Structured Encryption

Contents

1 Motivation 1

2 The Solution Space 3

3 Structured Encryption 5

4 Data Structures 6

5 Syntax 7

6 Security 8

6.1 Formalizing Leaky Primitives 9

1 Motivation

As we produce and consume increasing amounts of data, we are witnessing several conflicting trends. On one hand, these datasets are becoming more intrusive and privacy-sensitive and, on the other, they are becoming harder to secure.

Data breaches. This is well-illustrated by the constant occurrence of data breaches. In 2016, the Democratic National Committee (DNC) was hacked and in July Wikileaks published 19,252 emails and 8,034 attachments from the DNC. This led to the resignation of DNC chair Debbie Wasserman-Schultz [?]. Recently, 191M voter records were leaked online including voter names, addresses and party affiliations [?]. In 2015, 104K tax records were stolen from the IRS [?]. In 2014, the office of personnel management (OPM) was hacked and the records of government employees including the personal files of employees seeking top secret clearance were stolen [?]. The records of the latter included information about their past activities, their families and friends. In 2015, Ashley Madison—a website that facilitates extra-marital affairs—lost the personal records of each of 37M users. The breach has resulted in numerous divorces, political scandals and even suicides. These are just a few examples of recent high-profile data breaches but there are many more including from banks, tech companies, retail companies, government agencies from all around the world.

The Snowden disclosures. In 2013, Edward Snowden leaked classified information from the National Security Agency (NSA) to journalists Glenn Greenwald and Laura Poitras. These disclosures revealed the existence of a large number of NSA surveillance programs; often in cooperation with other agencies from Australia, Canada, New Zealand and the
United Kingdom. The programs were varied and included bulk, international and, most surprising, domestic surveillance.

End-to-end encryption and zero-knowledge systems. The prevalence of data breaches and the existence of a global and pervasive surveillance infrastructure points to the fact that the data we produce—and is produced about us—is not properly secured. While systems sometimes encrypt data in transit and at rest, there are still many stages in our data’s lifetime where it remains unencrypted. Webmail, for example, can be encrypted from your browser to your webmail provider and then encrypted while at rest in your provider’s back-end storage. But it remains in plaintext on your provider’s servers when your mailbox is accessed. Clearly, the way we currently integrate cryptography into systems is not good enough.

An alternative way of deploying cryptography is sometimes referred to as *end-to-end* encryption. In this approach, the data is encrypted by *the user* before it even leaves its device. The encryption keys are managed by the user so its data can never appear in plaintext anywhere unless it has explicitly been decrypted by its owner. Systems and services based on end-to-end encryption are sometimes called *zero-knowledge* systems because they can operate with little to no information about the data they consume. These systems can provide much stronger privacy and security guarantees than the current generation of systems. The tradeoff, however, is that users are burdened with key management and all the problems this entails.

The main challenge in building zero-knowledge systems is that end-to-end encryption breaks many of the applications and services we rely on, including cloud computing, analytics, spam filtering, databases and of course search. A zero-knowledge webmail service would be unusable if one did not have the ability to search over one’s encrypted emails. An application backed by an end-to-end encrypted database could not function.

Encrypted search. The area of *computing on encrypted data* aims to address some of the challenges posed by end-to-end encryption by producing new cryptosystems that support various forms of operations on encrypted data. A particularly important problem in this area is *encrypted search*; that is, the problem of searching on encrypted data. Search is one of the most basic computational operations and, since the 90’s, is arguably the most important functionality in information technology. Clearly, Web, enterprise and desktop search are core operations in both consumer and enterprise settings. Databases are integral to almost any system and, today, search functionality is embedded in almost every application.

