynamic scope; aliasing of identifiers passed as
parameters) featured in multiple questions. For semantics
topics common to multiple questions, we checked whether
students chose consistently. Students grew more consistent
(though not perfectly so) in the post-quiz on both static
scope and whether variables aliased parameters. Figure 2
shows the histograms of how often students chose a static
scope interpretation in each of pre and post.

Consistency Across Languages.
The quiz also contained pairs of questions that tested sim-

ilar (though not identical) uses of the same concept in each
language. For these pairs, we checked how often the correct-
ness of students’ answers correlated across the languages.
Table 2 summarizes relative correctness across languages for

Figure 2: Distribution showing how many times stu-
dents selected the static-scope interpretation during
the pre- and post-tests. Students leaned more to-
wards static scope (always the correct answer) in
the post-test.

three question pairs: one on static vs dynamic scope, one on
whether variables are aliased to parameters, and one on the
effects of modifying a variable defined in an external scope.

In all three cases, a significant number of students an-
swer the questions inconsistently both pre and post (the
X× and ×Xcolumns). The balance between those columns
skews in the post-quiz, however, with many fewer students
being incorrect in Scheme and correct in Java. For the latter
two questions, there is no correlation between the languages
in the pre-quiz, but correlation emerges in the post-quiz.
In general, improvement in these three pairs show stronger
gains in Scheme than in Java in these common concepts.
At least a third of the class remains inconsistent across lan-
guages in the post-quiz on questions involving variables.

It is important to eliminate one possible explanation for
these changes. One might assume that students were using
these features heavily in Scheme in the course, and therefore
learned through experience how they behave. However, they
did not: the style of interpreters written in the course does
not exercise these features (mainly because the interpreters
themselves do not use any mutation). Therefore, they could
not have gained familiarity just from use.

7. INTERVENING ACTIVITIES
Between the tests, students did several activities designed

to help them understand the quiz topics. Specifically:

pre post

Topic XX X× ×X χ2 XX X× ×X χ2

Scope 28 5 19 .007 47 16 1 .0006
Alias 19 17 14 .71 28 22 5 .002
XMut 21 17 16 1 40 18 4 .005

Table 2: Performance on similar concepts across
languages. “Scope” contrasted static and dynamic
scope, “Alias” checked leakage of assignment to a
parameter in the calling context, “XMut” checked
mutation of a variable defined in an enclosing scope.
Column headings capture performance on Scheme
then Java: X× means correct in Scheme and incor-
rect in Java. Cells contain counts of students (N =
66). Correlations computed with McNemar’s test.

• They wrote an interpreter to implement static scope in
a language with higher-order functions (i.e., closures as
values) but no mutation. Along with the interpreter, they
submitted a suite of tests designed to capture the intended
scoping behavior in this language.

• They wrote a test suite to capture the behavior of a lan-
guage with static scope, variable mutation, simple object-
like data with field mutation, and parameter passing that
aliased objects but not variables.

• They peer-reviewed each other’s test suites from the previ-
ous two assignments. Each student reviewed two anonymized
submissions. Reviewers were asked to comment on both
the correctness and thoroughness of the submitted tests.
Reviews were spot-graded, and a student could lose points
for missing straightforward flaws in reviewed work.

• They answered clicker questions during lecture about the
behavior of programs with these features. Participation in
clicker polls counted towards their grade, but they did not
lose points for incorrect answers.
Interpreters were graded on correctness against a test suite

of programs written by the course staff. Test suites were
graded for two metrics: correctness relative to a reference
implementation (written by course staff) and thoroughness
relative to errors that the test suite could detect. For the lat-
ter, the course staff wrote roughly 20 incorrect implementa-
tions of the corresponding language. Incorrect implementa-
tions would change the semantics in various ways (dropping
variables from scope, adding them to inappropriate scopes,
failing to update memory upon mutation, etc). A test suite
received points for each broken implementation on which
some test produced the wrong answer against the broken
implementation (we call these implementations coals).

