
CS 2950-v (F’16) Encrypted Search Seny Kamara

Lectures 6+7: Zero-Leakage Solutions
Contents

1 Overview 1

2 Oblivious RAM 1

3 Oblivious RAM via FHE 2

4 Oblivious RAM via Symmetric Encryption 4
4.1 Setup . 5
4.2 Read & Write . 5
4.3 Restructuring . 7

5 ORAM-Based Encrypted Search 9

1 Overview
In the first lecture we covered—at a high level—several ways to search on encrypted data.
We also mentioned that for all solutions, there is a tradeoff between efficiency, security and
expressiveness. Here we will cover one extreme of the solution space: the zero-leakage or
leakage-free solutions. Note that by zero-leakage we do not mean that nothing is leaked.
Rather, what we mean is that what is leaked can be derived efficiently from the security
parameter.

We can build zero-leakage solutions from a primitive called oblivious RAM (ORAM).
There are several ways to design ORAMs. The first is based fully-homomorphic encryption
(FHE) and the second is based only on symmetric-key encryption (SKE). SKE-based ORAMs
have received a lot of attention and there are many different constructions that achieve
different levels of efficiency. In these notes we will discuss the FHE-based ORAM construction
and the first and simplest SKE-based ORAM called the square-root solution. Then we will
see how to use ORAM for encrypted search.

2 Oblivious RAM
An ORAM scheme structures an array in such a way that it can be obliviously accessed;
that is, its items can be accessed (i.e., read and written) without revealing which items are
accessed.

Definition 2.1 (Oblivious RAM). An ORAM scheme Ω = (Setup, Read, Write) consists of
three polynomial-time algorithms such that:

Page 1

CS 2950-v (F’16) Encrypted Search Seny Kamara

• ORAM ← Setup(1k, RAM): is a probabilistic algorithm that takes as input a security
parameter 1k and an array RAM of N items and it outputs a secret key K and an
oblivious RAM ORAM.

• (RAM[i],⊥)← Read
(
(K, i), ORAM

)
: is a two-party protocol executed between a client

and a server. The client runs the protocol with a secret key K and an index i as input
while the server runs the protocol with an oblivious RAM ORAM as input. At the end
of the protocol, the client receives RAM[i] and the server receives ⊥.

• (⊥, ORAM′) ← Write
(
(K, i, v), ORAM

)
: is a two-party protocol executed between a

client and a server that works as follows. The client runs the protocol with a key K,
an index i and a value v as input and the server runs the protocol with an oblivious
RAM ORAM as input. At the end of the protocol, the client receives ⊥ and the server
receives an updated oblivious RAM.

Intuitively, an ORAM scheme is oblivious if its accesse pattern does not reveal any
information about which item is accessed. This is defined as follows.

Definition 2.2 (Obliviousness). Let ORAM = (Setup, Read, Write) be an ORAM scheme and
consider the following randomized experiment against a stateful ppt adversary A:

OblA(k):

1. A outputs two sequences of t operations

op0 = (op0,1, . . . , op0,t) and op1 = (op1,1, . . . , op1,t)

where op0,i, op1,i ∈ {Read, Write};

2. a bit b
$← {0, 1} is sampled;

3. the operations of opb are executed with A playing the role of the server;
4. A outputs a guess b′;
5. if b′ = b the experiment returns 1 else it returns 0.

We say that ORAM is oblivious if for all ppt adversaries A,

Pr [OblA(k) = 1] ≤ 1
2 + negl(k).

3 Oblivious RAM via FHE
The simplest way to design an ORAM is to use FHE. An FHE scheme is an encryption
scheme that supports computations on encrypted data. To enable this FHE schemes have,
in addition to the standard Gen, Enc and Dec algorithms, an evaluation algorithm Eval that
evaluates functions on ciphertexts.

Page 2

CS 2950-v (F’16) Encrypted Search Seny Kamara

Though FHE schemes support any computation on encrypted data, the concrete con-
structions achieve this by supporting only two homomorphic operations: addition and
multiplication. That is, given ciphertexts ct1 = EncK(m1) and ct2 = EncK(m2), one can
compute ct+ = EncK(m1 + m2) and ct× = EncK(m1 ×m2). It turns out, however, that any
function that can be evaluated in polynomial time can be represented as a polynomial-size
arithmetic circuit which is a circuit composed of only addition and multiplication gates. So,
given any polynomial-time computable function f , we can represent it as a polynomial-size
arithmetic circuit Cf , and we can evaluate it homomorphically by executing each of its gates
using the homomorphic addition and multiplication operations supported by the scheme. We
now define the syntax of FHE schemes.

