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Abstract

Financial companies, engineering firms and even sci-
entists create increasingly larger spreadsheets and spread-
sheet programs. The creators of large spreadsheets make
errors and must track them down. One common class of
errors concerns unit errors, because spreadsheets often em-
ploy formulas with physical or monetary units.

In this paper, we describe XeLda, our tool for unit check-
ing Excel spreadsheets. The tool highlights cells if their
formulas process values with incorrect units and if derived
units clash with unit annotations. In addition, it draws ar-
rows to the sources of the formulas for debugging. The tool
is sensitive to many of the intricacies of Excel spreadsheets
including tables, matrices, and even circular references.
Using XeLda, we have detected errors in some published
scientific spreadsheets.

1 Spreadsheet Programming

End users program. They program when they write
database queries, when they design a style sheet for a word
processor, or when they use a mail merge program to send a
letter to a large group of people. Spreadsheet programming
is the most common form of end user programming. People
use spreadsheets for accounting, for financial modeling, for
analysis and rapid prototyping in engineering, for teaching
at all levels, and for many other purposes.

As people have become comfortable with spreadsheets,
the complexity of spreadsheet programs has grown signifi-
cantly. Whereas early spreadsheet programs consisted of a
single worksheet for a simple accounting task, today finan-
cial experts, engineering firms and even scientists routinely
use spreadsheets that consist of numerous worksheets en-
compassing hundreds and thousands of formulas. Indeed,
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these worksheets often depend on each other just like mod-
ules and procedures in large programs.

Like any other programs, spreadsheet programs suffer
from errors. As Panko [17] points out, spreadsheet pro-
grammers often lack formal training and are therefore even
more likely than ordinary programmers to make mistakes.
By failing to fully appreciate the potential and uses of
spreadsheet languages, the research community has largely
abandoned these programmers; to this day, few researchers
develop tools that help spreadsheet programmers check,
test, and debug their spreadsheets. Notable exceptions in-
clude Burnett, Erwig and Rothermel [5, 6, 19].

In this paper we present XeLda, a new tool for validating
the unit correctness of Excel spreadsheet programs. The
widespread use of Excel in number-rich domains like en-
gineering, finance and science, and the importance of unit
checking in these applications makes this an important form
of enhancing spreadsheet validity. Unit checking is also
an important choice because widely available spreadsheets
such as Excel do not support it.1 Finally, we know from
“standard” software engineering that unit errors such as
those in the Mars lander can have costly consequences [1].

This paper’s second section is a brief tutorial on the use
of XeLda. In the third section, we explain how XeLda per-
forms unit checking and how it copes with Excel’s complex-
ities, including tables, matrices, and circular dependencies
among formulas. In the fourth section, we provide evidence
that unit checking with XeLda is effective and necessary.
The remaining sections cover related and future work.

2 A Brief XeLda Tutorial

Figure 1 shows the XeLda control panel, through which
the user identifies a spreadsheet for unit-checking.2 Press-
ing the Load File button starts an instance of Excel with

1The CONVERT function of Excel converts numbers from one unit to
another, but it does not perform unit checking over the spreadsheet.

2XeLda is a DrScheme [8] program. XeLda uses the MysterX exten-
sion to DrScheme [20] to communicate with Excel.



the specified spreadsheet. XeLda needs cells with numbers
to be annotated with units; otherwise it treats them as di-
mensionless. XeLda then computes the unit for formula
cells, and compares this against any annotation made by the
user. Units are placed in Excel comment fields via Excel
directly or using XeLda’s control panel.

Figure 1. XeLda Control Panel

When the user requests an analysis (via the Analyze
button), XeLda may find two kinds of errors:

• a derived unit doesn’t match a cell’s unit annotation (a
match error), or

• a formula uses units in an inconsistent manner (a con-
sistency error).

XeLda flags these errors by coloring the cells where they
occur, orange for a match error and yellow for a consistency
error. In addition, whenever an error occurs at a cell, all
cells that depend on it are colored purple, indicating error
propagation. (These choices are preliminary; user studies
should reveal better mechanisms for highlighting errors.)

