
Encrypted Key-Value Stores

Archita Agarwal1 and Seny Kamara1

Brown University {archita agarwal, seny kamara}@brown.edu

Abstract. Distributed key-value stores (KVS) are distributed databases
that enable fast access to data distributed across a network of nodes.
Prominent examples include Amazon’s Dynamo, Facebook’s Cassandra,
Google’s BigTable and LinkedIn’s Voldemort. The design of secure and
private key-value stores is an important problem because these systems
are being used to store an increasing amount of sensitive data. Encrypt-
ing data at rest and decrypting it before use, however, is not enough
because each decryption exposes the data and increases its likelihood of
being stolen. End-to-end encryption, where data is kept encrypted at all
times, is the best way to ensure data confidentiality.
In this work, we study end-to-end encryption in distributed KVSs. We
introduce the notion of an encrypted KVS and provide formal security
definitions that capture the properties one would desire from such a
system. We propose and analyze a concrete encrypted KVS construction
which can be based on any unencrypted KVS. We first show that this
construction leaks at most the operation equality (i.e., if and when two
unknown queries are for the same search key) which is standard for
similar schemes in the non-distributed setting. However, we also show
that if the underlying KVS satisfies read your writes consistency, then
the construction only leaks the operation equality of search keys that
are handled by adversarially corrupted nodes—effectively showing that
a certain level of consistency can improve the security of a system. In
addition to providing the first formally analyzed end-to-end encrypted
key-value store, our work identifies and leverages new and interesting
connections between distributed systems and cryptography.

1 Introduction

A distributed key-value store (KVS) is a distributed storage system that stores
label/value 1 pairs and supports get and put queries. KVSs provide one of the
simplest data models but have become fundamental to modern systems due
to their high performance, scalability and availability. For example, some of
the largest social networks, e-commerce websites, cloud services and community
forums depend on key-value stores for their storage needs. Prominent examples
of distributed KVSs include Amazon’s Dynamo [25], Facebook’s Cassandra [43],
Google’s BigTable [22], LinkedIn’s Voldemort [52], Redis [5], MemcacheDB [4]
and Riak [53].
1 In this work we use the term label and reserve the term key to denote cryptographic

keys.

Distributed KVSs are closely related to distributed hash tables (DHT) and,
in fact, most are built on top of a DHT. However, since DHTs do not necessarily
guarantee fault-tolerance, KVSs use various techniques to achieve availability in
the face of node failures. The simplest approach is to replicate each label/value
pair on multiple nodes and to use a replica control protocol to guarantee some
form of consistency.

End-to-end encryption in KVSs. As an increasing amount of data is being
stored and managed by KVSs, their security has become an important problem.
Encryption is often proposed as a solution, but encrypting data in transit and
at rest and decrypting it before use is not enough since each decryption exposes
the data and increases its likelihood of being stolen. A better way to protect
data is to use end-to-end encryption where a data owner encrypts its data with
its own secret key (that is never shared). End-to-end encryption guarantees that
data is encrypted at all times—even in use—which ensures data confidentiality.

Our contributions. In this work, we formally study the use of end-to-end en-
cryption in KVSs. In particular, we extend the recently proposed framework of
Agarwal and Kamara [7] from DHTs to KVSs. We formalize the goals of encryp-
tion in KVSs by introducing the notion of an encrypted key-value store (EKVS)
and propose formal syntax and security definitions for these objects. The simplest
way to design an EKVS is to store label/value pairs (`, v) as (FK1(`),EncK2(v))
in a standard/plaintext KVS, where F is a pseudo-random function and Enc
is a symmetric encryption scheme. The underlying KVS will then replicate the
encrypted pair, store the replicas on different storage nodes, handle routing,
node failures and consistency. Throughout, we will refer to this approach as the
standard scheme and we will use our framework to formally study its security
properties. We make the following contributions:

– formalizing KVSs: we provide an abstraction of KVSs that enables us to
isolate and analyze several important properties of standard/plaintext KVSs
that impact the security of the standard EKVS. More precisely, we find that
the way a KVS distributes its data and the extent to which it load balances
have a direct effect on what information an adversary can infer about a
client’s queries.

– distributed leakage analysis: an EKVS can be viewed as a distributed version
of an encrypted dictionary which is a fundamental building block in the de-
sign of sub-linear encrypted search algorithms (ESA). All sub-linear ESAs
leak some information—whether they are built from property-preserving en-
cryption, structured encryption or oblivious RAMs—so our goal is to identify
and prove the leakage profile of the standard scheme. Leakage analysis in
the distributed setting is particularly challenging because the underlying
distributed system (in our case the underlying KVS) can create very sub-
tle correlations between encrypted data items and queries. As we will see,
replication makes this even more challenging. We consider two cases: the
single-user case where the EKVS stores the datasets of multiple clients but

2

each dataset can only be read and updated by its owner; and the multi-user
case where each dataset can be read and updated by multiple users.

– leakage in the multi-user case: We show that in the multi-user setting, the
standard scheme leaks the operation equality (i.e., if and when get and put
operations are for the same label) over all operations; even operations that
are not handled by corrupted nodes. 2 This may seem surprising since it is
not clear a-priori why an adversary would learn anything about data that it
never “sees”.

– leakage in the single-user case: In the single-user scenario, we show that,
if the standard scheme’s underlying KVS achieves read your write (RYW)
consistency, then it only leaks the operation equality over operations that
are handled by corrupted nodes. This is particularly interesting as it sug-
gests that stronger consistency guarantees improve the security of end-to-end
encrypted KVSs.

– comparison with DHTs: As mentioned earlier, the main difference between
a DHT and a KVS is that the latter replicate data on multiple nodes. To
ensure a consistent view of this data, KVSs need to implement some consis-
tency model. Achieving strong consistency, however, is very costly so almost
all practical systems achieve weaker notions which cannot guarantee that
a unique value will always be associated to a given label. In particular, the
value that will be returned will depend on factors such as network delay, syn-
chronization policy and the ordering of concurrent operations. Therefore, an
adversary that controls one or more of these factors can affect the outputs
of a KVS. It therefore becomes crucial to understand and analyze this cor-
relation when considering the security of an encrypted KVS. In contrast,
this is not needed in the case of encrypted DHTs since they do not maintain
replicas and hence consistency is not an issue.

– concrete instantiations: We use our framework to study two concrete instan-
tiations of the standard scheme. The first uses a KVS based on consistent-
hashing with zero-hop routing whereas the second uses a KVS based on
consistent hashing with multi-hop routing.

2 Related Work

Key-value stores. NoSQL databases were developed as an alternative to rela-
tional databases to satisfy the performance and scalability requirements of large
Internet complanies. KVSs are the simplest kind of NoSQL databases. Even
though such databases had already existed, they gained popularity when Ama-
zon developed Dynamo [25], a KVS for its internal use. Since then many KVSs
have been developed both in industry and academia. Most prominent ones are
Facebook’s Cassandra [43], Google’s BigTable [22], LinkedIn’s Voldemort [52],
Redis [5], MemcacheDB [4] and Riak [53]. All of them are eventually consistent
but some of them can be tuned to provide strong consistency [53, 5, 43]. There
2 Note that the operation equality is a common leakage pattern in practical ESAs.

3

have also been efforts to develop KVSs with stronger consistency such as causal
consistency [44, 45, 54, 11], and strong consistency [2, 1, 3, 6].

