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ABSTRACT
The widespread appeal of MapReduce is due, in part, to its
simple programming model. Programmers provide only ap-
plication logic while the MapReduce framework handles the
logistics of data distribution and parallel task management.

We present the Continuous-MapReduce (C-MR) frame-
work which implements a modified MapReduce processing
model to continuously execute workflows of MapReduce jobs
on unbounded data streams. In keeping with the philoso-
phy of MapReduce, C-MR abstracts away the complexities
of parallel stream processing and workflow scheduling while
providing the simple and familiar MapReduce programming
interface with the addition of stream window semantics.

Modifying the MapReduce processing model allowed us
to: (1) maintain correct stream order and execution seman-
tics in the presence of parallel and asynchronous processing
elements; (2) implement an operator scheduler framework
to facilitate latency-oriented scheduling policies for execut-
ing complex workflows of MapReduce jobs; and (3) lever-
age much of the work that has gone into the last decade of
stream processing research including: pipelined parallelism,
incremental processing for both Map and Reduce operations,
minimizing redundant computations, sharing of sub-queries,
and adaptive query processing.

C-MR was developed for use on a multiprocessor architec-
ture, where we demonstrate its effectiveness at supporting
high-performance stream processing even in the presence of
load spikes and external workloads.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – query process-
ing, parallel databases

General Terms
Design, Performance, Experimentation
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Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MapReduce’12, June 18, 2012, Delft, The Netherlands.
Copyright 2012 ACM 978-1-4503-1343-8/12/06 ...$10.00.

1. INTRODUCTION
MapReduce [5] has become quite popular since its debut,

largely due to its simplistic programming model and auto-
matic handling of parallelization, scheduling, and communi-
cation for distributed batch processing. Hiding these intrica-
cies lowers the barrier to entry for application programmers
to begin large-scale data processing.

Recently, there has also been interest in leveraging MapRe-
duce to continuously process unbounded streams of data [4,
6, 8]. Such streams include event logs, click streams, im-
age/video streams, network traffic, and various other data
feeds. Stream applications are often time-critical such that
their utility is proportional to the promptness of the results
(e.g., network intrusion or fraud detection) thus latency min-
imization is an objective of many stream applications.

Enabling stream support for MapReduce jobs is simple
for Map operations (which will continuously consume and
emit data) but requires the addition of the window stream
construct for Reduce operators as they expect to process a
finite collection of data. Windows are temporal subdivisions
of a stream described by their size (the amount of the stream
they span) and their slide (the interval between windows)
to provide a basis for analyzing data across the dimension
of time (eg., determining the frequency of a trending web-
search over the past hour at 5-minute intervals).

While continuously executing a single MapReduce job can
done with relative ease (by invoking a MapReduce job re-
peatedly over newly arriving windows), the challenge is achiev-
ing low-latencies when continuously scheduling complex work-
flows of MapReduce jobs. Batch-oriented workflows of MapRe-
duce jobs can be executed in a serialized and bottom-up
manner (from inputs to outputs), but continuously execut-
ing workflows requires a great deal of coordination between
jobs as data will never stop arriving and results must be
produced continuously. The continuous scheduling of such
complex workflows has not been previously addressed by
continuous MapReduce frameworks.

We developed the Continuous-MapReduce framework (C-
MR), for use on multiprocessor architectures, to address
these needs while leveraging the benefits of both MapReduce
and data stream management systems (DSMS). C-MR uses
the simplicity and flexibility of the MapReduce program-
ming model and adapts the MapReduce processing model
to define and execute complex stream workflows. We also
leverage principles common to existing DSMSs [2] to utilize
latency- and resource-aware operator scheduling policies, in-
cremental processing for Map and Reduce operators, and
stream sharing for common sub-workflows.
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1.1 Related Work
The Hadoop Online Prototype [4] (HOP) supports stream

processing for a single MapReduce job by runningMap threads
and Reduce threads continuously with data pipelined be-
tween them. HOP supports only primitive, non-overlapping
windows constructed from each node’s local wall-clock time
and can not guarantee stream order preservation.