Definition 3.1 (Fully-homomorphic encryption). A symmetric-key fully-homomorphic en-
cryption scheme FHE = (Gen, Enc, Eval, Dec) consists of four polynomial-time algorithms that
works as follows:

• K ← Gen(1k): is a probabilistic algorithm that takes as input a security parameter 1k
and outputs a secret key K.

• ct← Enc(K, m): is a probabilistic algorithm that takes as input a secret key K and a
message m ∈Mk and outputs a ciphertext ct.

• ct′ ← Eval(C, ct1, . . . , ct): is a deterministic algorithm that takes as input an arithmetic
circuit Cf and a sequence of ciphertexts ct1, . . . , ctt and outputs a ciphertext ct′.

• m := Dec(K, ct): is a deterministic algorithm that takes as input a secret key K and a
ciphertext ct and outputs a message m.

We say that FHE is correct if it is a correct symmetric encryption scheme and if for all
k ∈ N, for all K output by Gen(1k), for all t = poly(k), for all m1, . . . , mt ∈ Mk, for
all ciphertexts ct1, . . . , ctt such that cti ← Enc(K, mi), for all polynomial-size circuits C,
Dec

(
K, Eval(f, ct1, . . . , ctt)

)
= f(m1, . . . , mt).

Note on correctness. Even though the correctness definition above is valid, it allows
trivial FHE constructions. For example, it would be satisfied by the following scheme which
is clearly not interesting. Let SKE = (Gen, Enc, Dec) be a standard symmetric-key encryption
scheme and let FHE = (Gen, Enc, Eval, Dec) be such that Gen and Enc are the same as in SKE.
Now, define Eval to be the algorithm that just outputs ct′ = (C, ct1, . . . , ctt) and Dec be the
algorithm that decrypts ct1, . . . , ctt, applies C to the plaintexts and returns the result. To
rule out this kind of trivial construction (and some that are less trivial) we have to bound
the size of the ciphertexts Eval is allowed to output. In these notes, however, we use FHE as
a black-box so whether the correctness definition allows trivial constructions or not is not
particularly important.

Page 3

CS 2950-v (F’16) Encrypted Search Seny Kamara

The construction. Let FHE = (Gen, Enc, Eval, Dec) be a CPA-secure fully-homomorphic
encryption scheme. Then we can construct an ORAM as follows:
• Setup(1k, RAM): generate a key for the FHE scheme by computing K = FHE.Gen(1k)

and encrypt RAM as ct = FHE.EncK(RAM). Output (K, ORAM), where ORAM = ct.

• Read
(
(K, i), ORAM

)
: the client encrypts its index i as cti = FHE.EncK(i) and sends cti

to the server. The server computes

ct′ = FHE.Eval(Cf , ct, cti),

where f is a function that takes as input an array and an index i and returns the ith
element of the array. The server returns ct′ to the client who decrypts it to recover
RAM[i].

• Write
(
(K, i, v), ORAM

)
: the client encrypts its index i as cti = FHE.EncK(i) and its

value as ctv = FHE.EncK(v) and sends them both to the server. The server computes

ct′ = FHE.Eval(Cg, ct, cti, ctv),

where g is a function that takes as input an array, an index i and a value v and returns
the same array with the ith element updated to v.

It follows by the CPA-security of FHE that ORAM reveals no information about RAM besides
its size to the server and that the Read and Write protocols reveal no information about the
index and values to the server.

Efficiency. The obvious downside of this FHE-based ORAM is efficiency. Currently,
homomorphic evaluation is still expensive but is improving very rapidly. Many breakthroughs
have happened in the past few years to decrease the cost of homomorphically evaluating a
circuit. For our purposes, however, these improvements are not enough because the Read and
Write protocols require O(N) work by the server. That is, to read even a single item from
ORAM the server has to (homomorphically) “touch” every item. Note that this is inherent in
how FHE works because it evaluates circuits.