Because of this, encrypted search could impact a wide variety of information systems. It would be an immediately applicable and, in fact *necessary*, component of most zero-knowledge services. For example, it could be used to enhance end-to-end encrypted cloud storage (e.g., Dropbox, OneDrive, iCloud), email (e.g., GMail, Outlook.com) and chat ser-

1The term here is borrowed from the notion of zero-knowledge proofs (ZKPs) which are proofs that reveal at most the validity of a statement. Keep in mind that, unlike ZKPs, zero-knowledge *systems* are not formally defined and the usage of the term zero-knowledge here is more for marketing purposes.
services (e.g., Signal, Slack, Skype, iMessenger) with private search capabilities. It could also be used in non-end-to-end settings, e.g., to add search to the encrypted back-end systems of cloud providers. It could also be used to support queries over databases that remain encrypted even in memory. All these applications would have a positive impact on the privacy and security of consumers and enterprises.

2 The Solution Space

Encrypted search blends techniques and ideas from cryptography, data structures, algorithms, information retrieval and databases. Currently, the state-of-the-art constructions achieve different tradeoffs between security, efficiency and query expressiveness. This is mostly due to the underlying primitives they use which we summarize below.

Fully-homomorphic encryption (FHE). An FHE scheme \([\cdot, \cdot]\) is an encryption scheme that supports arbitrary computation. That is, given a set of encryptions \((ct_1, \ldots, ct_n)\) of messages \((m_1, \ldots, m_n)\), one can generate a ciphertext \(ct\) of \(f(m_1, \ldots, m_n)\), for any efficiently computable function \(f\). FHE provides a natural solution to any encrypted search problem: (1) encrypt the data; (2) to query the data, encrypt the query \(q\) and homomorphically evaluate the arithmetic circuit that evaluates \(q\) on the data. This results in an encrypted answer to the query.

Oblivious RAM (ORAM). An ORAM \([\cdot]\) takes as input an array and pre-processes it in such a way that it can support read and write operations obliviously; that is, without disclosing which addresses are accessed. ORAM also provides a natural solution to any encrypted search problem: (1) store the data in an array and pre-process it with an ORAM; (2) to search, simulate a search algorithm and replace every read and write operation with an oblivious read and write operation. Note that this approach is a naive way of using ORAM for search; we will see better alternatives.

Property-preserving encryption (PPE). A PPE scheme \([\cdot, \cdot, \cdot, \cdot]\) is an encryption scheme that reveals a property of the plaintext. For example, an equality-preserving encryption scheme—usually referred to as a deterministic encryption (DtE) scheme—reveals the equality between two plaintexts \([\cdot]\). Similarly, order-preserving encryption (OPE) \([\cdot, \cdot]\) and order-revealing encryption schemes (ORE) \([\cdot]\) reveal the order of two plaintexts.\(^2\) Given PPE schemes, one can solve any encrypted search problem that relies on equality testing and comparisons. For example, a relational EDB can be constructed by encrypting the cells of each table with an appropriate PPE scheme (DtE for attributes that will be equality tested and OPE/ORE for attributes that will be compared). To query the EDB on a SQL query

\(^2\)The difference between OPE and ORE schemes are that with the latter, comparisons of two ciphertexts can be done with any arbitrary computation whereas the former require that they be done using standard numerical comparison.
q, the query is broken down into a sequence of equality and comparison operations which are then be evaluated directly on the encrypted tables. A similar approach can be used for encrypted non-relational databases.

Functional encryption (FE). A FE scheme [?] encrypts a message m in such a way that, given a token for some function f and the ciphertext, one can compute $f(m)$ without learning anything beyond the result. A special case of FE is identity-based encryption (IBE) [?] in which messages have the form $\langle \text{id}, m \rangle$, where id is an arbitrary bit string, and the functions have the form

$$f_{\text{id}'}(\langle \text{id}, m \rangle) = \begin{cases} m & \text{if } \text{id} = \text{id}'; \\ \perp & \text{if } \text{id} \neq \text{id}'. \end{cases}$$

General-purpose FE [?]—which can handle any efficiently-computable function—can be used to solve any encrypted search problem: (1) encrypt the data; (2) to query the data on q, generate a token for the function f which evaluates the query on the data. This results in a plaintext answer to the query (unlike the FHE-based solution discussed above). IBE can be used to construct an encrypted search engine as follows. First, encrypt each document D in the document collection with a standard encryption scheme. Then associate each encrypted document with a set of IBE encryptions of the form $\langle w, \text{true} \rangle$ for every word w in the document. To search for a keyword w', generate a token for the function $f_{w'}$ and try to decrypt each IBE ciphertext of every encrypted document. Return the encrypted documents for which at least one IBE ciphertext decrypted to true.