When a unit error occurs, it is useful to know why the er-
ror occurred, and what the sources of the error are. XeLda
therefore gives an explanation of why an error has occurred
in a cell by providing descriptive text in the cell’s comment
field. The sources of an error are shown by drawing arrows
to the error cell from the cells that it depends on.3 Figure 2
shows a XeLda-analyzed spreadsheet with a textual expla-
nation display and all the source arrows drawn. Cell B5,
annotated with kg-m/sˆ2, is the product of cells A2 and
C2, annotated with kg and m-sˆ2, respectively. Therefore,
there is a mismatch between the unit computed for B5 and
its annotation. The other error occurs at cell B12, whose
formula attempts to compare apples (from cell A9) with
oranges (from cell C9). In both errors, the arrows indi-
cate the sources of data for the erroneous cell. (Figure 5
presents a more detailed example of these arrows.)

3While we employ Excel’s existing mechanism for presenting depen-
dencies, we were inspired by similar ideas in the MrSpidey static debug-
ger [9] and by spreadsheet visualization work [13].

3 Foundations

Spreadsheet cells contain formulas and unit annotations.
The abstract syntax of formulas is:

e ::= n | cell-ref | id | e op e | fun(e, . . . , e)

where n is a number, cell-ref is a cell reference, op is
an arithmetic operator, and fun is an identifier denoting
an Excel function. Examples of Excel functions are SUM,
AVERAGE, and MAX. Cell references obey Excel’s conven-
tions (for example, A1 and B52). An id is an identifier that
names a spreadsheet cell. In the concrete syntax of formu-
las, parentheses may be used for grouping. This grammar
purposely ignores a few constructs found in Excel formulas,
such as boolean constants and conditionals, because they do
not pose interesting problems.

Units represent the dimensions associated with a nu-
meric value, consisting of a possibly empty list of unit-
exponent pairs or an error:

U ::= ((w n) . . .) | error/equality |
error/propagate | error/circular

where each w is the name of a unit and n is an integer ex-
ponent. The names of units are arbitrary.4 The empty list of
units denotes dimensionlessness. A nonempty list of units
and their exponents denotes a product of units; a negative
exponent indicates division. For example, the unit

((kilogram 1) (meter 1) (second -2))

denotes an SI Newton. We use the notation u1@u2 to de-
note the multiplication (appending) of two units. The error
error/equality corresponds to mismatches and incon-
sistency, and error/propagate ensues from propaga-
tion. We discuss error/circular in section 3.3.

Because we wish to compare units, it is convenient to
have a normal form for them. The order of a compound
unit’s constituents is unimportant: a kilogram–meter de-
notes the same unit as a meter–kilogram. A unit name needs
to appear within a unit only once, because the exponents in
multiple occurrences can be summed. Therefore, we define
a unit to be in normal form when:

• each w in w1, . . . , wm is distinct;

• wi ≤ wi+1 for 1 ≤ i < m, where the comparison on
the w’s is lexicographic; and

• nj �= 0 for 1 ≤ j ≤ m.

4XeLda does not restrict the set of unit names, so it can support domain-
specific units or ones that come into existence over time (such as new cur-
rencies like the euro). XeLda does offer support for unit coercion; see
section 3.4.
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Figure 2. Unit Errors in a Spreadsheet

This definition is close to Kennedy’s presentation of units as
elements of an Abelian group [15], except for the sorting re-
quirement, which is useful for an implementation. Clearly,
we can obtain the normal form of any unit by summing ex-
ponents of like units, filtering out units with a zero expo-
nent, and sorting on the unit names. We use [u] to denote
the normal form of u.

3.1 Calculating units

To compute units for each non-empty cell in a spread-
sheet, we first partition the set of cells into those that con-
tain a number (value cells) and those whose value is derived
from a formula (formula cells).5 For value cells, XeLda ex-
pects to find the unit in the cell’s annotation; otherwise, it
treats the number as a dimensionless constant. For formula
cells, XeLda combines the units from the input cells accord-
ing to the laws that govern the functions and operations of
the underlying formula.6 We elaborate on this strategy be-
low, but intuitively, it corresponds to the way people derive
units during manual calculations.