Encrypted search. An encrypted search algorithm (ESA) is a search algo-
rithm that operates on encrypted data. ESAs can be built from various crypto-
graphic primitives including oblivious RAM (ORAM) [33], fully-homomorphic
encryption (FHE) [31], property-preserving encryption (PPE) [8, 12, 14, ?, ?]
and structured encryption (STE) [23] which is a generalization of searchable
symmetric encryption [49]. Each of these approaches achieves different trade-
offs between efficiency, expressiveness and security/leakage. For large datasets,
structured encryption seems to provide the best tradeoffs between these three di-
mensions: achieving sub-linear (and even optimal) search times and rich queries
while leaking considerably less than PPE-based solutions and either the same as
[39] or slightly more than ORAM-based solutions. Various aspects of STE have
been extensively studied in the cryptographic literature including dynamism
[32, 42, 41, 50, 15, 19, 16, 28], locality [21, 9, 27, 10, 26], expressiveness [23, 20,
48, 30, 29, 47, 36, 37, 40, ?] and leakage [34, 18, 39, 13, 38]. Encrypted key-value
stores can be viewed as a form of distributed STE scheme. Such schemes were
first considered by Agarwal and Kamara in [7] where they studied encrypted
distributed hash tables.

3 Preliminaries

Notation. The set of all binary strings of length n is denoted as {0, 1}n, and the
set of all finite binary strings as {0, 1}∗. [n] is the set of integers {1, . . . , n}, and
2[n] is the corresponding power set. We write x ← χ to represent an element x
being sampled from a distribution χ, and x $← X to represent an element x being
sampled uniformly at random from a set X. The output x of an algorithm A is
denoted by x← A. If S is a set then |S| refers to its cardinality. If s is a string
then |s| refers to its bit length. We denote by Ber(p) the Bernoulli distribution
with parameter p.

Dictionaries. A dictionary structure DX of capacity n holds a collection of n
label/value pairs {(`i, vi)}i≤n and supports get and put operations. We write
vi := DX[`i] to denote getting the value associated with label `i and DX[`i] := vi
to denote the operation of associating the value vi in DX with label `i.

Leakage profiles. Many cryptographic primitives and protocols leak informa-
tion. Examples include encryption schemes, which reveal the length of the plain-
text; secure multi-party computation protocols, which (necessarily) reveal about
the parties’ inputs whatever can be inferred from the output(s); order-preserving
encryption schemes, which reveal implicit and explicit bits of the plaintext; struc-
tured encryption schemes which reveal correlations between queries; and obliv-
ious algorithms which reveal their runtime and the volume of data they read.
Leakage-parameterized security definitions [24, 23] extend the standard provable
security paradigm used in cryptography by providing adversaries (and simula-

4

tors) access to leakage over plaintext data. This leakage is formally and precisely
captured by a leakage profile which can then be analyzed through cryptanalysis
and further theoretical study. Leakage profiles can themselves be functions of
one or several leakage patterns. Here, the only pattern we will consider is the
operation equality which reveals if and when two (unknown) operations are for
the same label.

Consistency guarantees. The consistency guarantee of a distributed sys-
tem specifies the set of acceptable responses that a read operation can output.
There are multiple consistency guarantees studied in the literature, including lin-
earizability, sequential consistency, causal consistency and eventual consistency.
Though strong consistency notions like linearizability are desirable, the Consis-
tency, Availability, and Partition tolerance (CAP) Theorem states that strong
consistency and availability cannot be achieved simultaneously in the presence
of network partitions. Therefore, many practical systems settle for weaker con-
sistency guarantees like sequential consistency, causal consistency and eventual
consistency. We note that all these weaker consistency guarantees—with the ex-
ception of eventual consistency—all satisfy what is known as “Read Your Writes”
(RYW) consistency which states that all the writes performed by a single client
are visible to its subsequent reads. Many practical systems [5, 44, 45, 2, 1] guar-
antee RYW consistency.

4 Key-Value Stores

Here we extend the formal treatment of encrypted DHTs given by Agarwal and
Kamara [7] to key-value stores. A key-value store is a distributed storage system
that provides a key-value interface and that guarantees resiliency against node
failures. It does so by replicating label/value pairs on multiple nodes. Similar to
DHTs, there are two kinds of KVSs: perpetual and transient. Perpetual KVSs
are composed of a fixed set of nodes that are all known at setup time. Transient
KVSs, on the other hand, are designed for settings where nodes are not known
a-priori and can join and leave at any time. Perpetual KVSs are suitable for “per-
missioned” settings like the backend infrastructure of large companies whereas
transient KVSs are better suited to “permissionless” settings like peer-to-peer
networks and permissionless blockchains. In this work, we study the security of
pertpetual KVSs.

Perpetual KVSs. We formalize KVSs as a collection of six algorithms KVS =
(Overlay,Alloc,FrontEnd,Daemon,Put,Get). The first three algorithms, Overlay,
Alloc and FrontEnd are executed only once by the entity responsible for setting
up the system. Overlay takes as input an integer n ≥ 1, and outputs a parameter
ω from a space Ω. Alloc takes as input parameters ω, n and an integer ρ ≥ 1,
and outputs a parameter ψ from a space Ψ . FrontEnd takes as input parameters
ω and n and outputs a parameter φ from space Φ. Intuitively, the parameter
φ will be used to determine a front end node for each label. These front end
nodes will serve as the clients’ entry points in the network whenever they need

5

perform an operation on a label. We refer to ω, ψ, φ as the KVS parameters and
represent them by Γ = (ω, ψ, φ). Each KVS has an address space A and the
KVS parameters in Γ define different components of the KVS over this address
space. For example, ω maps node names to addresses in A, ψ maps labels to
addresses in A, φ determines the address of a front-end node (or starting node).
The fourth algorithm, Daemon, takes Γ and n as input and is executed by every
node in the network. Daemon is halted only when a node wishes to leave the
network and it is responsible for setting up its calling node’s state for routing
messages and for storing and retrieving label/value pairs from the node’s local
storage. The fifth algorithm, Put, is executed by a client to store a label/value
pair on the network. Put takes as input Γ and a label/value pair ` and v, and
outputs nothing. The sixth algorithm, Get, is executed by a client to retrieve
the value associated to a given label from the network. Get takes as input Γ and
a label ` and outputs a value v. Since all KVS algorithms take Γ as input we
sometimes omit it for visual clarity.

Abstracting KVSs. To instantiate a KVS, the parameters ω and ψ must be
chosen together with a subset C ⊆ N of active nodes (i.e., the nodes currently in
the network) and an active set of labels K ⊆ L (i.e., the labels stored in the KVS).
Once a KVS is instantiated, we describe KVSs using a tuple of function families
(addr, replicas, route, fe) that are all paramterized by a subset of parameters in
Γ . These functions are defined as

addrω : N→ A replicasω,ψ : L→ 2A routeω : A×A→ 2A, feφ : L→ A

where addrω maps node names from a name space N to addresses from an address
space A, replicasω,ψ maps labels from a label space L to the set of addresses of
ρ nodes that store it, routeω maps two addresses to the addresses of the nodes
on the route between them, and feφ maps labels to node addresses who forward
client requests to the rest of the network. 3 For visual clarity we abuse notation
and represent the path between two addresses by a set of addresses instead of as
a sequence of addresses, but we stress that paths are sequences. Given an address
a and set of addresses S, we also sometimes write routeω(a, S) to represent the
set of routes from a to all the addresses in S. Note that this is an abstract
representation of a KVS that will be particularly useful to us to define random
variables we need for our probabilistic analysis but, in practice, the overlay
network, including its addressing and routing functions, are implemented by the
Daemon algorithm.

