
CS 2950-v (F’16) Encrypted Search Seny Kamara

Lectures 4+5: The (In)Security of
Encrypted Search

Contents

1 Overview 1

2 Data Structures 2

3 Syntax 3

4 Security 4
4.1 Formalizing Leaky Primitives . 5

1 Overview
In the first lecture, we went over—at a high level—the different ways to search on encrypted
data. We also pointed out that each solution achieved a different trade-off between efficiency,
security and expressiveness. In the second lecture, we argued that the security of a cryptosys-
tem should be analyzed in the provable/reductionist security paradigm. While this paradigm
has its limitations, it is the best way we have to reason about the security of cryptosystems
and to debug our algorithms.

Here, we apply the reductionist security paradigm to the problem of encrypted search.
We give syntax and security definitions that capture what encrypted search solutions look like
and the security properties they should achieve. These definitions will make our discussions
in future lectures more precise and allow us to compare and contrast the algorithms we will
study.

The meaning of search. Before we can properly formalize encrypted search we have to
pin down what we mean by search as it means different things depending on the context.
In search algorithms, we consider two complexity regimes, linear and sub-linear, and two
algorithmic paradigms, structured and unstructured. In the linear regime we allow algorithms
that run in O(n) time, where n is the length of the data being searched. In the sub-linear
regime we only allow algorithms that run in o(n) time. In the structured paradigm, we allow
a O(n) setup phase to pre-process the data and a query phase which is typically sub-linear.
In the unstructured paradigm, we do not allow any pre-processing.

For the most part, we will ignore linear search solutions. Structured linear solutions are of
no interest and unstructured linear solutions essentially correspond to sequential scan which
is prohibitive for the kinds of datasets we are interested in (on the order of GBs or larger). We
note that structured sub-linear and unstructured sub-linear algorithms roughly correspond

Page 1

CS 2950-v (F’16) Encrypted Search Seny Kamara

to the fields of data structures and sub-linear algorithms [1], respectively. The former achieve
sub-linearity at the cost of additional storage (needed for the structure) whereas the latter
achieve sub-linearity at the cost of errors.

For search applications (e.g., search engines or databases) the structured sub-linear
approach is preferred because errors are usually not permitted; unlike, for example, data
mining, machine learning and optimization. In addition, storage is relatively cheap so the
additional overhead incurred is not prohibitive in practice.

Structured encryption. Structured sub-linear search on encrypted data is formally cap-
tured by the notion of structured encryption (StE) which we define below. Informally, a StE
scheme encrypts a data structure in such a way that it can be queried without revealing any
useful information about the data or the query. As we will see throughout the course, StE
can be constructed using a variety of cryptographic primitives. Moreover, we will also see
that StE is a generalization of several other cryptographic primitives.

2 Data Structures
Since data structures are such an important component of search algorithms, we review some
basic definitions.

Abstract data types. An abstract data type is a collection of objects together with a set
of operations defined on those objects. Examples include sets, dictionaries (also known as
key-value stores or associative arrays) and graphs. The operations associated with a data
type fall into one of two categories: query operations, which return information about the
objects; and update operations, which modify the objects. If the data type supports only
query operations it is static, otherwise it is dynamic. For simplicity we define data types as
having a single operation but note that the definitions can be extended to capture multiple
operations in the natural way.

Data structures. A data structure for type a T is a concrete representation of type-T
objects in some computational model. For us, the underlying model will always the random
access machine (RAM) model of computation. The structure used to represent a type-T
object is usually optimized to support the queries associated with T as efficiently as possible;
that is, one designs the structure in such a way that there is an efficient algorithm to evaluate
these queries. For data types that support multiple queries, the structure is usually designed
to efficiently support as many of T ’s queries as possible. As a concrete example, the dictionary
data type can be represented using various data structures depending on which queries one
wants to support efficiently: hash tables support Get and Put in expected O(1) time whereas
balanced binary search trees support both operations in worst-case log(n) time. We model
a type-T data structure as a collection of three ensembles S = {Sk}k∈N, Q = {Qk}k∈N and
A = {Ak}k∈N. If a type-T structure DS supports only a single query, we often write DS(q)
to denote the answer a ∈ Ak that results from querying DS on q ∈ Qk.