Except in the case of circular references, described sep-
arately in section 3.3, we use unit transformers to compute
units. For each spreadsheet function we introduce a cor-
responding unit transformer, which consumes one or more
units and produces a unit for the result. The unit transformer
has the same arity as the Excel function it represents. To
avoid ambiguity, we use a subscript to represent the Ex-
cel function (+XL, *XL, SUMXL, AVERAGEXL, etc.) and a
hat superscript to denote its corresponding unit transformer
(each FunXL yields a F̂un).

Consider +XL, which performs addition in Excel. We

5A formula consisting of just a number is treated as a value.
6The distinction in Excel between functions and operators is syntactic;

from here on, we refer to both as functions.

define the unit transformer of +XL as:

U1 +̂ U2 =




error/propagate if error-unit(U1) or
error-unit(U2)

U1 if U1 = U2

error/equality otherwise

where for any unit U , error-unit(U) holds iff U is an error
unit. That is, the units associated with the arguments to +
must be identical and not error units; otherwise, we have a
unit equality error. The −̂ unit transformer for subtraction
is identical to +̂. The unit transformer for multiplication is:

U1 ∗̂ U2 =




error/propagate
if error-unit(U1) or error-unit(U2)

[U1 @ U2]
otherwise

The unit transformer for division has a slight twist:

U1 /̂ U2 =




error/propagate
if error-unit(U1) or error-unit(U2)

[U1 @ U2]
otherwise

where U is U with all the signs of exponents reversed. We
similarly define transformers for other functions.

The unit for a formula is derived bottom-up, starting at
value cells and propagating up to formula cells (treating
unannotated value cells as dimensionless). For cells with
formulas, we use the corresponding unit transformers to
provide a derived unit. We handle cell references and identi-
fiers naming cells in the same natural manner. After all units
in a spreadsheet have been calculated, we compare them
with the annotations on subformulas to detect mismatches.
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Figure 3. Data Table with Element-Polymorphic Table Map

3.2 Tables and matrices

Excel supports tables and matrix operations. Because
Excel does not associate formulas directly with the result
cells, XeLda must deal with these operations separately.

3.2.1 Tables

A data table in Excel is a range of cells that shows the re-
sults for one formula based on different input values. That
is, tables are produced from ranges of cells much as func-
tional programmers derive lists by mapping functions over
input lists. Using tables, one can calculate multiple vari-
ations of an operation and view them as a block of cells.
Tables are thus especially useful for “what-if” calculations.

Figure 3 shows a simple table that computes the cost of
a magic carpet in several currencies. The original input to
the table is the price of a magic carpet in dollars per square
meter (C6). The “what if” inputs to the table are prices per
square meter, where the price varies by country (D7:D11).
In the resulting table (E7:E11), each numeric price is an-
notated with a unit indicating the appropriate currency.

When performing table operations, Excel uses the lay-
out of the spreadsheet to determine what input values to
use and where to put the results. Concretely, cell E6 con-
tains the formula B6 * C6, so its value is 106.05. The
range D7:D11 contains some numbers. Each cell in the
range E7:E11 contains the formula {=TABLE(,C6)}.
The comma before the cell name indicates that the replace-
ment values for C6 come from the column to the left. Excel
“maps” the formula of E6, replacing C6 in the formula, over
the values in D7:D11 and places each result in the adjacent
cell in column E.

For each cell in a table, we compute a unit by applying
the unit transformer for the cell with the formula, except
that we use the unit for the cell pointwise instead of that

for the original input. For each input element, we always
use the same unit transformer; hence the computation of
units for tables yields polymorphism over units. To continue
the analogy with mapping over lists, our approach to tables
is comparable to homologously mapping a function over a
heterogeneously-typed list and obtaining heterogeneously-
typed results.