We sometimes refer to a pair (ω,C) as an overlay and to a pair (ψ,K) as
an allocation. Abstractly speaking, we can think of an overlay as an assignment
from active nodes to addresses and of an allocation as an assignment of active

3 For KVSs that allow their clients to connect directly to the replicas and do not use
front end nodes, the abstraction can drop the fe mapping and be adjusted in the
natural way.

6

labels to addresses. In this sense, overlays and allocations are determined by a
pair (ω,C) and (ψ,K), respectively. 4

Visible addresses. As in [7], a very useful notion for our purposes will be that
of visible addresses. For a fixed overlay (ω,C) and a fixed replication parameter
ρ, an address a ∈ A is s-visible to a node N ∈ C if there exists a label ` ∈ L
such that if ψ allocates ` to a, then either: (1) addrω(N) ∈ replicasω,ψ(`); or (2)
addrω(N) ∈ routeω(s, replicasω,ψ(`)). The intuition behind this is that if a label `
is mapped to an address in Vis(s,N) then N either stores the label ` or routes it
when the operation for ` starts at address s. We point out that the visibility of a
node changes as we change the starting address s. For example, the node maybe
present on the path to one of the addresses if s was the starting address but not
on the path if some other address s′ was the starting address. Throughout we
assume the set of visible addresses to to be efficiently computable.

Since the set of s-visible addresses depends on parameters ω and ρ, and the
set C of nodes that are currently active, we subscript Visω,C,ρ(s,N) with all
these paramters. Finally, as in [7], we also extend the notion to the set of s-
visible addresses Visω,C,ρ(s, S) for a set of nodes S ⊆ C which is defined simply
as Visω,C,ρ(s, S) = ∪N∈SVisω,C,ρ(s,N). Again, for visual clarity, we will drop
the subscripts wherever they are clear from the context.

Front-end distribution. As in [7], another important notion in our analysis is
that of a label’s front-end distribution which is the probability distribution that
governs the address of an operation’s “entry point” into the KVS network. It is
captured by the random variable feφ(`), where φ is sampled by the algorithm
FrontEnd. In this work we assume front-end distributions to be label-independent
in the sense that every label’s front-end node distribution is the same. We there-
fore simply refer to this distribution as the KVS’s front-end distribution.

Allocation distribution. The next notion important to our analysis is what we
refer to as a label’s allocation distribution which is the probability distribution
that governs the address at which a label is allocated. More precisely, this is
captured by the random variable ψ(`), where ψ is sampled by the algorithm
Alloc. In this work, we assume allocation distributions are label-independent in
the sense that every label’s allocation distribution is the same. We refer to this
distribution as the KVS’s allocation distribution. 5

Given a KVS’s allocation distribution, we also consider a distribution ∆(S)
that is parameterized by a set of addresses S ⊆ A. This distribution is over S
and has probability mass function

f∆(S)(a) = fψ(a)∑
a∈S fψ(a) = Pr [ψ(`) = a]

Pr [ψ(`) ∈ S] ,

4 Note that for simplicity, we assume that ψ maps labels to a single address. This
however can be extended in a straightforward way where ψ maps a label to multiple
addresses. This would be required to model KVSs where replicas of a label are
independent of each other.

5 This is true for every KVS we are aware of [25, 43, 52, 53].

7

where fψ is the probability mass function of the KVS’s allocation distribution.

Non-committing allocations. As we will see in Section 6, our EKVS con-
struction can be based on any KVS but the security of the resulting scheme will
depend on certain properties of the underlying KVS. We describe these proper-
ties here. The first property that we require of a KVS is that the allocations it
produces be non-committing in the sense that it supports a form of equivocation.
More precisely, for some fixed overlay (ω,C) and allocation (ψ,K), there should
exist some efficient mechanism to arbitrarily change/program ψ. In other words,
there should exist a polynomial-time algorithm Program such that, for all (ω,C)
and (ψ,K), given a label ` ∈ L and an address a ∈ A, Program(`, a) modifies the
KVS so that ψ(`) = a. For the special case of consistent hashing based KVSs,
which we study in Section 7, this can be achieved by modeling one of its hash
functions as a random oracle.

Balanced overlays. The second property is related to how well the KVS load
balances the label/value pairs it stores. While load balancing is clearly important
for storage efficiency we will see, perhaps surprisingly, that it also has an impact
on security. Intuitively, we say that an overlay (ω,C) is balanced if for all labels
`, that any set of θ nodes sees ` is not too large.

Definition 1 (Balanced overlays). Let ω ∈ Ω be an overlay parameter, C ⊆
N be a set of active nodes, and ρ ≥ 1 be a replication parameter. We say that an
overlay (ω,C) is (ε, θ)-balanced if for all ` ∈ L, and for all S ⊆ C with |S| = θ,

Pr
[

replicasω,ψ(`) ∩ Visω,C,ρ(feφ(`), S) 6= ∅
]
≤ ε,

where the probability is over the coins of Alloc and FrontEnd, and where ε can
depend on θ.

Definition 2 (Balanced KVS). We say that a key-value store KVS = (Overlay,
Alloc,FrontEnd,Daemon,Put,Get) is (ε, δ, θ)-balanced if for all C ⊆ N, the prob-
ability that an overlay (ω,C) is (ε, θ)-balanced is at least 1− δ over the coins of
Overlay and where ε and δ can depend on C and θ.

5 Encrypted Key-Value Stores

In this Section, we formally define encrypted key-value stores. An EKVS is an
end-to-end encrypted distributed system that instantiates a replicated dictionary
data structure.

5.1 Syntax and Security Definitions

Syntax. We formalize EKVSs as a collection of seven algorithms EKVS = (Gen,
Overlay,Alloc,FrontEnd,Daemon,Put,Get). The first algorithm Gen is executed
by a client and takes as input a security parameter 1k and outputs a secret key

8

Functionality FL
KVS

FL
KVS stores a dictionary DX initialized to empty and proceeds as follows,

running with client C, n nodes N1, . . . , Nn and a simulator Sim:

– Put(`, v): Upon receiving a label/value pair (`, v) from client C, it sets
DX[`] := v, and sends the leakage L(DX, (put, `, v)) to the simulator
Sim.

– Get(`): Upon receiving a label ` from client C, it returns DX[`] to the
client C and the leakage L(DX, (get, `,⊥)) to the simulator Sim.

Fig. 1. FL
KVS : The KVS functionality parameterized with leakage function L.

K. All the other algorithms have the same syntax as before (See Section 4), with
the difference that Get and Put also take the secret key K as input.

Security. The definition is roughly the same as the one in [7] and is based on the
real/ideal-world paradigm. This approach consists of defining two probabilistic
experiments Real and Ideal where the former represents a real-world execution
of the protocol where the parties are in the presence of an adversary, and the lat-
ter represents an ideal-world execution where the parties interact with a trusted
functionality shown in Figure 1. The protocol is secure if no environment can
distinguish between the outputs of these two experiments.

To capture the fact that a protocol could leak information to the adversary,
we parameterize the definition with a leakage profile that consists of a leakage
function L that captures the information leaked by the Put and Get operations.
Our motivation for making the leakage explicit is to highlight its presence. Due
to space constraints, we detail both the experiments more formally in the full
version of the paper.