Page 2

CS 2950-v (F’16) Encrypted Search Seny Kamara

Basic data types. We will make use of several basic data types including arrays or random
access memory (RAM), dictionaries and multi-maps. An array RAM of capacity n stores n
items at locations 1 through n and supports read and write operations in O(1) time. We write
v := RAM[i] to denote reading the item at location i and RAM[i] := v the operation of storing
an item at location i. A dictionary DX of capacity n is a collection of n label/value pairs
{(`i, vi)}i≤n and supports get and put operations. We write vi ← DX[`i] to denote getting
the value associated with label `i and DX[`i] := vi to denote the operation of associating the
value vi in DX with label `i. A multi-map of capacity n is a collection of n label/tuple pairs
{(`i, Vi)i}i≤n that supports get and put operations. Like dictionaries, we write Vi := MM[`i]
to denote getting the tuple associated with label `i and MM[`i] := Vi to denote the association
of the tuple Vi with label `i. Multi-maps are the data type instantiated by inverted indices.
In the encrypted search literature multi-maps are sometimes referred to as t-sets, tuple-sets
and even as databases.

Notational abuse. As is usually done throughout computer science, we use notation that
sometimes blurs the distinction between data types and data structures and trust that the
reader can distinguish between the two based on context.

3 Syntax
As discussed above, a StE scheme encrypts a data structure in such a way that it can be
privately queried. We now describe the syntax of a StE scheme.

Definition 3.1 (Structured encryption (response revealing)). A single-round response-
revealing structured encryption scheme STE = (Setup,Token,Query) for structures of type T
consists of three polynomial-time algorithms that work as follows:

• (K,EDS) ← Setup(1k,DS): is a probabilistic algorithm that takes as input a security
parameter 1k and a structure DS ∈ Sk and outputs a secret key K and an encrypted
structure EDS.

• tk← Token(K, q): is a (possibly) probabilistic algorithm that takes as input a secret key
K and a query q ∈ Qk and returns a token tk.

• a ← Query(EDS, tk): is a deterministic algorithm that takes as input an encrypted
structure EDS and a token tk and outputs an answer a ∈ Ak.

We say that STE is correct if for all k ∈ N, for all DS ∈ Sk, for all (K,EDS) output by
Setup(1k,DS) and all sequences of m = poly(k) queries q1, . . . , qm, for all tokens tki output
by Token(K, qi), Query(K, tki) = DS(q).

StE schemes are typically used as follows. In the setup phase, the client computes
(K,EDS)← Setup(1k,DS), sends EDS to an untrusted server and keeps K private. During
the query phase, the client computes and sends tk← Token(K, q) to the server who in turn
computes a← Query(EDS, tk).

Page 3

CS 2950-v (F’16) Encrypted Search Seny Kamara

Response-hiding StE. We can define many variants of StE including interactive StE
where the query phase requires multiple rounds of interaction; and response-hiding StE
where the Query algorithm does not return answers in plaintext. We describe response-hiding
schemes because they will be useful in future Lectures.

Definition 3.2 (Structured encryption (response-hiding)). A single-round response-hiding
structured encryption scheme STE = (Setup,Token,Query,Resolve) for structures of type T
consists of four polynomial-time algorithms such that Setup and Token are as in Definition
3.1 and that Query and Resolve works as follows:

• c ← Query(EDS, tk): is a deterministic algorithm that takes as input an encrypted
structure EDS and a token tk and outputs a message c.

• r ← Resolve(K, c): is a deterministic algorithm that takes as input a secret key K and
a message c and outputs an answer a ∈ Ak.

We say that STE is correct if for all k ∈ N, for all DS ∈ Sk, for all (K,EDS) output by
Setup(1k,DS) and all sequences of m = poly(k) queries q1, . . . , qm, for all tokens tki output
by Token(K, qi), for all messages ci output by Query(EDS, tki), Resolve(K, ci) = DS(q).

4 Security
Intuitively, we would like an StE scheme to guarantee that

the encrypted structure reveals no useful information about the underlying structure
and that the tokens reveal no useful information about the underlying query.