Structured encryption (STE). A STE scheme [?] encrypts a data structure in such a way that, given a token for a query to the structure, one can evaluate the query and learn at most some well-defined leakage of the structure and/or query. A special case of STE is searchable symmetric encryption (SSE) [?, ?, ?] which encrypts search structures like inverted indexes or search trees. SSE provides a natural solution to designing encrypted search engines: (1) generate a search structure for the data and encrypt it; (2) to search for a keyword w, generate a token for w and query the encrypted structure. Other forms of STE like graph encryption schemes [?] provide natural solutions to designing encrypted graph databases.

Secure multi-party computation (MPC). An MPC protocol allows n mutually distrustful parties to execute a computation on the union of their inputs without disclosing any information about their inputs to each other (beyond what can be inferred from the result). Like FHE, MPC is a general-purpose primitive in the sense that it can be used to securely evaluate any efficiently computable function. MPC provides a natural solution to any encrypted search solution: (1) encrypt the data using a standard (symmetric) encryption scheme; (2) to query the data, securely evaluate a function that takes as input the encrypted data, the key and the query, decrypts the data, searches for the query and outputs the result.
Private information retrieval (PIR). A PIR protocol allows a client to read an element from an array without revealing which location was read. PIR can be used to design encrypted search solutions as follows: (1) store the data in an array; (2) encrypt each item with a symmetric-key encryption scheme; (3) to search, simulate a search algorithm and replace every read operation with a PIR query. Similarly to how we used ORAM above, this approach is a naive way of using PIR for search.

Tradeoffs. Roughly speaking, when maximizing security and query expressiveness at the expense of efficiency, the best solutions are based on ORAM and FHE. When maximizing efficiency and query expressiveness at the expense of security, the best solutions are based on PPE. When maximizing security and efficiency at the expense of query expressiveness, the best solutions are based on STE.

3 Structured Encryption

In the previous Section, we went over—at a high level—the different ways to search on encrypted data. We also pointed out that each solution achieved a different trade-off between efficiency, security and expressiveness. In the first lecture, we argued that the security of a cryptosystem should be analyzed in the provable/reductionist security paradigm. While this paradigm has its limitations, it is the best way we have to reason about the security of cryptosystems and to debug our algorithms.

Here, we apply the reductionist security paradigm to the problem of encrypted search. We give syntax and security definitions that capture what encrypted search solutions look like and the security properties they should achieve. These definitions will make our discussions in future lectures more precise and allow us to compare and contrast the algorithms we will study.

The meaning of search. Before we can properly formalize encrypted search we have to pin down what we mean by search as it means different things depending on the context. In search algorithms, we consider two complexity regimes, linear and sub-linear, and two algorithmic paradigms, structured and unstructured. In the linear regime we allow algorithms that run in $O(n)$ time, where n is the length of the data being searched. In the sub-linear regime we only allow algorithms that run in $o(n)$ time. In the structured paradigm, we allow a $O(n)$ setup phase to pre-process the data and a query phase which is typically sub-linear. In the unstructured paradigm, we do not allow any pre-processing.

For the most part, we will ignore linear search solutions. Structured linear solutions are of no interest and unstructured linear solutions essentially correspond to sequential scan which is prohibitive for the kinds of datasets we are interested in (on the order of GBs or larger). We note that structured sub-linear and unstructured sub-linear algorithms roughly correspond to the fields of data structures and sub-linear algorithms [7], respectively. The former achieve sub-linearity at the cost of additional storage (needed for the structure) whereas the latter achieve sub-linearity at the cost of errors.
For search applications (e.g., search engines or databases) the structured sub-linear approach is preferred because errors are usually not permitted; unlike, for example, data mining, machine learning and optimization. In addition, storage is relatively cheap so the additional overhead incurred is not prohibitive in practice.