Definition 3 (L-security). We say that an encrypted key-value store EKVS =
(Gen,Overlay,Alloc,FrontEnd,Daemon,Put,Get) is L-secure, if for all ppt ad-
versaries A and all ppt environments Z, there exists a ppt simulator Sim such
that for all z ∈ {0, 1}∗,

|Pr[RealA,Z(k) = 1]− Pr[IdealSim,Z(k) = 1]| ≤ negl(k).

Correctness. In the real/ideal-world paradigm, the security of a protocol is tied
to its correctness. It is therefore important that our ideal functionality capture
the correctness of the KVS as well. What this means is that the functionality
should produce outputs that follow the same distribution as the outputs from a
KVS. Unfortunately, in a setting with multiple clients sharing the data, even with
the strongest consistency guarantees (e.g., linearizability), there are multiple pos-
sible responses for a read, and the one which the KVS actually outputs depends
on behaviour of the network. Since the network behaviour is non-deterministic,
the distribution over the possible outputs is also non-deterministic and hence

9

the functionality cannot model the distribution over outputs correctly without
modelling the network inside it.

However, if we restrict to a single client setting, RYW property ensures that
a Get always outputs the latest value written to the KVS. Therefore the func-
tionality FKVS models the correct distribution over the outputs: on a Get(`), it
outputs the last value written to DX[`], and on a Put(`, v), it updates the DX[`]
to v.

6 The Standard EKVS Scheme in the Single-User Setting

We now describe the standard approach to storing sensitive data on a KVS. This
approach relies on simple cryptographic primitives and a non-committing and
balanced KVS.

Overview. The scheme EKVS = (Gen,Overlay,Alloc,FrontEnd,Daemon,Put,Get)
is described in detail in Figure 2 and, at a high level, works as follows. It makes
black-box use of a key-value store KVS = (Overlay,Alloc,FrontEnd,Daemon,Put,Get),
a pseudo-random function F and a symmetric-key encryption scheme SKE =
(Gen,Enc,Dec).

The Gen algorithm takes as input a security parameter 1k and uses it to gen-
erate a key K1 for the pseudo-random function F and a key K2 for the symmetric
encryption scheme SKE. It then outputs a key K = (K1,K2). The Overlay, Alloc,
FrontEnd and Daemon algorithms respectively execute KVS.Overlay, KVS.Alloc,
KVS.FrontEnd and KVS.Daemon to generate and output the paramters ω, ψ
and φ. The Put algorithm takes as input the secret key K and a label/value
pair (`, v). It first computes t := FK1(`) and e ← Enc(K2, v) and then exe-
cutes KVS.Put(t, e). The Get algorithm takes as input the secret key K and a
label `. It computes t := FK1(`) and executes e ← KVS.Get(t). It then outputs
SKE.Dec(K, e).

Security. We now describe the leakage of EKVS. Intuitively, it reveals to the
adversary the times at which a label is stored or retrieved with some probability.
More formally, it is defined with the following stateful leakage function

– Lε(DX, (op, `, v)) :
1. if ` has never been seen

(a) sample and store b` ← Ber(ε)
2. if b` = 1

(a) if op = put output (put, opeq(`))
(b) else if op = get output (get, opeq(`))

3. else if b` = 0
(a) output ⊥

where opeq is the operation equality pattern which reveals if and when a label
was queried or put in the past.

Discussion. We now explain why the leakage function is probabilistic and why
it depends on the balance of the underlying KVS. Intuitively, one expects that

10

Let KVS = (Overlay,Alloc,FrontEnd,Daemon,Put,Get) be a key-value store,
SKE = (Gen,Enc,Dec) be a symmetric-key encryption scheme and F be a
pseudo-random function. Consider the encrypted key-value store EKVS =
(Gen,Overlay,Alloc,FrontEnd,Daemon,Put,Get) that works as follows:

– Gen(1k):
1. sample K1

$← {0, 1}k and compute K2 ← SKE.Gen(1k)
2. output K = (K1,K2)

– Overlay(n):
1. compute and output ω ← KVS.Overlay(n)

– Alloc(n, ω, ρ):
1. compute and output ψ ← KVS.Alloc(n, ω, ρ)

– FrontEnd(n, ω):
1. compute and output φ← KVS.FrontEnd(n, ω)

– Daemon(ω, ψ, ρ, n) :
1. Execute KVS.Daemon(ω, ψ, ρ, n)

– Put(K, `, v) :
1. Parse K as (K1,K2)
2. compute t := FK1 (`)
3. compute e← SKE.Enc(K2, v)
4. execute KVS.Put(t, e)

– Get(K, `):
1. Parse K as (K1,K2)
2. Initialise v := ⊥
3. compute t := FK1 (`)
4. execute e← KVS.Get(t)
5. if e 6= ⊥, compute and output v ← SKE.Dec(K2, e)

Fig. 2. The Standard EKVS Scheme

the adversary’s view is only affected by get and put operations on labels that are
either: (1) allocated to a corrupted node; or (2) allocated to an uncorrupted node
whose path includes a corrupted node. In such a case, the adversary’s view would
not be affected by all operations but only a subset of them. Our leakage function
captures this intuition precisely and it is probabilistic because, in the real world,
the subset of operations that affect the adversary’s view is determined by the
choice of overlay, allocation and front-end function—all of which are chosen at
random. The way this is handled in the leakage function is by sampling a bit b
with some probability and revealing leakage on the current operation if b = 1.
This determines the subset of operations whose leakage will be visible to the
adversary.

Now, for the simulation to go through, the operations simulated by the simu-
lator need to be visible to the adversary with the same probability as in the real
execution. But these probabilities depend on ω, ψ and φ which are not known
to the leakage function. Note that this implies a rather strong definition in the
sense that the scheme hides information about the overlay, the allocation and
front-end function of the KVS.

11

Since ω, ψ and φ are unknown to the leakage function, the leakage function
can only guess as to what they could be. But because the KVS is guaranteed to
be (ε, δ, θ)-balanced, the leakage function can assume that, with probability at
least 1−δ, the overlay will be (ε, θ)-balanced which, in turn, guarantees that the
probability that a label is visible to any adversary with at most θ corruptions
is at most ε. Therefore, in our leakage function, we can set the probability that
b = 1 to be ε in the hope that simulator can “adjust” the probability internally
to be in accordance to the ω that it sampled. Note that the simulator can adjust
the probability only if for its own chosen ω, the probability that a query is visible
to the adversary is less than ε. But this will happen with probability at least
1− δ so the simulation will work with probability at least 1− δ.

We are now ready to state our main security Theorem whose proof is in the
full version of the paper.

Theorem 1. If |I| ≤ θ and if KVS is RYW consistent, (ε, δ, θ)-balanced, has
non-committing allocations and has label-independent allocation and front-end
distributions, then EKVS is Lε-secure with probability at least 1− δ − negl(k).

Efficiency. The standard scheme does not add any overhead to time, round,
communication and storage complexities of the underlying KVS.

7 A Concrete Instantiation Based on Consistent Hashing

In this section, we analyze the security of the standard EKVS when its underlying
KVS is instantiated with a consistent hashing based KVS (CH-KVS). We first
give a brief overview of consistent hashing and then show that: (1) it has non-
committing allocations in the random oracle model; and (2) it is balanced under
two commonly used routing protocols.