We used this combination of language implementation,
testing, clickers, and peer review because they embody dif-
ferent ways of thinking about the concepts. Each promised
potentials and pitfalls for student learning. Writing inter-
preters requires students to articulate a notional machine
in code, but that alone doesn’t require students to think
through the consequences of running that machine. Writing
tests requires students to articulate concrete examples of
how a program should behave; this has the potential to help
students think through interactions between constructs, but
insights are limited to the programs that a student thinks
to test. Peer reviewing can expose students to examples be-
yond what they thought to test, but random assignment of

reviewers might not give students sufficiently different work
to review. In addition, students might not reflect sufficiently
on the tests they are reviewing to realize subtle points raised
by those examples. Clickers give quick and immediate feed-
back, but the examples we used were very short (like the
quiz questions) so as not to take too much class time.

Influence of Interventions
Our data are not rich enough to indicate which of our in-
structional activities (if any!) led to performance gains on
the post-test. To measure that, we would have needed to
assess students’ understanding after they submitted each
assignment and after they performed peer review on each
assignment. We opted for a lighter-weight, single post-test
during this first study. While this does not suggest which
activities may have caused improvements, we can look at
performance indicators on these assignments that correlate
with improvements on subsets of questions, as well as stu-
dents’ perceptions of the activities.

Relating Coals to Quizzes.
For each of the scope and variable mutation topics, we

checked whether changes in quiz performance (pre to post)
correlated with whether students had test cases that cov-
ered these topics. Concretely, we used Kruskal-Wallis tests
to check whether detecting each coal that broke static scop-
ing (the expected behavior as stated on the assignment)
correlated with whether students gained or lost ground on
the scope questions within the quiz. We performed similar
checks on questions that broke the semantics of mutation.

We found a strong correlation between the quiz question
on dynamic scope and testing for the coal that implemented
dynamic scope (p = 0.00956). A similar correlation (p =
0.00791) arose between the dynamic scope coal and another
question about scope in the context of closures. No other
combinations yielded correlations below p = .05.

On mutation, we found only one weak correlation (p =
0.0474) between a Scheme question on aliasing (whether the
value of y changes after y := x and x := 5) and a coal in
which mutation affected the stack rather than the heap.

On the whole, whether students gained or lost ground on
the quizzes does not correlate with the thoroughness of their
test suites. Students knew their tests were graded for thor-
oughness, so they were incentivized to test carefully. That
we found no correlation suggests that students can have a
good understanding of the concepts without being able to
articulate interesting examples of them, or vice-versa. Inter-
estingly, we will see that students nevertheless felt writing
test cases helped their understanding of the material.

Relating Interpreters to Quizzes.
Writing an interpreter corresponds to implementing a no-

tional machine in code. This might force students to under-
stand the semantics of constructs (and in turn help with the
quiz). This view underlies the design of many programming
languages courses that emphasize writing interpreters. Yet
in the post-quiz, 9 (of 66) students still did poorly on the
scope questions, 5 of whom had high grades on the inter-
preter. This is a small percentage, but still noticeable. The
extent to which writing interpreters helps students under-
stand language semantics, especially in situations that force
multiple constructs to interact, remains an open question.

Writing Interpreters
Writing Much Bit Bit Much
Tests worse worse better better Total
Much worse - - - 1 1
Bit worse - 1 1 - 2
Bit better - - 17 15 32
Much better - - 10 28 38
Total - 1 28 44 73

Table 3: Students’ perceived impact of writing tests
and interpreters on their understanding.

Students’ Impressions.
The post-quiz asked students several Likert questions about

the impact of our instructional activities on their learning.
Each question took the form of “How has X impacted your
understanding of how scope, mutation, and parameter pass-
ing behave?”, where there was a question with each of “writ-
ing test cases”, “writing or understanding interpreters”, and
“peer review (writing or receiving)” in place of X. The an-
swer options were “Strong positive impact (I understand the
topic much better having done this)”, “Some positive impact
(I understand the topic a bit better having done this)”, and
corresponding versions for some and strong negative impact.

Table 3 contrasts students’ opinions of interpreters and
tests. The data show students fairly evenly split as to which
of the two was most impactful (contrasting the “strong pos-
itive” and “some positive” cells). Very few students felt an
adverse effect from either activity. All but 4 students re-
ported that peer review was a positive factor. We also asked
how often clicker questions had helped to clarify material:
34 students selected “once or twice”, while another 26 felt
clickers helped “three or more times”.

Overall, these data suggest that each of our activities has
a potential role to play in helping students master these con-
cepts. Further studies are required to understand the condi-
tions that make each of these activities effective in practice.