3.2.2 Matrix values

In Excel, a matrix value occupies a rectangular block of
cells. Each cell in the matrix contains the formula that pro-
duced the result. In the case of matrix multiplication, that
formula has the form {=MMULT(M1,M2)} where M1 and
M2 are cell ranges denoting matrices.

For each cell in the result matrix, we check that all ele-
ments in the row in M1 required for the calculation of that
cell have equal units. Similarly, we check the units for the
column in M2 that produced the entry for equality. If any
of those input elements has an error unit, the unit for the
result cell is error/propagate. If either of the equality
checks fails, the result is error/equality. Otherwise,
the unit for the cell becomes the normalized product of the
units for the row in M1 and the column in M2.

3.3 Circular references

Excel formulas can depend on themselves (through di-
rect or indirect references). When a user enters such formu-
las, Excel issues a warning. If the user wishes to proceed
anyway, Excel computes a solution iteratively; unless other-
wise specified, cells are initialized with 0. A user-selectable
limit on iteration enforces termination, even in the absence
of a fixpoint. Circular references are useful for representing
many physical and economic models that involve feedback
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Figure 4. Equations of Motion

loops, such as systems of differential equations and recur-
rence relations.

Figure 4 shows a spreadsheet containing three circular
references. Its purpose is to iteratively compute the position
of a particle under a linearly-increasing acceleration, given
an initial position, velocity, and acceleration. Cells B6 and
B7 specify the increments for acceleration and time, respec-
tively. With each iteration, we compute a new position (cell
A4), velocity (B4), and acceleration (C4). By varying the
iteration limit in Excel, we can vary the time interval used
to compute the new values.

XeLda is able to validate unit annotations in spreadsheets
with circular formulas. While parsing, XeLda distinguishes
formulas with circular dependencies from those with purely
tree-structured dependencies. We first resolve units for the
latter class of formulas, using the approach in section 3.1.
We then use the results to derive units for the formulas with
circular dependencies.

For formulas with circular references, unit derivation is
a three-step process. First, for each circular formula, we
generate a set of constraints containing unit variables and
units. Second, we build equivalence classes of unit variables
and propagate class representatives to other constraints. We
are left with constraints that we can now map into algebraic
equations, which are then transformed into a set of homoge-
neous linear equations. Finally, we solve for the unit vari-
ables using Gaussian elimination, yielding units for the cir-
cular formulas.

3.3.1 Constraint generation

When formulas have circular dependencies, we cannot ap-
ply unit transformers because dependency loops would lead
to divergence. We instead generate constraints on units ap-
propriate to that function. Essentially, constraint generation
postpones application of unit transformers.

The constraint generation process produces units that

contain only the units appearing in their inputs (excepting
error units). In particular, both +̂ and −̂ impose equal-
ity constraints on their inputs, while ∗̂ and /̂ specify how
to combine input units to obtain a result unit yielding ap-
pend constraints. Other unit transformers may specify both
equality and append constraints.

Within each formula containing a circular reference, for
each use of an Excel function, we provide fresh unit vari-
ables for the application node and its arguments and gen-
erate constraints. For the arithmetic operators, we generate
constraints as follows:

e1 +XL e2 ⇒
{

α = αe1

α = αe2

e1 −XL e2 ⇒
{

α = αe1

α = αe2

e1 ∗XL e2 ⇒ {
α = [αe1 @ αe2 ]

e1 /XL e2 ⇒ {
α = [αe1 @ αe2 ]

where α is the unit variable associated with the application
node and the αei are the newly-generated unit variables for
the formula’s arguments. We also generate equality con-
straints for references to annotated value cells and to cells
with noncircular formulas, whose units have already been
computed. Hence, equality constraints can have nonvari-
able units on their right-hand sides.

Consider the spreadsheet in Figure 4. Cell C4 contains
the circular formula: C4+B6∗B7. The constraints generated
from this formula are:

αC4 = α1

αC4 = α2

where α1 and α2 are fresh variables for the operands of +.