Setting up a CH-KVS. For CH-KVSs, the space Ω is the set of all hash
functions H1 from N to A = {0, . . . , 2m − 1}. Overlay samples a hash function
H1 uniformly at random from H1 and outputs ω = H1. The map addrω is the
hash function itself so CH-KVSs assign to each active node N ∈ C an address
H1(N) in A. We call the set χC = {H1(N1), . . . ,H1(Nn)} of addresses assigned
to active nodes a configuration.

The parameter space Ψ is the set of all hash functions H2 from L to A =
{0, . . . , 2m−1}. Alloc samples a hash function H2 uniformly at random from H2
and outputs ψ = H2. The map replicasω,ψ maps every label ` in L to the ad-
dresses of ρ active nodes that follow H2(`) in clockwise direction. More formally,
replicasω,ψ is the mapping (succχC ◦ H2, . . . , succρχC

◦ H2), where succχC is the
successor function that assigns each address in A to its least upper bound in
χC. Here, {0, . . . , 2m − 1} is viewed as a “ring” in the sense that the successor
of 2m−1 is 0.

CH-KVSs allow their clients to choose any node as the front-end node to
issue its operations. Moreover, they do not restrict them to connect to the same
node feφ(`), everytime the client wants to query the same `. This means that for

12

CH-KVSs, feφ is not necessarily a function but can be a one-to-many relation.
Unfortunately we cannot prove CH-KVSs to be balanced for arbitrary feφs. We
therefore modify CH-KVSs and model their space Φ as the set of all hash func-
tions H3 from L to addresses of active nodes. FrontEnd samples a hash function
H3 uniformly at random from H3 and outputs φ = H3. The map feφ is the hash
function H3 itself so it assigns a front-end node with address H3(`) to each label
`.

Routing protocols. There are two common routing protocols with CH-KVSs;
each with trade-offs in storage and efficiency.

– Multi-hop routing. Based on H1, the Daemon algorithm constructs a routing
table by storing the addresses of the node’s 2ith successors where 0 ≤ i ≤
logn (we refer the reader to [51] for more details). Note that a routing table
contains at most logn other nodes. The routing protocol is fairly simple:
given a message destined to a node Nd, a node N checks if N = Nd. If not,
the node forwards the message to the node N ′ in its routing table with an
address closest to Nd. Note that the routeω map is deterministic given a
fixed set of active nodes and it guarantees that any two nodes have a path
of length at most logn.

– Zero-hop routing. Based on H1, the Daemon algorithm constructs a routing
table by storing the addresses of all the other nodes in the routing table.
Routing is then straightforward: given a message for Nd, simply forward it
to the address of Nd. In short, for any two addresses s and d, routeω(s, d) =
{s, d}.

Storing and retrieving. When a client wants to execute a Get/Put operation
on a label `, it forwards the operation to the front-end node of `. The front-
end node executes the operation on the client’s behalf as follows. It computes
replicas(`) and forwards the operation to one of them. This replica is called
the coordinator node. The coordinator then sends the operation to all (or a
subset) the other replicas which then either update their state (on Put) or return
a response back to the coordinator (on Get). In case more than one value is
returned to the coordinator, it decides which value(s) is to be returned to the
front-end. The choice of the coordinator node for a label ` varies from KVS to
KVS. It can be a fixed node or a different node between requests for label `.
Either way, it is always a node chosen from the set of replicas. This guarantees
that the visibility of a label (and hence the leakage) does not change between
requests. KVSs also employ different synchronization mechanisms, like Merkle
trees and read repairs to synchronize divergent replicas.

Non-committing allocation. Given a label ` and an address a, the allocation
(H2,K) can be changed by programming the random oracle H2 to output a
when it is queried on `.

Allocation distribution. We now describe the allocation distribution of CH-
KVSs. Since CH-KVSs assign labels to addresses using a random oracle H2, it

13

follows that for all overlays (H1,C), all labels ` ∈ L and addresses a ∈ A,

fH2(a) = Pr [H2(`) = a] = 1
|A| ,

which implies that CH-KVSs have label-independent allocations. From this it
also follows that ∆(S) has a probability mass function

f∆(S)(a) = fψ(a)∑
a∈S fψ(a) = 1

|A|

(
|S|
|A|

)−1
= 1
|S|

.

Before describing the visibility of nodes in CH-KVSs and analyzing their
balance under zero-hop and multi-hop routing protocols, we define notation that
will be useful in our analysis.

Notation. The arc of a node N is the set of addresses in A between N ’s pre-
decessor and itself. Note that the arc of a node depends on a configuration χ.
More formally, we write arcχ(N) = (predχ(H1(N)), . . . ,H1(N)], where predχ(N)
is the predecessor function which assigns each address in A to its largest lower
bound in χ. We extend the notion of arc of a node to ρ-arcs of a node. A ρ-arc
of a node N is the set of addresses between N ’s ρth predecessor and itself. More
formally, we write arcρχ(N) = (predρχ(H1(N)), . . . ,H1(N)], where predρχ(H1(N))
represents the predecessor function applied ρ times on H1(N). Intuitively, if H2
hashes a label ` anywhere in ρ-arc of N , then N becomes one of the ρ replicas
of `. We denote by maxareas(χ, x), the sum of the lengths (sizes) of x largest
arcs in configuration χ. The maximum area of a configuration χ is equal to
maxareas(χ, ρθ). As we will later see, the maximum area is central to analyzing
the balance of CH-KVSs.

7.1 Zero-hop CH-KVSs

In this section, we analyse the visibility and balance of zero-hop CH-KVSs.

Visible addresses. Given a fixed overlay (H1,C), an address s ∈ A and a
node N ∈ C, if the starting address is s = H1(N), then VisχC(s,N) = A. This
is because H1(N) lies on routeχC(s, a) for all a ∈ A. Now for an address s ∈ A
such that s 6= H1(N), we have

VisχC(s,N) =
{

arcρχC
(N ′) : H1(N) ∈ routeχC(s,H1(N ′))

} ⋃
arcρχC

(N)

=
{

arcρχC
(N ′) : H1(N) ∈ {s,H1(N ′)}

} ⋃
arcρχC

(N)

=
{

arcρχC
(N ′) : H1(N) = H1(N ′)

} ⋃
arcρχC

(N)

= arcρχC
(N)

where the second equality follows from the fact that routeχC(s,H1(N ′)) = {s,H1(N ′)},
the third follows from the assumption that H1(N) 6= s, and the fourth from the

14

fact that arcρχC
(N) = arcρχC

(N ′) if H1(N) = H1(N ′). Finally, for any set S ⊆ C,
Visω,C(s, S) = ∪N∈SVisω,C(s,N).

Balance of zero-hop CH-KVSs. Before analyzing the balance of CH-KVSs,
we first recall a Lemma from Agarwal and Kamara [7] that upper bounds the
sum of the lengths of the x largest arcs in a configuration χ in Chord. The sum
is denoted by maxareas(χ, x). Since Chord is also based on consistent hashing,
we use the corollary to bound the maximum area of CH-KVSs by substituting
x = ρθ.

Lemma 1 ([7]). Let C ⊆ N be a set of active nodes. Then, for x ≤ |C|/e,

Pr
[

maxareas(χC, x) ≤ 6|A|x
|C| log |C|

x

]
≥ 1− 1

|C|2 − (e−
√
|C| · log |C|).