That being said, it is important to realize that even though using FHE as a black-box for
this problem might not be efficient it does not mean that it could be effectively used as a
building block in a larger solution that is practical.

4 Oblivious RAM via Symmetric Encryption
Fortunately, we also know how to design ORAMs using standard encryption schemes and,
in particular, using symmetric encryption. ORAM is a very active area of research and
we now have many constructions, optimizations and even implementations. Here, we will
describe the simplest SKE-based construction known as the Square-Root solution. Let
SKE = (Gen, Enc, Dec) be a symmetric encryption scheme and let F be a pseudo-random
function that maps log N bits to 2 log N bits.

Page 4

CS 2950-v (F’16) Encrypted Search Seny Kamara

4.1 Setup
To setup the ORAM, the client generates two secret keys K1 and K2 for SKE and F ,
respectively. It then augments each item in RAM by appending its address and a random
tag to it. We will refer to the address embedded with the item as its virtual address. More
precisely, it creates a new array RAM2 such that for all 1 ≤ i ≤ N ,

RAM2[i] =
〈
RAM[i], i, tagi

〉
,

where 〈·, ·, ·〉 denotes concatenation and tagi = FK2(i). It then adds
√

N dummy items to
RAM2, i.e., it creates a new array RAM3 such that for all 1 ≤ i ≤ N , RAM3[i] = RAM2[i] and
such that for all N + 1 ≤ i ≤ N +

√
N ,

RAM3[i] =
〈
0,∞1, tagi

〉
,

where ∞1 is some number larger than N + 2
√

N . It then sorts RAM3 around according
to the tags. Notice that the effect of this sorting will be to permute RAM3 since the tags
are (pseudo-)random. It then encrypts each item in RAM3 using SKE. In other words, it
generates a new array RAM4 such that, for all 1 ≤ i ≤ N +

√
N ,

RAM4[i] = EncK1(RAM3[i]).
Finally, it appends

√
N elements to RAM4 each of which contains an SKE encryption of

0 under key K1. Needless to say, all the ciphertexts generated in this process need to be
of the same size so the items need to be padded appropriately. The result of this, i.e., the
combination of RAM4 and the encryptions of 0, is the oblivious array ORAM which is sent to
the server. It will be useful for us to distinguish between the two parts of ORAM so we’ll
refer to the second part (i.e., the encryptions of 0) as the cache.

4.2 Read & Write
Now we will see how to read and write to ORAM obliviously, i.e., without the server knowing
which array locations we are accessing. First we have to define two basic operations: Get and
Put.

The Get operation takes an index 1 ≤ i ≤ N as input and works as follows:

1. the client requests from the server the item at virtual addres i in ORAM. To do this
it first re-generates the item’s tag tagi = FK2(i). It then does an (interactive) binary
search to find the item with virtual address i. In other words, it asks the server for the
item stored at location N/2 (let ’s assume N is even) decrypts it and compares its tag
with tagi. If tagi is less than the tag of item ORAM[N/2], then it asks for the item at
location N/4; else it asks for the item at location 3N/4; and so on.

2. it decrypts the item with tagi to recover RAM[i],

Page 5

CS 2950-v (F’16) Encrypted Search Seny Kamara

3. it then re-encrypts RAM[i] (using new randomness) and asks the server to store it back
where it was found.

The Put operation takes an index 1 ≤ i ≤ N and a value v as inputs and works as follows:

1. the client requests from the server the item with tagi (as above);

2. it then encrypts v and asks the server to store it back at the location where the previous
item (i.e., the one with tagi) was found.

Notice that from the server’s point of view the two operations look the same. In other words,
the server cannot tell whether the client is executing a Get or a Put operation since in either
case all it sees is a binary search followed by a request to store a new ciphertext at the same
location.

One-time obliviousness. Now suppose for a second that ORAM only consisted of RAM4.
If that were the case then ORAM would be one-time oblivious in the sense that we could
use it to read or write only once by executing either a Get or a Put operation. Why is this
the case? Remember that we randomly permuted and encrypted our array before sending it
to the server. This means that asking the server for the item at location j reveals nothing
about that item’s real/virtual address i. Furthermore, the binary search we do when looking
for the item with virtual address i depends only tagi which is random and therefore reveals
nothing about i. Of course, this only works once because if we want to access i again then
we’ll ask the server for the same location which immediately tells it something: namely, that
we asked for the same thing twice.