5



For the subformulas, we obtain:

α1 = αC4

α2 = [α3 @ α4]
α3 = ((m 1) (s −3))
α4 = ((s 1))

where α3 and α4 are associated with the ∗’s arguments.

3.3.2 Constraint simplification

In order to solve the constraints, we use the following algo-
rithm. From the equality constraints, generate equivalence
classes of variables. For each class, if at least two members
participate in constraints with distinct right-hand side units,
choose error/equality as the representative unit for
the class. If there is exactly one unit associated with the
class, choose that unit as the representative unit. Other-
wise, there is no representative unit for the class, so choose
a representative variable for that class. Substitute the repre-
sentative unit, if any, for occurrences of class members on
the right-hand sides of append constraints; otherwise sub-
stitute the representative variable. Substitute the represen-
tative unit or variable for occurrences of class members on
the left-hand sides of the append constraints.

Next, we deal with the append constraints. Each of these
constraints has the form:

αi = [β1@ β2] (1)

where β is a metavariable ranging over unit variables and
units.

A unit U may be written in algebraic form. Without loss
of generality, suppose U is in normal form. Then its alge-
braic form is given by:

u =
∏

i

wni

i (2)

where each wi is a distinct unit name; in this algebraic set-
ting, consider these to be constants.

From equation 1, we can have unit variables, units, or
both, on the right-hand sides of append constraints in the
place of the βi. We can therefore represent every append
constraint in the following algebraic forms:

α = α1 × α2 (3)

α = α1 × u1 (4)

α = u1 × u2 (5)

Because normalization is a syntactic, rather than semantic,
issue, it does not appear in the algebraic representation. The
× operator is commutative, so the order of its arguments
does not matter.

3.3.3 Constraint solving

We wish to solve for the unit variables in terms of units. In
one special case, we simplify before proceeding to Gaus-
sian elimination. If the left-hand side unit variable also
occurs on the right-hand side of equations of type 4, we
can immediately deal with the constraint by examining the
right-hand side unit u. If u is the empty list, we discard the
constraint, because there is no effective constraint on the
variable. Otherwise, associate error/circular with
the variable, because there is no solution for the constraint.

For the remaining constraints, we divide through their
left-hand sides. The equations 3–5 become:

1 = α−1 × α1 × α2 (6)

1 = α−1 × α1 × u1 (7)

1 = α−1 × u1 × u2 (8)

Taking logarithms, we get:

0 = − logα + log α1 + log α2 (9)

0 = − logα + log α1 + log u1 (10)

0 = − logα + log u1 + log u2 (11)

From equation 2, by taking the logarithm of a unit in
algebraic form u, we have:

log u =
∑

i

(ni × log wi)

Substituting for the logarithms of units in equations 9 –
11, we obtain the following linear equations:

0 = − log α + log α1 + log α2 (12)

0 = − log α + log α1 +
∑

i

(n1i × log w1i) (13)

0 = − log α +
∑

i

(n1i × log w1i) + (14)

∑
j

(n2j × log w2j )

We solve these equations for the log α’s using Gaussian
elimination. If we have fewer equations than variables, we
attempt to solve for as many variables as possible. The
remaining variables are unconstrained, so we assign them
error/circular.

For each unit variable α that may have a solution, Gaus-
sian elimination produces equations of the form:

log α =
∑

i

(
log wi × ni

c

)

where c is a nonzero integer. Equivalently:

α =
∏

i

w
ni/c
i

6



We accept only solutions where all ni/c are integers. In all
other cases, we assign α the unit error/circular.