We are now ready to analyze the balance of zero-hop CH-KVSs.

Theorem 2. Let C ⊆ N be a set of active nodes. If maxareas(χC, ρθ) ≤ λ, then
χC is (ε, θ)-balanced with

ε = θ

|C| + λ

|A|
The proof of Theorem 2 is in the full version of the paper.

Corollary 1. Let C be a set of active nodes. For all ρθ ≤ |C|/e, a zero-hop
CH-KVS is (ε, δ, θ)-balanced for

ε = θ

|C|

(
1 + 6ρ log

(
|C|
ρθ

))
and δ = 1

|C|2 + (e−
√
|C| · log |C|)

The proof of Corollary 1 is in the full version of the paper.

Remark. It follows from Corollary 1 that

ε = O

(
ρθ

|C| log
(
|C|
ρθ

))
and δ = O(1/|C|2). Note that assigning labels uniformly at random to ρ nodes
would achieve ε = ρθ/|C| so zero-hop CH-KVSs balance data fairly well.

The Security of a Zero-Hop CH-KVS based EKVS. In the following
Corollary, we formally state the security of the standard scheme when its under-
lying KVS is instantiated with a zero-hop CH-KVS.

Corollary 2. If |L| = Θ(2k), |I| ≤ |C|/(ρe), and if EKVS is instantiated with a
RYW zero-hop CH-KVS, then it is Lε-secure with probability at least 1−1/|C|2−
(e−
√
|C| · log |C|)− negl(k) in the random oracle model, where

ε = |I|
|C|

(
1 + 6ρ log

(
|C|
ρ|I|

))
.

15

The proof of Corollary 2 is in the full version of the paper. From the discussion
of Corollary 1, we know,

ε = O

(
ρ|I|
|C| log

(
|C|
ρ|I|

))
and δ = O(1/|C|2). Setting |I| = |C|/(ρα), for some α ≥ e, we have ε =
O(log(α)/α). Recall that, on each query, the leakage function leaks the operation
equality with probability at most ε. So intuitively this means that the adversary
can expect to learn the operation equality of an O(log(α)/α) fraction of client
operations if ρ|I| = |C|/α. Note that this confirms the intuition that distributing
data suppresses its leakage.

7.2 Multi-hop CH-KVSs

In this section, we analyse the visibility and balance of multi-hop CH-KVSs.
Since most of the details are similar to what was in the last section, we keep the
description high level.

Visible addresses. Given a fixed overlay (H1,C), an address s ∈ A and a
node N ∈ C, if the starting address is s = H1(N), then VisχC(s,N) = A. For
an address s ∈ A such that s 6= H1(N), we have

VisχC(s,N) =
{

arcρχC
(N ′) : H1(N) ∈ routeχC(s,H1(N ′))

} ⋃
arcρχC

(N)

Finally, for any set S ⊆ C, Visω,C(s, S) = ∪N∈SVisω,C(s,N).

Balance of multi-hop CH-KVSs. We now analyze the balance of multi-hop
CH-KVSs.

Theorem 3. Let C ⊆ N be a set of active nodes. If maxareas(χC, ρθ) ≤ λ, then
χC is (ε, θ)-balanced with

ε = ρθ log |C|
|C| + λ

|A|

The proof of Theorem 3 is in the full version of the paper.

Corollary 3. Let C be a set of active nodes. For all ρθ ≤ |C|/(e log |C|), a
multi-hop CH-KVS is (ε, δ, θ)-balanced for

ε = ρθ

|C|

(
log |C|+ 6 log

(
|C|
ρθ

))
and δ = 1

|C|2 + (e−
√
|C| · log |C|)

The Corollary follows directly from Corollary 1 and Theorem 3.
Notice that multi-hop CH-KVSs are not only less balanced than zero-hop CH-
KVSs but also tolerate a lesser number of corruptions. This is the case because
in a multi-hop CH-KVS there is a higher chance that an adversary sees a label
since the routes are larger.

16

Remark. It follows from Corollary 3 that

ε = O

(
ρθ

|C| log |C|
)

and δ = O(1/|C|2). As discussed earlier, the optimal balance is ε = ρθ/|C|, which
is achieved when labels are assigned uniformly at random to ρ nodes. Note that
balance of multi-hop CH-KVSs is only log |C| factor away from optimal balance
which is very good given that the optimal balance is achieved with no routing
at all.

The Security of a Multi-Hop CH-KVS based EKVS. In the following
Corollary, we formally state the security of the standard scheme when its under-
lying KVS is instantiated with a multi-hop CH-KVS.

Corollary 4. If |L| = Θ(2k), |I| ≤ |C|/(ρe log |C|), and if EKVS is instantiated
with a RYW multi-hop CH-KVS, then it is Lε-secure with probability at least
1− 1/|C|2 − (e−

√
|C| · log |C|)− negl(k) in the random oracle model, where

ε = ρ|I|
|C|

(
log |C|+ 6 log

(
|C|
ρ|I|

))
.

From the discussion of Theorem 3, we know that,

ε = O

(
ρ|I|
|C| log |C|

)
and δ = O(1/|C|2). Setting |I| = |C|/(ρα log |C|), for some α ≥ e, we have
ε = O(1/α), which intuitively means that the adversary can expect to learn the
operation equality of an O(1/α) fraction of client operations.

8 The Standard EKVS Scheme in the Multi-User Setting

We now analyze the security of the standard scheme in a more general setting,
i.e., where we no longer require the underlying KVS to satisfy RYW and where
we no longer assume that a single client operates on the data. We call this
setting the multi-user setting where multiple clients operate on the same data
concurrently. We start by extending our security definition to the multi-user
setting and then analyze the security of the standard scheme (from Figure 2) in
this new setting.

The ideal multi-user KVS functionality. The ideal multi-user KVS func-
tionality FLmKVS is described in Figure 3. The functionality stores all the values
that were ever written to a label. It also associates a time τ with every value
indicating when the value was written. On a Get operation, it sends leakage to
the simulator which returns a time τ ′. The functionality then returns the value

17

Functionality FL
mKVS

FL
mKVS stores a dictionary DX initialized to empty, a time counter τ initial-

ized to 0 and proceeds as follows, running with c clients C1, . . . , Cc, n nodes
N1, . . . , Nn and a simulator Sim:

– Put(`, v): Upon receiving a label/value pair (`, v) from some client
Ci, it increments τ by 1, sets DX[` || τ] := v, and sends the leakage
L(DX, (put, `, v)) to the simulator Sim.

– Get(`): Upon receiving a label ` from the client Ci, it increments τ by
1, sends the leakage L(DX, (get, `,⊥)) to the simulator Sim, and when
it receives a message τ ′ from the simulator, it returns DX[` || τ ′] to Ci.

Fig. 3. FL
mKVS : The ideal multi-user KVS functionality parameterized with leakage

function L.

associated with τ ′ to the client. Notice that, unlike single-user ideal functionality
FLKVS, the multi-user ideal functionality can be influenced by the simulator.

Security definition. The real and ideal experiments are the same as in Section
5 with the following differences. First, the experiments are executed not with
a single client but with c clients C1 . . . Cc; second, the environment adaptively
sends operations to all these clients; and third, the ideal functionality of Figure
1 is replaced with the ideal functionality described in Figure 3.

8.1 Security of the Standard Scheme

We now analyze the security of the standard scheme when its underlying KVS
is instantiated with a KVS that does not necessarily satisfy RYW consistency.
We start by describing its stateful leakage function.