In-situ MapReduce (iMR) [8] uses the MapReduce pro-
gramming interface to deploy a single MapReduce job onto
an existing DSMS where the inputs are read only from disk.
The DSMS allows for count- or time-based sliding windows,
pipelining between Map and Reduce operations, and in-
network, multi-level aggregation trees for Reduce operations.

IBM’s Deduce [6] modularizes the functionality of MapRe-
duce into an operator within a DSMS. This operator con-
sumes a delimited list of files/directories (each tuple likened
to a window definition) to invoke MapReduce on. There-
fore, The stream is a layer of indirection to execute MapRe-
duce jobs where the scheduling of resources for the batch
and stream processing workloads are separate. Also, the
burden of window management is placed on the application
developer to insert window definitions into the stream and
removes the possibility for well known stream processing op-
timizations such as incremental processing and the reduction
of redundant computations in overlapping windows.

1.2 Contributions
In contrast to such previous work, we focused on creating

a continuous MapReduce framework suitable for develop-
ing real-world stream applications which have low-latency
objectives, stream integrity requirements, and are generally
represented as workflows of operators.

In summary, we make the following contributions:

• Presenting the C-MR framework and program-
ming interface for creating and executing complex
workflows of continuousMapReduce jobs on unbounded
data streams.

• Automatic stream order preservation and win-
dow management in the presence of parallel and
asynchronous stream processors.

• A workflow-wide operator scheduling framework
which supports the progressive transition between schedul-
ing policies (based on resource-availability) to meet ap-
plication objectives.

• The application of classic query optimizations
to MapReduce workflows, including sub-query shar-
ing, incremental sub-window processing, and adaptive
query processing.

2. C-MR PROGRAMMING INTERFACE
In defining the C-MR programming interface, we made a

conscious effort to mimic the original MapReduce interface
so that porting applications between frameworks would be
trivial. Only minor interface differences are present and ap-
plication logic need not be modified. Our framework is writ-
ten in C++ and supports sliding window definitions, con-
nections to input/output streams, the creation of complex
workflows of MapReduce jobs, and the sharing of common

Figure 1: An example C-MR workflow.

sub-workflows. An example workflow of continuous MapRe-
duce jobs, as specified by the C-MR programming interface,
might look like the one seen in Figure 1.

Like batch-orientedMapReduce jobs, the continuousMapRe-
duce jobs in C-MR are defined by a Map operation and a
Reduce operation which the application programmer speci-
fies. Similarly to Google’s MapReduce [5], classes deriving
from Map and Reduce superclasses implement correspond-
ing map and reduce functions to facilitate application logic.
These functions may then produce results using the provided
emit function. The function signatures for the MapReduce
interface are defined in Table 1.

void map(
void* key, int keySize,
void* val, int valSize,
timeval timestamp);

void reduce(
void* key, int keySize,
vector<void*> val, vector<int> valSize,
timeval timestamp);

void emit(
void* key, int keySize,
void* val, int valSize,
timeval timestamp);

Table 1: MapReduce interface function prototypes

For a MapReduce job to continuously process data and
produce results, it must be attached to input and output
streams. The input and output streams of the workflow
must also be defined by the application programmer to in-
sert data into the workflow and to make use of the results.
These streams are represented by user-defined functions. In-
put streams are associated with a file descriptor (e.g., stan-
dard input, TCP socket connection, opened file) and the
input function will continually fetch key/value information
from the stream and return the results (encapsulated into
the Data format) to the workflow. Stream output functions
will continually receive and handle Data as specified by the
application programmer. Examples of these function for-
mats can be found in Table 2.