Multi-time obliviousness. So how do we hide the fact that we’re asking for the same
thing twice? This is really the core difficulty in designing ORAMs and this is where the cache
will come in. We start by initializing a counter ctr = 1. To read location i we execute the
following Read protocol:

1. We Get the entire cache. In other words, we execute Get(j) for all

N +
√

N + 1 ≤ j ≤ N + 2 ·
√

N ;

2. If any of the Get operations above result in the ith item (i.e., if we get an item with
virtual address i) then we Get a dummy item by executing Get(N + ctr). Also, we set z
to be the item we found in the cache and ` to be the cache location where we found it.

3. If none of the Get operations above resulted in the ith item, we execute a modified
Get(i) and set z to be the result and ` = N +

√
N + ctr. The modified version of Get(i)

works like a regular Get(i) operation, except that we update the item’s virtual address
to ∞2, where ∞2 >∞1. In other words, we store an encryption of 〈RAM[i],∞2, tagi〉
back where we found it. This will be useful for us later when we’ll need to re-structure
ORAM.

Page 6

CS 2950-v (F’16) Encrypted Search Seny Kamara

4. We then process the entire cache again but slightly differently than before (we do this
so that we can store the item in the cache for future accesses). In particular, for all
N +

√
N + 1 ≤ j ≤ N + 2 ·

√
N ,

• if j 6= ` we execute a Get(j) operation
• if j = ` we execute a Put(j, z).

5. We increase ctr by 1.

The first thing to notice is that this is correct in the sense that by executing this operation
the client will indeed receive RAM[i]. The more interesting question, however, is why is this
oblivious and, in particular, why is this more than one-time oblivious? To see why this is
oblivious it helps to think of things from the server’s perspective and see why its view of the
execution is independent of (i.e., not affected by) i.

First, no matter what i the client is looking for, it always Gets the entire cache so Step 1
reveals no information about i to the server. We then have two possible cases:

1. If the ith item is in the cache (at location `), we Get a dummy item; and Put the ith
item at location ` while we re-process the entire cache (in Step 4).

2. If the ith item is not in the cache, we Get the ith item and Put it in the next open
location in the cache while we re-process the entire cache.

In either case, the server sees the same thing: a Get for an item at some location between
1 and N +

√
N and a sequence of Get/Put operations for all addresses in the cache, i.e.,

between N +
√

N and N + 2 ·
√

N . Recall that the server cannot distinguish between Get
and Put operations.

Write. The Write protocol is similar to the Read protocol. The only difference is that in
Step 2, we set z = v if the ith item is in the cache and in Step 3 we execute Put(i, v) and set
z = v. Notice, however, that the Write protocol can introduce inconsistencies between the
cache and RAM4. More precisely, if the item has been accessed before (say, due to a Read
operation), then a Write operation will update the cache but not the item in RAM4. This is
OK, however, as it will be taken care of in the re-structuring step, which we’ll describe below.

4.3 Restructuring
So we can now read and write to the array without revealing which location we are accessing
and we can do this more than once. The problem, however, is that we can do it at most

√
N

times because after that the cache is full. To go beyond
√

N , we need to re-structure the
ORAM; that is, we have to re-encrypt and re-permute all the items in ORAM and reset our
counter ctr to 1. If the client has enough space to store ORAM locally then it can just to
download it, decrypt it to recover RAM, update RAM (in case there were any inconsistencies)
and setup a new ORAM from scratch.

Page 7

CS 2950-v (F’16) Encrypted Search Seny Kamara

If, on the other hand, the client does not have enough local storage then the problem
is much harder. Here we will assume the client only has O(1) storage so it can store, e.g.,
only two items. Recall that in order to re-structure ORAM, the client needs to re-permute
RAM4 and re-encrypt everything obliviously while using only O(1) space. Also, the client
needs to do this in a way that updates the elements that are in an inconsistent state due
to Write operations. The key to doing all this will be to figure out a way for the client to
sort elements obliviously while using O(1) space. Once we can obliviously sort, the rest will
follow relatively easily.