– L(DX, (op, `, v)) :
1. if op = put output (put, opeq(`))
2. else if op = get output (get, opeq(`))

where opeq is the operation equality pattern which reveals if and when a label
was queried or put in the past.

Single-user vs. multi-user leakage. Notice that the leakage profile achieved
in the multi-user setting is a function of all the labels whereas the leakage profile
achieved in the single-user setting was only a function of the labels that were
(exclusively) stored and routed by the corrupted nodes. In particular, this implies
that the multi-user leakage is worse than the single-user leakage and equivalent
to the leakage achieved by standard (non-distributed) schemes. In following, we
will refer to the labels stored and routed exclusively by honest nodes as “honest
labels” and to all the other labels as “corrupted labels”.

The reason that the single-user leakage is independent of the honest labels is
because of the RYW consistency of the underlying KVS. More precisely, RYW

18

C1

C2

𝖯𝗎𝗍(ℓ𝟤, 𝟣)

𝖦𝖾𝗍(ℓ𝟤)
C1

C2

𝖯𝗎𝗍(ℓ𝟤, 𝟣)

𝖦𝖾𝗍(ℓ𝟤)

𝖦𝖾𝗍(ℓ𝟣)

𝖯𝗎𝗍(ℓ𝟣, 𝟣)

time time

Fig. 4. Sequence 1 is on the left and Sequence 2 is on the right.

consistency guarantees that for a given label, the user will read the latest value
that it stored. This implies that the value it reads will be independent of any
other label, including the corrupted labels. This is not the case, however, in the
multi-user setting where RYW consistency does not guarantee that the honest
labels will be independent of the corrupted labels. To see why, consider the fol-
lowing example. Let `1 be a corrupted label and let `2 be an honest label. Assume
that both `1 and `2 initially have the value 0. Now consider the two sequences of
operations executed by clients C1 and C2 shown in Figure 4. Notice that both
sequences are RYW consistent (this is the case because they satisfy a stronger
consistency guarantee called sequential consistency). However, in sequence 1,
Get(`2) can output both 0 or 1 whereas, in sequence 2, if Get(`1) outputs a 0,
then Get(`2) can only output 1. This example points out that operations on
corrupted labels can impact operations on honest labels. Capturing exactly how
operations on one label can effect operations on other labels for different consis-
tency guarantees is challenging but might be helpful in designing solutions with
better leakage profiles. We leave this as an open problem. Alternatively, it would
be interesting to know if there is some consistency notion one could assume (in
the multi-user setting) under which a better leakage profile could be achieved.

Security. We now state our security theorem, the proof of which is in the full
version of the paper.

Theorem 4. EKVS is L-secure with probability at least 1− negl(k).

9 Conclusions and Future Work

In this work, we study end-to-end encryption in the context of KVSs. We for-
malize the security properties of the standard scheme in both the single-user
and multi-user settings. We then use our framework to analyze the security of
the standard scheme when its underlying KVS is instantiated with consistent
hashing based KVS (with zero-hop and multi-hop routing). We see our work as
an important step towards designing provably-secure end-to-end encrypted dis-
tributed systems like off-chain networks, distributed storage systems, distributed
databases and distributed caches.

Our work motivates several open problems and directions for future work.

19

Relationship between consistency guarantees and leakage. Recall that
the standard scheme leaks the operation equality of all the labels in the multi-
user setting (with no assumption on the consistency guarantees). However, if the
underlying KVS satisfies RYW consistency, the scheme only leaks the operation
equality of a subset of labels but in a single-user setting. The most immediate
question is whether the leakage can be improved in the multi-user setting by
assuming a stronger consistency guarantee.

We however believe that even assuming linearizability, which is much stronger
than RYW consistency, the standard scheme would still leak more in the multi-
user setting than what it would in the single-user setting with RYW consistency.
The question then is to find a lower bound on leakage in the multi-user setting.

Beyond CH-KVS. Another direction is to study the security of the stan-
dard EKVS when it is instantiated with a KVS that is not based on consistent
hashing or on the two routing schemes that we described. Instantiations based
on Kademlia [46] and Koorde [35] would be particularly interesting due to the
former’s popularity in practice and the latter’s theoretical efficiency. Because
Koorde uses consistent hashing in its structure (though its routing is different
and based on De Bruijn graphs) the bounds we introduce in this work to study
CH-KVS’s balance might find use in analyzing Koorde. Kademlia, on the other
hand, has a very different structure than CH-KVSs so it is likely that new custom
techniques and bounds are needed to analyze its balance.

New EKVS constructions. A third direction is to design new EKVS schemes
with better leakage profiles. Here, a “better” profile could be the same profile Lε
achieved in this work but with a smaller ε than what we show. Alternatively, it
could be a completely different leakage profile. This might be done, for example,
by using more sophisticated techniques from structured encryption and oblivious
RAMs.

EKVSs in the transient setting. Another important direction of immediate
practical interest is to study the security of EKVSs in the transient setting. As
mentioned in Section 4, in transient setting, nodes are not known a-priori and
can join and leave at any time. This setting is particularly suited to peer-to-
peer networks and permissionless blockchains. Agarwal and Kamara [7] study
DHTs in the transient setting and it would be intersting to extend their work to
transient KVSs as well.

Stronger adversarial models. Our security definitions are in the standalone
model and against an adversary that makes static corruptions. Extending our
work to handle arbitrary compositions (e.g., using universal composability [17])
and adaptive corruptions would be very interesting.

References

1. Apache ignite. https://ignite.apache.org/.
2. Couchbase. https://www.couchbase.com/.

20

https://ignite.apache.org/
https://www.couchbase.com/

3. Foundationdb. https://www.foundationdb.org/.
4. Memcachedb. https://github.com/LMDB/memcachedb/.
5. Redis. https://redis.io/.
6. Xap. https://www.gigaspaces.com/.
7. A. Agarwal and S. Kamara. Encrypted distributed hash tables. Cryptology ePrint

Archive, Report 2019/1126, 2019. https://eprint.iacr.org/2019/1126.
8. R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order preserving encryption for

numeric data. In ACM SIGMOD International Conference on Management of
Data, pages 563–574, 2004.

9. G. Asharov, M. Naor, G. Segev, and I. Shahaf. Searchable symmetric encryption:
Optimal locality in linear space via two-dimensional balanced allocations. In ACM
Symposium on Theory of Computing (STOC ’16), STOC ’16, pages 1101–1114,
New York, NY, USA, 2016. ACM.

10. G. Asharov, G. Segev, and I. Shahaf. Tight tradeoffs in searchable symmetric en-
cryption. In Annual International Cryptology Conference, pages 407–436. Springer,
2018.

11. P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Bolt-on causal consistency. In
Proceedings of the 2013 ACM SIGMOD International Conference on Management
of Data, pages 761–772, 2013.

12. M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable
encryption. In A. Menezes, editor, Advances in Cryptology – CRYPTO ’07, Lecture
Notes in Computer Science, pages 535–552. Springer, 2007.

13. L. Blackstone, S. Kamara, and T. Moataz. Revisiting leakage abuse attacks. In
Network and Distributed System Security Symposium (NDSS ’20), 2020.

14. A. Boldyreva, N. Chenette, Y. Lee, and A. O’neill. Order-preserving symmetric
encryption. In Advances in Cryptology - EUROCRYPT 2009, pages 224–241, 2009.