Structured encryption. Structured sub-linear search on encrypted data is formally captured by the notion of *structured encryption* (STE) which we define below. Informally, a STE scheme encrypts a data structure in such a way that it can be queried without revealing any useful information about the data or the query. As we will see throughout the course, STE can be constructed using a variety of cryptographic primitives. Moreover, we will also see that STE is a generalization of several other cryptographic primitives.

4 Data Structures

Since data structures are such an important component of search algorithms, we review some basic definitions.

Abstract data types. An *abstract data type* is a collection of objects together with a set of operations defined on those objects. Examples include sets, dictionaries (also known as key-value stores or associative arrays) and graphs. The operations associated with a data type fall into one of two categories: query operations, which return information about the objects; and update operations, which modify the objects. If the data type supports only query operations it is *static*, otherwise it is *dynamic*. For simplicity we define data types as having a single operation but note that the definitions can be extended to capture multiple operations in the natural way.

Data structures. A *data structure* for type \mathcal{T} is a concrete representation of type-\mathcal{T} objects in some computational model. For us, the underlying model will always the random access machine (RAM) model of computation. The structure used to represent a type-\mathcal{T} object is usually optimized to support the queries associated with \mathcal{T} as efficiently as possible; that is, one designs the structure in such a way that there is an efficient algorithm to evaluate these queries. For data types that support multiple queries, the structure is usually designed to efficiently support as many of \mathcal{T}’s queries as possible. As a concrete example, the dictionary data type can be represented using various data structures depending on which queries one wants to support efficiently: hash tables support Get and Put in expected $O(1)$ time whereas balanced binary search trees support both operations in worst-case $\log(n)$ time. We model a type-\mathcal{T} data structure as a collection of three ensembles $S = \{S_k\}_{k \in \mathbb{N}}$, $Q = \{Q_k\}_{k \in \mathbb{N}}$ and $A = \{A_k\}_{k \in \mathbb{N}}$. If a type-$\mathcal{T}$ structure DS supports only a single query, we often write $DS(q)$ to denote the answer $a \in A_k$ that results from querying DS on $q \in Q_k$.
Basic data types. We will make use of several basic data types including arrays or random access memory (RAM), dictionaries and multi-maps. An array \(\text{RAM} \) of capacity \(n \) stores \(n \) items at locations 1 through \(n \) and supports read and write operations in \(O(1) \) time. We write \(v := \text{RAM}[i] \) to denote reading the item at location \(i \) and \(\text{RAM}[i] := v \) the operation of storing an item at location \(i \). A dictionary \(\text{DX} \) of capacity \(n \) is a collection of \(n \) label/value pairs \(\{(\ell_i, v_i)\}_{i \leq n} \) and supports get and put operations. We write \(v_i \leftarrow \text{DX}[\ell_i] \) to denote getting the value associated with label \(\ell_i \) and \(\text{DX}[\ell_i] := v_i \) to denote the operation of associating the value \(v_i \) in \(\text{DX} \) with label \(\ell_i \). A multi-map of capacity \(n \) is a collection of \(n \) label/tuple pairs \(\{(\ell_i, V_i)\}_{i \leq n} \) that supports get and put operations. Like dictionaries, we write \(V_i := \text{MM}[\ell_i] \) to denote getting the tuple associated with label \(\ell_i \) and \(\text{MM}[\ell_i] := V_i \) to denote the association of the tuple \(V_i \) with label \(\ell_i \). Multi-maps are the data type instantiated by inverted indices. In the encrypted search literature multi-maps are sometimes referred to as t-sets, tuple-sets and even as databases.

Notational abuse. As is usually done throughout computer science, we use notation that sometimes blurs the distinction between data types and data structures and trust that the reader can distinguish between the two based on context.