Data* myStreamInputFunc(FILE* inStream) { . . . }
void myStreamOutputFunc(Data* data) { . . . }

Table 2: Stream input/output function formats

To create complex workflows of continuous MapReduce
jobs, we define a Query for which we add inputs, outputs,
and intermediate MapReduce operations. Each intermedi-
ate operator and output takes a unique identifier to direct
data to them. Similarly, each input and intermediate oper-
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ator defines the number of downstream locations it will for-
ward data to and then lists those locations by their unique
identifiers. The addInput function takes an input stream,
input parsing function, and a list of attached operators as
input. The addMapReduce function defines a unique ID, in-
stances of a pair of Map and Reduce subclasses (contained
within a MapReduce object), an instance of the Window class
(specifying the window size and window slide of the Reduce
operation), and a list of downstream locations to deliver
data to. The addOutput function simply denotes its unique
ID and the user-defined function that will handle the re-
sults. These function signatures are specified in Table 3.
Similarly, C-MR supports the addition of individual Map or
Reduce operators to a Query but the addOperator function
signatures have been omitted due to space constraints.

void Query::addInput(
FILE* stream,
Data* (*inputFunc)(FILE*),
int numOpsConnected,
...);

void Query::addMapReduce(
uint16 t id,
MapReduce mapReduce,
Window window,
int numOutputs,
...);

void Query::addOutput(
uint16 t id,
void (*outputFunc)(Data*));

Table 3: Workflow creation interface function prototypes

A standard MapReduce job consumes a set of input key/value
pairs and produces a set of output key/value pairs. The in-
termediate data produced by Map and consumed by Reduce
are a set of keys with corresponding lists of values. Since the
input and output of the MapReduce job can also be repre-
sented in this way, we define the input and output schema
of each workflow operator in C-MR to similarly consume
and produce a set of keys with corresponding lists of val-
ues. Therefore, the output of any MapReduce job can be
sent to any other MapReduce job with the impetus on the
programmer to process the data accordingly.

3. C-MR ARCHITECTURE
C-MR allows for continuous execution of complex MapRe-

duce workflows on a multi-processor architecture. We define
each independent processing element on a computer (i.e.,
processor, core) to be a computing node capable of execut-
ing any defined Map or Reduce operation.

C-MR computing nodes have a different execution strat-
egy than is seen in MapReduce. Traditionally, computing
nodes receive a set of Map or Reduce tasks and each node
must wait for all other nodes to complete their tasks be-
fore being allocated additional tasks. C-MR uses pull-based
data acquisition allowing computing nodes to execute any
Map or Reduce workload as they are able. Thus, strag-
gling nodes will not hinder the progress of the other nodes if
there is data available to process elsewhere in the workflow.
Nodes are instead free to fetch data from the shared mem-
ory buffers and can do so at their respective rates (given the

C-MR Instance

Host

Node n

Node 2

Node 1

....

Workflow Buffer

stream
inputs

workflow
outputs

network
socket

disk

punctuation buffer

data buffer

Scheduler

Figure 2: The host invokes a node thread for each local
processor/core and then manages the workflow inputs and
outputs while the nodes asynchronously execute data from
the workflow buffer as directed by the scheduler.

possibilities of external workloads). We have outlined the
physical architecture of our system in Figure 2 and describe
its components below.

Host Process. A computer running an instance of C-MR
will launch a C-MR Host process. This process is responsi-
ble for determining the number of available processors/cores
on the computer and launching computing node threads for
those we elect to use. The Host will then instantiate the
workflow operators – specified by the application program-
mer – from which nodes will find code to process data ac-
cording to the application. With the workflow instantiated
as a directed acyclic graph of Map and Reduce operations,
the Host will attach input streams to the workflow.

Workflow Buffer. Intermediate data in the workflow
are stored in a shared-memory staging area, known as the
Workflow Buffer. It is here that data are materialized into
windows and/or wait to be consumed by computing nodes.
To ensure that the temporally aware Reduce operators con-
sume an ordered stream, we collect and sort the data here
prior to window materialization.