Let us illustrate how this approach applies to our Fig-
ure 4. After constraint generation and equivalence class
substitution we have the following append constraints to
solve:

αA4 = [αB4 @ ((s 1))]
αA4 = [((m 1) (s −2)) @ ((s 2))]
αB4 = [((m 1) (s −2)) @ ((s 1))]

Converting these to algebraic equations we obtain:

αA4 = αB4 × s
αA4 = m
αB4 = m× s−1

We have one equation of type 4 and two of type 5. Fol-
lowing the steps outlined above, we get the system of linear
equations

0 = − logαA4 + log αB4 + log s
0 = − logαA4 + log m
0 = − logαB4 + log m− log s

By Gaussian elimination we have:

log αA4 = log m
log αB4 = log m− log s

hence
αA4 = m
αB4 = m/s

as desired.
We choose to not use this general technique for non-

circular formulas partly because it is more computation-
ally expensive, but mainly because it would produce poorer
error reports. Using constraint solving in the presence of
equational reasoning makes it difficult to provide a “direc-
tion” for the error (as observed by many in the ML com-
munity [21]), whereas the technique in section 3.1 does not
suffer from this problem.

3.4 Unit coercions

Because Excel does not understand units, it can provide
unexpected answers. Suppose cells A1 and A2 both contain
5 and cell A3 contains the formula =A1 + A2. Then A3
always shows the value 10, even if A1’s annotation is feet
and A2’s is meters.

In contrast, XeLda as presented would flag an error be-
cause the units of the summands don’t match. We ad-
dress this shortcoming via unit coercions. The Unit
Coercions button of the control panel presents a win-
dow in which users can specify coercions. XeLda adapts

the union-find algorithm to create equivalence classes of in-
terconvertible units, reporting errors on encountering incon-
sistent coercions. XeLda then rewrites Excel formulas to
reflect these coercions. Thus, if the user had specified that
one meters were equal to 3.3 feet, XeLda would rewrite
the formula in A3 as =A1 + (3.3 * A2).

After performing the unit conversions, XeLda presents
the answer in terms of the canonical unit chosen for each
equivalence class of units. To change the presentation of
the result, the user annotates the formula cell with a unit;
XeLda not only verifies this annotation, but also treats it as
a presentation directive. In the example above, for instance,
XeLda has chosen feet as the representative unit, but an-
notating cell A3 with meters forces XeLda to rewrite the
formula as =1/3.3 * (A1 + (3.3 * A2)), so the
user sees the computed answer as 6.515152 (meters).

3.5 Combining features

XeLda’s unit checking operations are designed and im-
plemented in an orthogonal manner. Thus, if a spreadsheet
uses tables with formulas that employ circular references,
XeLda can still validate its unit annotations. Similarly, if
such annotations are wrong, it can still identify the erro-
neous cells.

4 Applying XeLda: A Case Study

We conducted a study to assess XeLda’s ability to find
errors. To this end, we applied XeLda to the scientific com-
puting spreadsheets that accompany Filby’s book [7]. Many
of these spreadsheets specify units in textual headers for
columns and rows containing numeric data. Using XeLda’s
unit annotation feature, we inserted units in the cells la-
belled by those headers.

When applying XeLda to these and to other existing
spreadsheets, we found the unit annotation process involved
relatively little time and effort. Of course, this does not
immediately indicate how much effort a typical end-user
would have to expend. On the one hand they know less
about XeLda; on the other hand, their expertise in the do-
main will often be much greater than ours. Furthermore,
Rothermel, et al. [23] provide empirical results that estab-
lish the value of a curiosity-centered approach in getting
end users to enter assertions in spreadsheets created in the
Forms/3 spreadsheet language.

The table in Figure 6 describes the spreadsheets from
Filby’s book that we used to test XeLda. Each horizontal
grouping represents one Excel file; within each grouping,
each line represents a worksheet. The size given is the num-
ber of non-empty cells. The first time column presents over-
all analysis (wall clock) time; the next two divide this be-
tween the time spent in communication with Excel (through

7



Figure 5. Unit Error in Off-the-Shelf Spreadsheet

COM’s direct interfaces) and that consumed by the actual
analysis, respectively.7 Importantly, the analysis time is
extremely small in most cases, which means an interface
wrapper with minimal overhead would make XeLda usable
for prototyping and incremental development. The last col-
umn indicates whether XeLda found any errors.