5 Syntax

As discussed above, a STE scheme encrypts a data structure in such a way that it can be privately queried. We now describe the syntax of a STE scheme.

Definition 5.1 (Structured encryption (response revealing)). A single-round response-revealing structured encryption scheme \(\text{STE} = (\text{Setup}, \text{Token}, \text{Query}) \) for structures of type \(\mathcal{T} \) consists of three polynomial-time algorithms that work as follows:

- \((K, \text{EDS}) \leftarrow \text{Setup}(1^k, \text{DS})\): is a probabilistic algorithm that takes as input a security parameter \(1^k \) and a structure \(\text{DS} \in S_k \) and outputs a secret key \(K \) and an encrypted structure \(\text{EDS} \).
- \(t_k \leftarrow \text{Token}(K, q)\): is a (possibly) probabilistic algorithm that takes as input a secret key \(K \) and a query \(q \in Q_k \) and returns a token \(t_k \).
- \(a \leftarrow \text{Query}(\text{EDS}, t_k)\): is a deterministic algorithm that takes as input an encrypted structure \(\text{EDS} \) and a token \(t_k \) and outputs an answer \(a \in A_k \).

We say that \(\text{STE} \) is correct if for all \(k \in \mathbb{N} \), for all \(\text{DS} \in S_k \), for all \((K, \text{EDS})\) output by \(\text{Setup}(1^k, \text{DS}) \) and all sequences of \(m = \text{poly}(k) \) queries \(q_1, \ldots, q_m \), for all tokens \(t_{k_i} \) output by \(\text{Token}(K, q_i) \), \(\text{Query}(K, t_{k_i}) = \text{DS}(q_i) \).

STE schemes are typically used as follows. In the setup phase, the client computes \((K, \text{EDS}) \leftarrow \text{Setup}(1^k, \text{DS})\), sends \(\text{EDS} \) to an untrusted server and keeps \(K \) private. During the query phase, the client computes and sends \(t_k \leftarrow \text{Token}(K, q) \) to the server who in turn computes \(a \leftarrow \text{Query}(\text{EDS}, t_k) \).
Response-hiding STE. We can define many variants of STE including interactive STE where the query phase requires multiple rounds of interaction; and response-hiding STE where the Query algorithm does not return answers in plaintext. We describe response-hiding schemes because they will be useful in future Lectures.

Definition 5.2 (Structured encryption (response-hiding)). A single-round response-hiding structured encryption scheme $\text{STE} = (\text{Setup}, \text{Token}, \text{Query}, \text{Resolve})$ for structures of type \mathcal{T} consists of four polynomial-time algorithms such that Setup and Token are as in Definition 5.1 and that Query and Resolve work as follows:

- $c \leftarrow \text{Query}(\text{EDS}, \text{tk})$: is a deterministic algorithm that takes as input an encrypted structure EDS and a token tk and outputs a message c.

- $r \leftarrow \text{Resolve}(K, c)$: is a deterministic algorithm that takes as input a secret key K and a message c and outputs an answer $a \in A_k$.

We say that STE is correct if for all $k \in \mathbb{N}$, for all $\text{DS} \in \mathcal{S}_k$, for all (K, EDS) output by $\text{Setup}(1^k, \text{DS})$ and all sequences of $m = \text{poly}(k)$ queries q_1, \ldots, q_m, for all tokens tk_i output by $\text{Token}(K, q_i)$, for all messages c_i output by $\text{Query}(\text{EDS}, \text{tk}_i)$, $\text{Resolve}(K, c_i) = \text{DS}(q_i)$.

6 Security

Intuitively, we would like an STE scheme to guarantee that

the encrypted structure reveals no useful information about the underlying structure and that the tokens reveal no useful information about the underlying query.

Four our purposes, we will consider “non-useful” any information that can be derived from the security parameter k. For example, this would include information about the structure or query spaces. Unfortunately, such a security notion seems hard to achieve efficiently so we would like to weaken it to allow for trade-offs. How much exactly we should weaken the definition depends on which trade-offs we are willing to make. At this point, we will not consider the question of which trade-offs are reasonable and which are not (that will come later). What we want is a definition that allows us to study notions of security that are “less than perfect”. There are at least two approaches one could take to study weaker notions of security.