To maintain a sorted stream as we materialize windows for
Reduce operations, we insert punctuations [10] into the in-
termediate workflow buffers. The punctuations denote win-
dow boundaries within the stream and are inserted at inter-
vals corresponding to a window’s slide value and at a loca-
tion where the stream is already ordered (e.g., at the input
to the workflow or at an upstream sorting point). When a
node fetches a punctuation from the stream, we replicate the
punctuation and issues a copy to each node. Nodes will con-
tinue processing their data and pass any replicas they find
downstream. Once all replicas are received downstream at
the Workflow Buffer, we have the guarantee that all data
relevant to the applicable window has arrived and may be
materialized. We elaborate on this procedure in Section 4.1.

Scheduler. A Scheduler routine acts as the interface
between Nodes and the Workflow Buffer when a Node re-
quests data to process. The Scheduler may use any opera-
tor scheduling technique, such as those defined in Sections
4.2 and 4.3, to determine which data from the Workflow

Buffer a Node should process next.
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Additionally, the Scheduler moderates the volume of data
that a Node consumes on each request. In this way we batch
a set of data for a specific operator that the Node can pro-
cess in sequence. This assists Nodes in minimizing context
switches to improve cache utilization. We empirically found
a batch size that we’ve applied to all intermediate streams
in the workflow. We hope to, in the future, automatically
derive appropriate batch sizes for stream segments, which
may vary over time, but such an optimization is currently
beyond the scope of this paper.

Generic Computing Nodes. The Host launches a Node
thread for each CPU core on the computer that is “generic”
in that it is capable of processing data on behalf of any work-
flow operator. Each thread is confined to run on its own core
via the Linux sched_setaffinity function to prevent the
operating system from scheduling Node threads on the same
computing resource. Node threads will continually attempt
to fetch data to process from the Workflow Buffer as di-
rected by the Scheduler. When data are available, they will
be processed with respect to their corresponding operations
with the results forwarded downstream. A Node will give
priority to handling replicated punctuations as they arrive
and push them back into the Workflow Buffer to encourage
the materialization of downstream windows and thereby free
up additional data to be processed.

4. IMPLEMENTATION DETAILS
With the C-MR architecture in place, we implemented

procedures to facilitate stream ordering with window man-
agement and resource-aware operator scheduling for work-
flows of MapReduce operators.

4.1 Stream and Window Management
Windows, by definition, consist of temporally contiguous

data and can therefore only be formed onto sorted streams.
Streams that are delimited by data-parallel operations pose
a complication because the merged output streams are not
guaranteed to retain their original orderings. We address
this problem by replicating window-bounding punctuations
[10] once they are retrieved by a node from an operator’s
input buffer. A replica is sent to each of the active com-
puting nodes to maintain the property that the window is
bounded on each parallel stream. Once the nodes have re-
turned all replicas to the merged output stream, which suf-
fices to bound the window within the merged stream, we can
materialize the window with its relevant data so that it can
be processed.

An illustration of this entire process is depicted in Figure
3. Note that punctuations are only necessary for windowed
(Reduce) operators and that they can only be inserted into
sorted streams. Therefore, to allow for punctuation inser-
tion, we require application inputs to be sorted by either
system or application timestamp. When windows are ma-
terialized, and the stream is subsequently re-ordered, punc-
tuations can be inserted yet again to preserve order for a
downstream operator and so on for any additional down-
stream operators.

As an alternative to requiring sorted inputs, one could
employ a commonly used technique to tolerate tuple delays
until a threshold period of “slack” time has passed at which
point punctuation insertion would occur. However, this goal
is not pertinent to the focus of our paper.

4.2 Operator Scheduling
To determine which operator a node should execute, C-

MR uses a scheduling framework that enacts one of any num-
ber of scheduling policies that may be defined. The frame-
work was developed with the goal of being a “progressive”
scheduling framework, capable of executing multiple poli-
cies simultaneously and transitioning between those policies
based on resource availability. Our progressive scheduler,
which we expand on in section 4.3, draws from the following
basic pair of scheduling policies.