Four our purposes, we will consider “non-useful” any information that can be derived from
the security parameter k. For example, this would include information about the structure
or query spaces. Unfortunately, such a security notion seems hard to achieve efficiently so
we would like to weaken it to allow for trade-offs. How much exactly we should weaken the
definition depends on which trade-offs we are willing to make. At this point, we will not
consider the question of which trade-offs are reasonable and which are not (that will come
later). What we want is a definition that allows us to study notions of security that are “less
than perfect”. There are at least two approaches one could take to study weaker notions of
security.

Usage-based. The first is to use a standard notion of security but make some assumption
about how the cryptosystem will be used. For example, we saw in Lecture 2 that deterministic
encryption (DtE) schemes cannot be CPA-secure. But what if we still want to study their
security? One approach is to keep the notion of CPA-security as our target definition but
study what happens when a DtE scheme is used on messages that come from high-min-entropy
distributions. 1 Under this assumption, we can show that a DtE scheme is CPA-secure so

1Messages from high min-entropy distributions are, roughly, messages that are hard to guess.

Page 4

CS 2950-v (F’16) Encrypted Search Seny Kamara

this tells us something about its security. The limitation of this approach, however, is that it
does not tell us anything about the security of DtE when messages not from high-min-entropy
distributions and, unfortunately, this is the typical case.

Leakage-based. Another approach is to explicitly weaken the definition and try to un-
derstand the consequences. But how do we do this exactly? Let’s consider the example
of encryption. As we saw in the previous lecture, the notion of CPA-security provides the
following guarantee,

the ciphertext reveals no useful partial information about the plaintext, even if the
adversary has oracle access to an encryption oracle.

We also saw how to formalize this using both game-based and simulation-based definitions.
The latter formulation, in particular, required that whatever can be computed in ppt by
an adversary given the ciphertext can also be computed in ppt by a simulator without the
ciphertext.

To weaken this definition, we provide the simulator with some information about the
message. We refer to this information as leakage and capture it with a stateful function L(m)
of the message. Returning to our DtE example, we can define the leakage L on a tuple of
messages m = (m1, . . . ,mt) underlying a tuple of DtE ciphertexts ct = (ct1, . . . , ctt) as a
t× t matrix M such that M [i, j] = 1 if mi = mj and M [i, j] = 0 if mi 6= mj . As a result, the
definition now requires that whatever can be computed in ppt by an adversary given the
ciphertext can also be computed in ppt by a simulator that is given L(m) = M .

4.1 Formalizing Leaky Primitives
We now give a formal security definition for StE using the leakage-based approach. The
definition is simulation-based and parameterized with leakage functions as described above.
It is possible to define an analogous game-based definition but, unlike standard encryption,
we do not know if the two notions are equivalent.

We give two definitions of security for StE. Both Definitions have a similar structure and
are based on two experiments: a Real one and an Ideal one. In the Real experiment, an
adversary interacts with the StE scheme. It generates a structure and various queries and
receives an encrypted structure and tokens. In the Ideal experiment, on the other hand, the
adversary interacts with a simulator. The adversary still generates a structure and queries
but it receives a simulated encrypted structure and simulated tokens all generated by the
simulator who itself is only given the leakage of the structure and queries. The main difference
between the definitions is in how the adversary is allowed to choose its queries.

Non-adaptive security. The first definition is non-adaptive in the sense that the adversary
restricted in how it generates its queries. Intuitively, this definition guarantees that A will
not learn anything about the structure and queries beyond the leakages explicitly captured
by LS and LQ which are stateful leakage functions. We refer to the pair (LS,LQ) as a leakage
profile.

Page 5

CS 2950-v (F’16) Encrypted Search Seny Kamara

Definition 4.1 (Non-adaptive security). Let STE = (Setup,Token,Query) be a structured
encryption scheme for structures of type T and consider the following probabilistic experiments
where A is a stateful adversary, S is a stateful simulator, LS and LQ are stateful leakage
functions and z ∈ {0, 1}∗:

RealSTE,A(k): given z the adversary A outputs a structure DS and polynomially-many queries
(q1, . . . , qm). It then receives EDS and (tk1, . . . , tkm), where (K,EDS)← Setup(1k,DS)
and for all 1 ≤ i ≤ m, tki ← Token(K, qi). Finally, A outputs a bit b that is returned
by the experiment.