Usage-based. The first is to use a standard notion of security but make some assumption about how the cryptosystem will be used. For example, we saw in Lecture 2 that deterministic encryption (DtE) schemes cannot be CPA-secure. But what if we still want to study their security? One approach is to keep the notion of CPA-security as our target definition but study what happens when a DtE scheme is used on messages that come from high-min-entropy distributions.\footnote{Messages from high min-entropy distributions are, roughly, messages that are hard to guess.} Under this assumption, we can show that a DtE scheme
is CPA-secure so this tells us something about its security. The limitation of this approach, however, is that it does not tell us anything about the security of DtE when messages not from high-min-entropy distributions and, unfortunately, this is the typical case.

Leakage-based. Another approach is to explicitly weaken the definition and try to understand the consequences. But how do we do this exactly? Let’s consider the example of encryption. As we saw in the previous lecture, the notion of CPA-security provides the following guarantee,

the ciphertext reveals no useful partial information about the plaintext, even if the adversary has oracle access to an encryption oracle.

We also saw how to formalize this using both game-based and simulation-based definitions. The latter formulation, in particular, required that whatever can be computed in PPT by an adversary given the ciphertext can also be computed in PPT by a simulator without the ciphertext.

To weaken this definition, we provide the simulator with some information about the message. We refer to this information as leakage and capture it with a stateful function $L(m)$ of the message. Returning to our DtE example, we can define the leakage L on a tuple of messages $m = (m_1, \ldots, m_t)$ underlying a tuple of DtE ciphertexts $\{c_1, \ldots, c_t\}$ as a $t \times t$ matrix M such that $M[i, j] = 1$ if $m_i = m_j$ and $M[i, j] = 0$ if $m_i \neq m_j$. As a result, the definition now requires that whatever can be computed in PPT by an adversary given the ciphertext can also be computed in PPT by a simulator that is given $L(m) = M$.

6.1 Formalizing Leaky Primitives

We now give a formal security definition for STE using the leakage-based approach. The definition is simulation-based and parameterized with leakage functions as described above. It is possible to define an analogous game-based definition but, unlike standard encryption, we do not know if the two notions are equivalent.

We give two definitions of security for STE. Both Definitions have a similar structure and are based on two experiments: a Real one and an Ideal one. In the Real experiment, an adversary interacts with the STE scheme. It generates a structure and various queries and receives an encrypted structure and tokens. In the Ideal experiment, on the other hand, the adversary interacts with a simulator. The adversary still generates a structure and queries but it receives a simulated encrypted structure and simulated tokens all generated by the simulator who itself is only given the leakage of the structure and queries. The main difference between the definitions is in how the adversary is allowed to choose its queries.

Non-adaptive security. The first definition is non-adaptive in the sense that the adversary restricted in how it generates its queries. Intuitively, this definition guarantees that A will not learn anything about the structure and queries beyond the leakages explicitly captured by L_S and L_Q which are stateful leakage functions. We refer to the pair (L_S, L_Q) as a leakage profile.
Definition 6.1 (Non-adaptive security). Let $STE = (\text{Setup}, \text{Token}, \text{Query})$ be a structured encryption scheme for structures of type \mathcal{T} and consider the following probabilistic experiments where A is a stateful adversary, S is a stateful simulator, L_S and L_Q are stateful leakage functions and $z \in \{0,1\}^*$:

$\text{Real}_{STE,A}(k)$: given z the adversary A outputs a structure DS and polynomially-many queries (q_1, \ldots, q_m). It then receives EDS and (tk_1, \ldots, tk_m), where $(K, EDS) \leftarrow \text{Setup}(1^k, DS)$ and for all $1 \leq i \leq m$, $tk_i \leftarrow \text{Token}(K, q_i)$. Finally, A outputs a bit b that is returned by the experiment.