Given annotated spreadsheets, we are interested primar-
ily in the rate of false negatives, because flagging correct
spreadsheets as incorrect would reduce the tool’s effective-
ness from a user’s standpoint. Since these spreadsheets
came from a published text, we did not expect to find errors;
we originally ran these tests purely to measure performance
on useful spreadsheets. We were surprised when XeLda
reported unit errors in three of the worksheets, but hand-
examination revealed that all three were actual errors, not
false negatives intoduced by XeLda. (We also conducted
less rigorous testing by seeding spreadsheets with errors,
and XeLda successfully detected all of them with neither
false positives nor false negatives. However, we need a
more thorough evaluation than the one described here be-
fore we can make stronger claims about effectiveness.)

For the “Oscillation” worksheets, the errors were caused
by inappropriate textual labelling of units by the author. The
“Cleavage” error was caused by supplying too big a cell

7The time is lost to inter-process communication between XeLda and
Excel. The use of .NET’s interfaces should shrink this time. Indeed, Joe
Marshall of Northeastern has produced a prototype implementation atop
.NET. Unfortunately, .NET currently uses COM internally [confirmed in
personal communication, 2003-09-13, by Erik Meijer of Microsoft], so we
cannot yet evaluate the prototype for performance improvements. Other
strategies would be to re-implement XeLda entirely in Visual Basic, which
would add some cost to the analysis time, or to port XeLda to Excel’s XLL
API for plugins.

range to the Excel FREQUENCY function. Figure 5 shows
that spreadsheet. The FREQUENCY function is used in the
formula for each of the cells in the range H4:H9. That
function takes two vectors of numbers, where the second is
in increasing order, indicating bins in which to place num-
bers from the first vector. It returns a vector that contains the
number of numbers from the first vector within each bin; the
last element in the returned vector is the number of numbers
greater than the highest bin. In the spreadsheet shown, the
cell range for the second argument erroneously includes the
cell G10, which has been left blank and has no unit annota-
tion. All other values in column G have the unit strike;
because that does not agree with the unit for G10, there is
an error in the shaded cells in column H.

5 Related Work

The most closely related work on detecting errors in
spreadsheets is by Erwig and Burnett [5, 6]. Their “units”
are taken from the names of row and column headers in
spreadsheets. While this offers the promise of avoiding the
burden of user annotation, they do not describe an effective
technique for performing this unit inference (which appears
to require intelligence to determine the relationship between
units). In addition, unit inference may depend heavily on
the structure of the spreadsheet, and would therefore be ex-
tremely sensitive to small changes in it. Nevertheless, a suc-
cessful implemenation of unit annotation could seed XeLda
also. Erwig and Burnett briefly describe an implementa-
tion [5], but do not provide any validation. Ahmad, et al. [2]
provide a critique of the sensitivity of Erwig and Burnett’s
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Author Description Size Time COM Analysis Error?
(cells) (mm:ss) (mm:ss) (mm:ss)

S. Leharne Acid Base Titration 109 0:23 0:22 0:01
W.J. Orvis Oscillations Frequency 43 0:21 0:17 0:04

√
Oscillations Euler Method 345 2:21 1:35 0:46

√
A.A. Gorni Cubic Crystalline Systems X-Ray Diffraction 83 0:46 0:43 0:03
W.J. Orvis Electron Drift Velocity in GaAs 44 0:15 0:13 0:02
J.P. LeRoux Cleavage Strike Direction 236 1:09 1:06 0:03

√
Palaeocurrent 284 1:12 1:08 0:04
Untilt 53 0:17 0:15 0:02
Chi-square 41 0:05 0:04 0:01

A.A. Gorni Grain size of microstructure 40 0:13 0:12 0:01
E. Neuwirth Feigenbaum Diagram 1000 2:09 2:08 0:01
E. Neuwirth Simple Model 54 0:04 0:03 0:01

Parametric Model 55 0:07 0:06 0:01
Complex Model 56 0:06 0:05 0:01
Complex Model with Table 75 0:10 0:09 0:01
Complex Model with Stepwidth 57 0:09 0:08 0:01
Volterra-Lotka Model 1983 16:28 14:03 2:25
Planets 4001 8:37 8:24 0:13
Planets Halfstep 4001 8:30 8:18 0:12