Sorting networks. To do this, we use a sorting network which is a circuit composed of
comparison gates. These gates take two inputs x and y and output the pair (x, y) if x ≤λ y
and the pair (y, x) if x ≥ y. Given a set of input values, the sorting network outputs the items
in sorted order. Sorting networks have two interesting properties: (1) the comparisons they
perform are independent of the input sequence; and (2) each gate in the network is a binary
operation (i.e., takes only two inputs). Of course, there is an overhead to sorting obviously
so Batcher’s network requires O(N log2 N) work as opposed to the traditional O(N log N)
for sorting.

Oblivious sort. To obliviously sort a set of ciphertexts (c1, . . . , cN+2
√
N) stored at the server,

the client will start executing the sorting network and whenever it reaches a comparison gate
between the ith and jth item, it will just request the ith and jth ciphertexts, decrypt them,
compare them, and store them back re-encrypted in the appropriate order. Note that by
the first property above, the client’s access pattern reveals nothing to the server; and by the
second property the client will never need to store more than two items at the same time.

Restructuring. Now that we can sort obliviously, let’s see how to re-structure the ORAM.
We will do it in two phases. In the first phase, we sort all the items in ORAM according to their
virtual addresses. This is how we will get rid of inconsistencies. Remember that the items in
RAM3 are augmented to have the form 〈RAM[i], i, tagi〉 for real items and 〈0,∞1, tagi〉 for
dummy items. It follows that all items in the cache have the first form since they are either
copies or updates of real items put there during Read and Write operations.

So we just execute the sorting network and, for each comparison gate, retrieve the
appropriate items, decrypt them, compare their virtual addresses and return them re-
encrypted in the appropriate order. The result of this process is that ORAM will now have
the following form:

1. the first N items will consist of the most recent versions of the real items, i.e., all the
items with virtual addresses other than ∞1 and ∞2;

2. the next
√

N items will consist of dummy items, i.e., all items with virtual address ∞1.

3. the final
√

N items will consist of the old/inconsistent versions of the real items, i.e., all
items with virtual address ∞2 (remember that in Step 3 of Read and Write we executed
a modified Get(i) that updated the item’s virtual address to ∞2).

Page 8

CS 2950-v (F’16) Encrypted Search Seny Kamara

In the second phase, we randomly permute and re-encrypt the first N +
√

N items of ORAM.
We first choose a new key K3 for F . We then access each item from location 1 to N +

√
N and

update their tags to FK3(i). Once we have updated the tags, we sort all the items according
to their tags. The result will be a new random permutation of items. Note that we don’t
technically have to do this in two passes; but it’s easier to explain this way. At this point, we
are done. ORAM is restructured and we access it again safely.

Efficiency. So what is the efficiency of the Square-Root solution? Setup is O(N log2 N):
O(N) to construct the real, dummy and cache items and O(N log2 N) to permute everything
through sorting. Each access operation (i.e., Read or Write) is O(

√
N): O(

√
N) total get/put

operations to get the cache twice and O(log N) for each get/put operation due to binary search.
Restructuring is O(N log2 N): O(N log2 N) to sort by virtual address and O(N log2 N) to
sort by tag. Restructuring, however, only occurs once every

√
N accesses. Because of this, we

usually average the cost of re-structuring over the number read/write operations supported
to give an amortized access cost. In our case, the amortized access cost is then

O

(√
N + N log2 N√

N

)

which is O(
√

N · log2 N).

5 ORAM-Based Encrypted Search
Now that we can build an ORAM, we will see how to use it for encrypted search. There are
at least two ways to do this.

A naive approach. The first is for the client to just dump all the n documents D =
(D1, . . . , Dn) in an array RAM, compute (K, ORAM)← Setup(1k, RAM) and send ORAM to
the server. To search, the client simulates a sequential scan via the Read protocol; that is, it
replaces every read operation of the scan with an execution of the Read protocol. To update
the documents the client can similarly simulate an update algorithm using the Write protocol.

If we store D into an ORAM with block size B, this yields a solution with

O

(
|D|
B
· T

(
|D|
B

))

block accesses for each search operation, where T(N) is the Read protocol’s overhead (e.g.,
T(N) = O(

√
N) for the Square-Root solution and T(N) = O(log3(N)) for the Hierarchical

solution). Clearly, such an approach would be completely impractical for all but very small
datasets.