IdealSTE,A,S(k): given z the adversary A outputs a structure DS and polynomially-many
queries (q1, . . . , qm). Given z, LS(DS) and (λ1, . . . , λm), where λi ← LQ(DS, qi), the
simulator S gives A an encrypted data structure EDS and a tuple of tokens (tk1, . . . , tkm).
Finally, A outputs a bit b that is returned by the experiment.

We say that STE is non-adaptively (LS,LQ)-secure if there exists a ppt simulator S such
that for all ppt adversaries A and all z ∈ {0, 1}∗,

|Pr [RealSTE,A(k) = 1]− Pr [IdealSTE,A,S(k) = 1]| ≤ negl(k).

Note that in the experiments the adversary outputs its structure DS and queries (q1, . . . , qm)
before it sees the encrypted structure EDS and tokens (tk1, . . . , tkm). In particular, this means
that it cannot choose its queries as a function of the encrypted structure and the tokens.
What this means exactly is not completely clear and is reminiscent of the situation in secure
multi-party computation described at a high-level in the Damgard paper.

Adaptive security. In the second definition, we do not restrict how the adversary generates
its queries. It is allowed to choose them as a function, not only of previous queries and
responses, but also of the encrypted structure and tokens.

Definition 4.2 (Adaptive security). Let STE = (Setup,Token,Query) be a structured encryp-
tion scheme for type T and consider the following probabilistic experiments where A is a
stateful adversary, S is a stateful simulator, LS and LQ are leakage profiles and z ∈ {0, 1}∗:

RealSTE,A(k): given z the adversary A outputs a structure DS of type T and receives EDS
from the challenger, where (K,EDS)← Setup(1k,DS). The adversary then adaptively
chooses a polynomial number of queries q1, . . . , qm. For all i ∈ [m], the adversary
receives tki ← Token(K, qi). Finally, A outputs a bit b that is output by the experiment.

IdealSTE,A,S(k): given z the adversary A generates a structure DS of type T which it sends
to the challenger. Given z and leakage LS(DS) from the challenger, the simulator S
returns an encrypted data structure EDS to A. The adversary then adaptively chooses
a polynomial number of operations q1, . . . , qm. For all i ∈ [m], the simulator receives
query leakage LQ(DS, qi) and returns a token tki to A. Finally, A outputs a bit b that
is output by the experiment.

Page 6

CS 2950-v (F’16) Encrypted Search Seny Kamara

We say that STE is adaptively (LS,LQ)-secure if there exists a ppt simulator such that for
all ppt adversaries A and all z ∈ {0, 1}∗,

|Pr [RealSTE,A(k) = 1]− Pr [IdealSTE,A,S(k) = 1]| ≤ negl(k).

Limitations. Note that these definitions do not tell us anything about what can happen as
a consequence of this leakage. In particular, this means that a scheme that is adaptively or
non-adaptively (LS,LQ)-secure for some leakage profile could be completely broken if one can
exploit the leakage effectively. What the definition does tell us, however, is that the construc-
tion does not have any design flaws beyond the leakage (and any underlying computational
assumptions). In spirit, this is in line with the traditional provable/reductionist security
paradigm where we prove that a scheme is secure under some computational assumption.
The latter does not tell us whether a scheme is truly secure or not but it does “reduce the
attack surface” of the scheme by informing us that cryptanalytic effort can focus on the
underlying assumption and not the higher-level design. Similarly, these definitions tell us
that cryptanalytic effort should be focused on exploiting the leakage.

References
[1] Ronitt Rubinfeld. Sublinear time algorithms. See http://people.csail.mit.edu/

ronitt/sublinear.html.

Page 7

http://people.csail.mit.edu/ronitt/sublinear.html
http://people.csail.mit.edu/ronitt/sublinear.html

	Overview
	Data Structures
	Syntax
	Security
	Formalizing Leaky Primitives