8. DISCUSSION AND FUTURE WORK
Scope and aliasing are subtle concepts that programmers

confront throughout their careers in various contexts. Ed-
ucators cannot expect students to develop a solid under-
standing of these ideas and their interactions in the first
year curriculum alone. We need pedagogic techniques and
assessments that grow and evolve understanding of these
topics over an entire curriculum.

Students’ poor performance on Java questions in our pre-
test shows that extended experience programming in a lan-
guage does not suffice to develop expertise in its semantics.
Students continue to need explicit instruction to build ac-
curate models of program behavior. This seems particularly
true of questions involving mutation, given the low scores
on this topic in the post-test. That our students progressed
more on Scheme questions than on Java questions in the
post-test suggests that upper-level students do not readily
transfer knowledge gained in one language to another, even
when that transfer is raised during lectures. The nature and
extent of instruction needed to enable cross-language trans-
fer in upper-level students is an interesting open question.

The relative pedagogic merits of our four activities (writ-
ing interpreters, writing tests, peer review, and clickers)
need further study. Students report significant impact of

each of these activities on their learning, but these impacts
are not evident in our data. We believe that writing tests,
for example, offers a valuable window into students’ under-
standing of the space of problems around a language con-
struct. Developing assessments that correlate students’ test-
ing behaviors with some other measure of conceptual under-
standing would help unearth the pedagogic connections.

Although we did our study in a programming languages
course, the issues we raise are not limited to such courses. In-
deed, any student who writes moderately complex programs—
much less ones involving parallelism, concurrency, or dis-
tributed transactions—will confront the issues in this paper.

Doing analysis for this paper revealed that our quiz needs
to rebalance the numbers of questions about specific topics
across the languages; we need more Scheme questions that
match some of the Java aliasing ones, and we need a few
more questions overall to try to identify students’ conceptual
models of aliasing and its interaction with scope. We will
revise the instrument for future iterations of this study.

Acknowledgments and Notes.
We thank the US NSF for its support. The third author’s

last name is “Tunnell Wilson” (index under “T”).

9. REFERENCES
[1] M. Chi. Common sense conceptions of emergent processes:

Why some misconceptions are robust. Journal of the
Learning Sciences, 14:161–199, 2005.

[2] H. D., W. M., and S. G. Force concept inventory. The
Physics Teacher, 30, 1992.

[3] B. du Boulay, T. O’Shea, and J. Monk. The black box
inside the glass box: presenting computing concepts to
novices. International Journal of Human-Computer
Studies, 51(2):265–277, 1999.

[4] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and
mixins. In POPL, 1998.

[5] A. E. Fleury. Parameter passing: the rules the students
construct. In SIGCSE, 1991.

[6] A. Gupta, D. Hammer, and E. Redish. The case for
dynamic models of learners’ ontologies in physics. Journal
of the Learning Sciences, 19:285–321, 2010.

[7] L. C. Kaczmarczyk, E. R. Petrick, J. P. East, and G. L.
Herman. Identifying student misconceptions of
programming. In SIGCSE, 2010.

[8] S. Krishnamurthi. Programming Languages: Application
and Interpretation. 2006.

[9] L. Ma, J. Ferguson, M. Roper, and M. Wood. Investigating
and improving the models of programming concepts held
by novice programmers. Computer Science Education,
21(1), 2011.

[10] J. Noble, J. Vitek, and J. Potter. Flexible alias protection.
In European Conference on Object-Oriented Programming,
1998.

[11] J. G. Politz, A. Martinez, M. Milano, S. Warren,
D. Patterson, J. Li, A. Chitipothu, and S. Krishnamurthi.
Python: The Full Monty: A tested semantics for the
Python programming language. In OOPSLA, 2013.

[12] J. Slotta and M. Chi. The impact of ontology training on
conceptual change: Helping students understand the
challenging topics in science. Cognition and Instruction,
24:261–289, 2006.

[13] J. Sorva. Students’ understandings of storing objects. In
Proceedings of the Seventh Baltic Sea Conference on
Computing Education Research - Volume 88, Koli Calling
’07, pages 127–135, Darlinghurst, Australia, Australia,
2007. Australian Computer Society, Inc.