1. Oldest Data First (ODF): Schedule the operator
that has the data with the oldest timestamp.

2. Best Memory Trade-off (MEM): Schedule the op-
erator that is expected to free up the most amount of
memory.

These policies evaluate each operator, giving it a rank, to
determine which will be the best candidate for a node to
consume data from. Ranks are represented as a signed in-
teger with preference being given to operators with higher
ranks. Operator ranks are only compared to other ranks
assigned by the same policy. Ranks produced by differing
policies need not be comparable as these policies are exe-
cuted and compared in isolation of each other. Table 4 de-
fines the methods that the policies use to rank an individual
operator.

Ranking Expression applied to Operator
ODF -(timestamp of data at front of queue)

MEM avgInputSize-(selectivity)(avgOutputSize)
avgProcessingTime

Table 4: Operator scheduling policies

ODF uses the negated timestamp of the data at the front
of an operator’s queue, resulting in old data (with lower
timestamps) earning higher ranks. MEM observes the ex-
pected difference between the average size of an input tuple
and the average size of an output tuple for an operator with
consideration of the operator’s selectivity. This difference
(the expected decrease in memory usage) is then divided by
the processing time to assess the expected number of bytes
reduced per unit of time.

While these scheduling policies themselves are not partic-
ularly novel, our scheduling framework, in conjunction with
the use of generic processing nodes, allows for two substan-
tial advantages. The first advantage is that these nodes will
now have the opportunity to execute the operator with the
highest priority in the workflow. Thus, generic processing
nodes are able to, at each step, schedule the data that is
most beneficial to the current scheduling objective.

4.3 Progressive Scheduling
The second advantage afforded to us by our scheduling

framework is the ability to enact different scheduling policies
on each node’s request for data. The benefits for this were
not immediately obvious but, with further investigation, we
were able to develop hybrid scheduling strategies which uti-
lize multiple scheduling policies simultaneously. This can be
beneficial when certain precious system resources become
scarce. To this effect, we instantiated a hybrid, latency-
oriented and memory-aware scheduling policy that aims to
progressively become more memory-efficient as the available
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(a) (b) (c)

Figure 3: Punctuations, denoting window boundaries, are inserted into the workflow prior to temporally sensitive operators at
a point where the stream has been sorted. A node will consume the punctuation from the sorted input stream-buffer (a) and
then replicate that punctuation to the other nodes (b). After all replicas are received at the intermediate buffer, we collect
data whose timestamps fall into the applicable interval and materialize them as our window (c).
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Figure 4: This CDF shows the rate at which our hybrid pro-
gressive scheduler transitions to the MEM policy as available
memory decreases. Here we use a transition threshold of
50% with the remaining interval represented as a Beta CDF
with parameters α = 2.5 and β = 1.

system memory depletes. In this way, as the system memory
becomes increasingly scarce, a higher probability of requests
for data will use the MEM scheduling policy.

We use this progressive scheduling arrangement to im-
prove end-to-end latency when conditions in our system change
such that one specific policy is no longer advantageous. For
instance, we generally find that ODF does a very good job of
producing low end-to-end latencies. However, when bursty
workloads deplete available memory, causing data to move
into swap space, continuing with the ODF policy results
in extremely poor performance. For this reason, we pair
the ODF and MEM policies in the progressive scheduler to
leverage ODF when memory is plentiful and progressively
transition over to the MEM policy when in danger of hit-
ting swap space. Our goal is to achieve the best of both
worlds — trying to maintain a focus on minimizing latency
while protecting ourselves from exhausting memory (which
would hurt end-to-end latency objectives).

To model this progressive transition, we used the cumu-
lative distribution function (CDF) of the Beta probability
distribution. The use of a CDF allows for the complete
transition between two scheduling policies (on the interval
[0, 1]) relative to resource availability. The Beta distribution
is parameterized by α and β which enable the application
programmer to specify a policy transition rate that fits the
requirements of the application. The curve can be parame-
terized to be as linear or as exponential as desired. We use
this curve to transition from the ODF policy to the MEM
policy once memory usage exceeds a threshold, T . In Figure
4 we show that we stretch this Beta CDF over the interval
corresponding to [T = 50%, 100%] memory usage with Beta
parameters α = 2.5 and β = 1.