$\text{Ideal}_{STE,A,S}(k)$: given z the adversary A outputs a structure DS and polynomially-many queries (q_1, \ldots, q_m). Given z, $L_S(\text{DS})$ and $(\lambda_1, \ldots, \lambda_m)$, where $\lambda_i \leftarrow L_Q(\text{DS}, q_i)$, the simulator S gives A an encrypted data structure EDS and a tuple of tokens (tk_1, \ldots, tk_m). Finally, A outputs a bit b that is returned by the experiment.

We say that STE is non-adaptively (L_S, L_Q)-secure if there exists a PPT simulator S such that for all PPT adversaries A and all $z \in \{0,1\}^*$,

$$\left| \Pr[\text{Real}_{\text{STE},A}(k) = 1] - \Pr[\text{Ideal}_{\text{STE},A,S}(k) = 1] \right| \leq \text{negl}(k).$$

Note that in the experiments the adversary outputs its structure DS and queries (q_1, \ldots, q_m) before it sees the encrypted structure EDS and tokens (tk_1, \ldots, tk_m). In particular, this means that it cannot choose its queries as a function of the encrypted structure and the tokens. What this means exactly is not completely clear and is reminiscent of the situation in secure multi-party computation described at a high-level in the Damgard paper.

Adaptive security. In the second definition, we do not restrict how the adversary generates its queries. It is allowed to choose them as a function, not only of previous queries and responses, but also of the encrypted structure and tokens.

Definition 6.2 (Adaptive security). Let $STE = (\text{Setup}, \text{Token}, \text{Query})$ be a structured encryption scheme for type \mathcal{T} and consider the following probabilistic experiments where A is a stateful adversary, S is a stateful simulator, L_S and L_Q are leakage profiles and $z \in \{0,1\}^*$:

$\text{Real}_{\text{STE},A}(k)$: given z the adversary A outputs a structure DS of type \mathcal{T} and receives EDS from the challenger, where $(K, EDS) \leftarrow \text{Setup}(1^k, DS)$. The adversary then adaptively chooses a polynomial number of queries q_1, \ldots, q_m. For all $i \in [m]$, the adversary receives $tk_i \leftarrow \text{Token}(K, q_i)$. Finally, A outputs a bit b that is output by the experiment.

$\text{Ideal}_{\text{STE},A,S}(k)$: given z the adversary A generates a structure DS of type \mathcal{T} which it sends to the challenger. Given z and leakage $L_S(\text{DS})$ from the challenger, the simulator S returns an encrypted data structure EDS to A. The adversary then adaptively chooses a polynomial number of operations q_1, \ldots, q_m. For all $i \in [m]$, the simulator receives query leakage $L_Q(\text{DS}, q_i)$ and returns a token tk_i to A. Finally, A outputs a bit b that is output by the experiment.
We say that STE is adaptively ($\mathcal{L}_S, \mathcal{L}_Q$)-secure if there exists a PPT simulator such that for all PPT adversaries A and all $z \in \{0, 1\}^*$,

$$|\Pr[\text{Real}_{\text{STE},A}(k) = 1] - \Pr[\text{Ideal}_{\text{STE},A,S}(k) = 1]| \leq \text{negl}(k).$$

Limitations. Note that these definitions do not tell us anything about what can happen as a consequence of this leakage. In particular, this means that a scheme that is adaptively or non-adaptively ($\mathcal{L}_S, \mathcal{L}_Q$)-secure for some leakage profile could be completely broken if one can exploit the leakage effectively. What the definition does tell us, however, is that the construction does not have any design flaws beyond the leakage (and any underlying computational assumptions). In spirit, this is in line with the traditional provable/reductionist security paradigm where we prove that a scheme is secure under some computational assumption. The latter does not tell us whether a scheme is truly secure or not but it does “reduce the attack surface” of the scheme by informing us that cryptanalytic effort can focus on the underlying assumption and not the higher-level design. Similarly, these definitions tell us that cryptanalytic effort should be focused on exploiting the leakage.