W.J. Orvis Blackbody spectral emission 507 0:35 0:34 0:01
A.A. Gorni Viscometric molecular weight 41 0:45 0:44 0:01
A.A. Gorni Point count method 26 0:16 0:15 0:01

Figure 6. Experimental Results

type system, use this to improve the type system by includ-
ing both “is-a” and “has-a” relationships, implement the re-
fined version and discuss validation, but their approach is
still fundamentally tied to a notion of types linked to spread-
sheet structure.

Other work on the detection of errors in spreadsheets
uses approaches radically different from ours (and thus
catches fairly different forms of errors). Burnett and col-
leagues have also explored the idea of placing user anno-
tations on cells, though not unit annotations, to improve
the correctness of spreadsheets [4]. Rothermel, et al. [19]
identify spreadsheet users’ manually seeded errors in cell
expressions through the use of data flow adequacy criteria
and coverage monitoring. Their solution, which is incre-
mental, supplements the immediate visual feedback that a
spreadsheet language presents by providing additional feed-
back about “testedness”. Their empirical data demonstrate
the high effectiveness of their technique: 81% of the faults
in their test suite were detected. Their spreadsheets are,
however, created in the Forms/3 spreadsheet language [3].
While languages such as Forms/3 are elegant and point the
way to future spreadsheet designs, tools built around them
are likely to have less immediate impact; they may also be
somewhat less challenging to construct than tools that need

to address the complexities of existing and popular tools
such as Excel.

Many researchers have suggested adding units to pro-
gramming languages, with Gehani [10] and House [12]
among the pioneers. Kennedy described integrating units
into ML [14] and a System F-like language [15]. Like these
systems, XeLda implements unit polymorphism. XeLda
only works with the fixed set of functions provided by Ex-
cel, not user-defined functions. However, whereas unifi-
cation in ML-like languages restricts mapping operators
to work on homogeneous aggregates, XeLda’s mapping
operator is polymorphic over the possibly-heterogeneous
units of elements in aggregates. Other researchers have
also proposed unit extensions to ML and the lambda cal-
culus, including Goubault [11], who proposed the use of
a sorted type algebra that allows rational dimension expo-
nents; Wand and O’Keefe [22], who allow programmers to
add new units within a delimited scope; and Rittri, who
considered dimensional analysis in the presence of poly-
morphic recursion [18]. Novak [16] has worked on a unit
extension to GLISP that checks unit conversions and sim-
plifies them through dimensional analysis.
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6 Beyond a Prototype

We have designed and implemented a unit-checker for
Microsoft Excel that is able to handle its complex idioms.
XeLda was able to find unit errors in off-the-shelf spread-
sheets, validating our effort beyond our expectations.

At this point, XeLda is a prototype. To apply XeLda to a
broader family of practical spreadsheets, we will need sev-
eral kinds of improvements. First, we need to design unit
transformers and constraint generators for all Excel func-
tions. There are over 300 such functions in Excel 2002, al-
though many do not operate on numbers. One class of inter-
esting Excel functions operates on relational databases em-
bedded in spreadsheets. For example, the DAVERAGE func-
tion takes a range of cells representing the data, a column
name, and another range that specifies query-by-example
criteria; it returns the numeric average of the cells meeting
the criteria. Hence, all cells in the named column should
have the same units. Second, we need to conduct user stud-
ies to determine the utility of such an approach, and to de-
sign an effective interface. Third, we must address Excel
macros. Fourth, we should add features based on properties
of known units, such as those of the English and SI systems,
to assist users in specific domains (such as science). Finally,
XeLda’s use of COM makes its access of spreadsheet data
slow. When .NET’s interfaces eliminate the inter-process
communication overhead, XeLda will become considerably
faster. In the meanwhile, we could obtain greater speed by
using Excel’s XLL interface for plugins.
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