To decide whether or not we will use the MEM policy
for a particular node’s data request, we take the percent-
age of memory currently in use, x, and pass it into the

CDF depicted in Figure 4 which is expressed mathemati-
cally in Equation 1. The resulting value corresponds to the
portion of data requests that will use the MEM policy for
operator scheduling. For each node’s request to the sched-
uler, we can then generate a random number on the interval
[0, 1] to probabilistically determine which policy to use. If
rand(0, 1) < F (x), then we use MEM and otherwise we use
ODF.

F (x) =

{
0, x < T
BetaCDF( x−T

1.0−T
, α, β), otherwise

(1)

Of course, any scheduling policies can be substituted into
this progressive scheduling framework and it is also possible
to leverage more than two policies concurrently for such a
framework. All of this is possible due to the ability to en-
act differing workload-wide scheduling policies on each new
generic processing node’s request for data. Experimental re-
sults for such a hybrid scheduling strategy are discussed in
section 5.2.

4.3.1 Re-Purposing the Combine Phase
In C-MR we re-purpose the Combine phase of MapRe-

duce to incrementally process sub-windows of the windows
that a Reduce operation will process. This notion of pre-
computing sub-windows was initially studied for stream pro-
cessing by [7] to encourage incremental window processing
and reduce redundant computations due to overlapping slid-
ing windows. We first extended this method to continu-
ous MapReduce execution, through the use of the Combine
phase [3], and the method has since been adapted for dis-
tributed frameworks [8].

We represent the Combine phase as an extra Reduce-like
operator in the workflow, situated between Map and Re-
duce (as seen in Figure 5). It has a window size that is
a common factor of the Reduce window’s size and slide.
The sub-window size and slide values are equal such that
there is no overlap between sub-windows. The aggregated
results of these sub-windows are computed only once and
can be integrated with corresponding downstream Reduce
windows. The only redundant computation remaining af-
ter such an optimization is the aggregation of the results of
the sub-windows at the Reduce operator. The cost of this
redundancy equates to aggregating aggregates.

To determine whether or not re-purposing the Combine
phase will be worthwhile for a particular Reduce operator
in a C-MR workflow, we compare the expected number of
values a Reduce window would aggregate over both with
and without the Combine phase. If we denote a Reduce
window’s size as w and the slide as s with the size and slide of
the Combine’s sub-window to be the highest common factor

5



Figure 5: C-MR uses Combine to process sub-windows of
Reduce operations. This encourages incremental processing
of Reduce windows, data parallelism within Reduce win-
dows, and decreases redundant processing of overlapping
Reduce windows.

of these values, k, then we can predict the work spent for
both strategies in the following manner using t to denote the
average number of values observed in the stream per unit of
time.

Cost of No-Combine = wt
Cost of Combine = st+ w

k

The cost of No-Combine is equal to the value density of the
window (wt), whereas the average cost of using Combine is
equal to the value density of the slide amount of the window
that has not been observed yet (st) plus the cost to aggregate
the sub-window aggregates (w/k) which simply corresponds
to the number of sub-windows in a window. Thus, the re-
purposed Combine phase will be beneficial if the following
is true:

wt > st+ w
k

wt− st > w
k

t(w − s) > w
k
= w

HCF (w,s)

The result is intuitive. That is, if t (the volume of data
per unit of time) is sufficiently large then the Combine phase
will be beneficial in aggregating over the bulk of this vol-
ume only once. Similarly, if (w − s) (the degree of overlap
between adjacent Reduce windows) is sufficiently large then
the Combine phase will aid us in not recomputing this signif-
icant portion for each window. In all other cases, the benefit
of the Combine phase will not outweigh its cost. A simple
check of this expression allows us to make an informed de-
cision regarding whether or not to implement the Combine
phase, although it does not consider the potential benefit
that the Combine phase provides by encouraging incremen-
tal processing of the Reduce workload which may improve
latency.