15. R. Bost. Sophos - forward secure searchable encryption. In ACM Conference on
Computer and Communications Security (CCS ’16), 20016.

16. R. Bost, B. Minaud, and O. Ohrimenko. Forward and backward private searchable
encryption from constrained cryptographic primitives. In ACM Conference on
Computer and Communications Security (CCS ’17), 2017.

17. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proceedings 42nd IEEE Symposium on Foundations of Computer
Science, pages 136–145. IEEE, 2001.

18. D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-abuse attacks against
searchable encryption. In ACM Conference on Communications and Computer
Security (CCS ’15), pages 668–679. ACM, 2015.

19. D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner.
Dynamic searchable encryption in very-large databases: Data structures and imple-
mentation. In Network and Distributed System Security Symposium (NDSS ’14),
2014.

20. D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner. Highly-
scalable searchable symmetric encryption with support for boolean queries. In
Advances in Cryptology - CRYPTO ’13. Springer, 2013.

21. D. Cash and S. Tessaro. The locality of searchable symmetric encryption. In
Advances in Cryptology - EUROCRYPT 2014, 2014.

22. F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed storage system
for structured data. ACM Transactions on Computer Systems (TOCS), 26(2):4,
2008.

21

https://www.foundationdb.org/
https://github.com/LMDB/memcachedb/
https://redis.io/
https://www.gigaspaces.com/
https://eprint.iacr.org/2019/1126

23. M. Chase and S. Kamara. Structured encryption and controlled disclosure. In
Advances in Cryptology - ASIACRYPT ’10, volume 6477 of Lecture Notes in Com-
puter Science, pages 577–594. Springer, 2010.

24. R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric en-
cryption: Improved definitions and efficient constructions. In ACM Conference on
Computer and Communications Security (CCS ’06), pages 79–88. ACM, 2006.

25. G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: amazon’s highly avail-
able key-value store. In ACM SIGOPS operating systems review, volume 41, pages
205–220. ACM, 2007.

26. I. Demertzis, D. Papadopoulos, and C. Papamanthou. Searchable encryption with
optimal locality: Achieving sublogarithmic read efficiency. In Advances in Cryp-
tology - CRYPTO ’18, pages 371–406. Springer, 2018.

27. I. Demertzis and C. Papamanthou. Fast searchable encryption with tunable local-
ity. In ACM International Conference on Management of Data (SIGMOD ’17),
SIGMOD ’17, pages 1053–1067, New York, NY, USA, 2017. ACM.

28. M. Etemad, A. Küpccü, C. Papamanthou, and D. Evans. Efficient dynamic search-
able encryption with forward privacy. PoPETs, 2018(1):5–20, 2018.

29. S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu, and M. Steiner. Rich
queries on encrypted data: Beyond exact matches. In European Symposium on Re-
search in Computer Security (ESORICS ’15). Lecture Notes in Computer Science,
volume 9327, pages 123–145, 2015.

30. B. A. Fisch, B. Vo, F. Krell, A. Kumarasubramanian, V. Kolesnikov, T. Malkin,
and S. M. Bellovin. Malicious-client security in blind seer: a scalable private dbms.
In IEEE Symposium on Security and Privacy, pages 395–410. IEEE, 2015.

31. C. Gentry. Fully homomorphic encryption using ideal lattices. In ACM Symposium
on Theory of Computing (STOC ’09), pages 169–178. ACM Press, 2009.

32. E.-J. Goh. Secure indexes. Technical Report 2003/216, IACR ePrint Cryptography
Archive, 2003. See http://eprint.iacr.org/2003/216.

33. O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious
RAMs. Journal of the ACM, 43(3):431–473, 1996.

34. M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclosure on search-
able encryption: Ramification, attack and mitigation. In Network and Distributed
System Security Symposium (NDSS ’12), 2012.

35. M. F. Kaashoek and D. R. Karger. Koorde: A simple degree-optimal distributed
hash table. In International Workshop on Peer-to-Peer Systems, pages 98–107.
Springer, 2003.

36. S. Kamara and T. Moataz. Boolean searchable symmetric encryption with worst-
case sub-linear complexity. In Advances in Cryptology - EUROCRYPT ’17, 2017.

37. S. Kamara and T. Moataz. SQL on Structurally-Encrypted Data. In Asiacrypt,
2018.

38. S. Kamara and T. Moataz. Computationally volume-hiding structured encryption.
In Advances in Cryptology - Eurocrypt’ 19, 2019.

39. S. Kamara, T. Moataz, and O. Ohrimenko. Structured encryption and leakae
suppression. In Advances in Cryptology - CRYPTO ’18, 2018.

40. S. Kamara, T. Moataz, S. Zdonik, and Z. Zhao. An optimal relational database
encryption scheme. Cryptology ePrint Archive, Report 2020/274, 2020. https:
//eprint.iacr.org/2020/274.

41. S. Kamara and C. Papamanthou. Parallel and dynamic searchable symmetric
encryption. In Financial Cryptography and Data Security (FC ’13), 2013.

22

http://eprint.iacr.org/2003/216
https://eprint.iacr.org/2020/274
https://eprint.iacr.org/2020/274

42. S. Kamara, C. Papamanthou, and T. Roeder. Dynamic searchable symmetric
encryption. In ACM Conference on Computer and Communications Security (CCS
’12). ACM Press, 2012.

43. A. Lakshman and P. Malik. Cassandra: a decentralized structured storage system.
ACM SIGOPS Operating Systems Review, 44(2):35–40, 2010.

44. W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Don’t settle for
eventual: scalable causal consistency for wide-area storage with cops. In Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles, pages 401–
416, 2011.

45. W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Stronger semantics
for low-latency geo-replicated storage. In Presented as part of the 10th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 13), pages
313–328, 2013.

46. P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information system
based on the xor metric. In International Workshop on Peer-to-Peer Systems,
pages 53–65. Springer, 2002.

47. X. Meng, S. Kamara, K. Nissim, and G. Kollios. Grecs: Graph encryption for
approximate shortest distance queries. In ACM Conference on Computer and
Communications Security (CCS 15), 2015.

48. V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin, S.-G. Choi, W. George,
A. Keromytis, and S. Bellovin. Blind seer: A scalable private dbms. In Security
and Privacy (SP), 2014 IEEE Symposium on, pages 359–374. IEEE, 2014.

49. D. Song, D. Wagner, and A. Perrig. Practical techniques for searching on encrypted
data. In IEEE Symposium on Research in Security and Privacy, pages 44–55. IEEE
Computer Society, 2000.

50. E. Stefanov, C. Papamanthou, and E. Shi. Practical dynamic searchable encryption
with small leakage. In Network and Distributed System Security Symposium (NDSS
’14), 2014.

51. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM
Computer Communication Review, 31(4):149–160, 2001.

52. R. Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. Soman, and S. Shah. Serving
large-scale batch computed data with project voldemort. In Proceedings of the
10th USENIX conference on File and Storage Technologies, pages 18–18. USENIX
Association, 2012.

53. B. Technologies. Riak. https://docs.basho.com/riak/kv/2.2.2/learn/dynamo/.
54. Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. V. Madhyastha.

Spanstore: Cost-effective geo-replicated storage spanning multiple cloud services.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Prin-
ciples, pages 292–308, 2013.

23

https://docs.basho.com/riak/kv/2.2.2/learn/dynamo/

	Encrypted Key-Value Stores