Page 9

CS 2950-v (F’16) Encrypted Search Seny Kamara

A better approach. A better idea is for the client to build two arrays RAM1 and RAM2.
1 In RAM1 it stores a data structure that supports fast searches on the document collection
(e.g., an inverted index) and in RAM2 it stores the documents D themselves. It then builds
and sends ORAM1 ← Setup(1k, RAM1) and ORAM2 ← Setup(1k, RAM2) to the server. To
search, the client simulates a query to the data structure in ORAM1 via the Read protocol
(i.e., it replaces each read operation in the data structure’s query algorithm with an execution
of Read). From this, the client recovers the identifiers of the documents that contain the
keyword and with this information it reads those documents from ORAM2.

Care must be taken, however, in the choice of the underlying search structure. In particular,
its search complexity must be input-independent otherwise the server can learn information
from observing the number of memory accesses made to ORAM1. So, for example, to use
an optimal-time structure like an inverted index, the client has to pad the lists to be of the
same size. A similar problem occurs for ORAM2 where the client must always retrieve a fixed
number of documents and a fixed number of blocks per document to hide the length of a
document.

So let DB be the appropriately padded inverted index generated from D. Assuming each
node in the lists stores only a document ID, this approach yields a solution with

O

(
1

B1
·max

w

{
#DB(w)

}
· log n · T1

(
|DB|
B1

))

block accesses to query ORAM1 and

O

(
1

B2
·max
w∈W

{
#DB(w)

}
·max

i

{
|Di|

}
· T2

(
|D|
B2

))

block accesses to retrieve the documents from ORAM2, where T1(N) and T2(N) are the access
overheads of ORAM1 and ORAM2 and B1 and B2 are their block sizes. Further assuming
that |DB| ≈ |D| (which is reasonable in practice) and that the two ORAMs have the same
overhead T (N), the two-RAM solution is more efficient than the naive solution whenever

max
w∈W

{
#DB(w)

}
·
(

log n

B1
+ maxi |Di|

B2

)
� |D|

B
,

which is very likely to occur in practice. Focusing then on the two-RAM solution, we note
that by setting

B1 = max
w∈W

{
#DB(w)

}
· log n,

the block access cost of a single query to ORAM1 is roughly O(T1(#W)) since |DB|/B1 ≈ #W.
1Of course, the following could be done using a single RAM, but splitting into two makes things easier to

explain.

Page 10

CS 2950-v (F’16) Encrypted Search Seny Kamara

A concrete example. As a concrete example, we take the Enron dataset which includes
1.5× 106 documents (emails and attachments). The full index of the dataset has 1.2× 106

distinct keywords with a selectivity (i.e., the number of documents that contain the keyword)
that ranges from 3 to 700× 103. So for this dataset we have n = 1.5× 106, #W = 1.2× 106

and maxw∈W #DB(w) = 700× 103.
Assuming we use an ORAM with B1 = 4KB blocks, we can pack 32 × 103/ log(1.5 ×

106) = 1560 document identifiers in a block. So each padded list will have block-length
(700× 103)/1560 = 448. This results in ORAM1 being of size #W · 448 = (1.2× 106) · 448 ≈
537× 106 blocks, or 2.15TB. We note that an SSE index for the same dataset is on the order
of 12GB according to [?]. Also, note that since the block-size of DB is about 537× 106, the
multiplicative factor in the search complexity of ORAM1 is approximately 134 for ORAM
solutions with log2(N)/ log log(N) overhead and 8122 for ORAM solutions with log3(N)
overhead.

Assuming a block size of B1 = 700 × 103 · log(1.5 × 106) ≈ 10 × 106 bits or 1.25MB
the number of block access per query to ORAM1 will be on the order of T(1.2× 106) which
is approximately 74 for ORAM solutions with log2(N)/ log log(N) overhead and 2742 for
ORAM solutions with log3(N) overhead.

Page 11

	Overview
	Oblivious RAM
	Oblivious RAM via FHE
	Oblivious RAM via Symmetric Encryption
	Setup
	Read & Write
	Restructuring

	ORAM-Based Encrypted Search