Additionally, there is an extra trade-off to consider should
we pick the sub-window size to be a common factor of the
Reduce window’s size and slide that is smaller than their
highest common factor. Picking smaller common factors
will encourage additional incremental processing but at the
expense of overhead incurred due to managing extra sub-
windows.

5. EXPERIMENTAL RESULTS
The tests in this section were performed on a computer

with an Intel R©CoreTM2 Quad Processor Q6600. Some of
the following tests use a stream application that determines
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job over a stream results in many redundant computations
(at both Map and Reduce operations). C-MR allows data
to be processed only once by Map and the inclusion of the
Combine operator significantly decreases redundant work
performed at the Reduce operator.

the moving average of stock prices over time. This applica-
tion uses both transformation (Map) and aggregation (Re-
duce) operations to parse data into stock symbols and prices
and to calculate the average of stock prices observed within
a window for each stock symbol present.

To facilitate this application, we replayed NYSE stock
data from the TAQ3 data release of January 2006 [1]. The
stream contains records representing stock trades which in-
clude a symbol, price, and a time stamp of 1-second granu-
larity. For each second, anywhere from 100 to 1703 trades
were captured with a range of 71 to 794 unique symbols ap-
pearing per second. This provided a large amount of skew in
both volume and stock symbol. The stream was played back
at an accelerated rate to provide an increased workload.

5.1 Continuously Executing a MapReduce Job
It is possible to take an existing, non-continuous, MapRe-

duce framework and periodically invoke MapReduce jobs
over a stream as new windows arrive to facilitate continuous
execution. However, this places the burden on the applica-
tion programmer to perform stream and window manage-
ment and does not provide opportunities to perform intra-
job optimizations such as enabling pipelining, latency-oriented
scheduling, or the reduction of redundant computations. Here,
we compare the repeated invocation of Phoenix++ [9] (a
single-host, multi-core MapReduce framework) jobs over a
data stream to a C-MR MapReduce job. At the same time,
we also compare these two to a C-MR MapReduce job with
a Combine operation interposed between Map and Reduce
as an optimization to decrease the amount of redundant re-
duce computations that occur due to overlapping, sliding
windows.

This experiment uses a single MapReduce job which de-
termines the moving average of stock symbol prices over
a data stream. Figure 6 shows the results of executing
each strategy using various window sizes (all with a window
slide of 1 second) while replaying a finite stream of stock
data. The results show that redundant computations in-
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Figure 7: The Hybrid strategy initially mirrors ODF, with good latency results. As memory becomes limited, given a burst
in stream volume, Hybrid is able to progressively transition towards additional MEM policy invocations, avoid swap space,
and outperform the others. ODF ultimately performs terribly as it is unable to avoid swap space.

curred by Phoenix++ ultimately hurt latency; as the size of
the workload increases (with larger windows), the latency of
Phoenix++ increases more rapidly than the C-MR variants.
C-MR hits the overload point just prior to Phoenix++, due
to additional storage and organization requirements of in-
termediate data. C-MR with Combine, however, supports
processing significantly larger workloads before reaching sat-
uration.

It is also worth noting, that the Combine strategy only
begins to outperform the standard C-MR strategy after a
window size of 15 is reached. Prior to this point, the in-
clusion of an intermediate operation (along with bucketing
keys, ordering streams, and materializing windows) is more
expensive than the savings in redundant Reduce computa-
tions it spares us from.

5.2 Operator Scheduling
The combination of generic computing nodes and our sched-

uler allows us to consciously schedule complex workflows
with latency objectives in mind. We evaluate our schedul-
ing policies on the workflow depicted in Figure 1. The Map
and Reduce operators have been assigned varying selectivi-
ties, resulting output value sizes, and processing times.

Scheduling policies like Oldest Data First (ODF) are com-
monly used to reduce the average end-to-end latencies of
workflow results. Memory-conservative policies (MEM) also
happen to be useful for low-latency applications; they lower
memory footprints and reduce the chance of latency spikes
caused by spilling into swap space. We test a progressive
scheduling policy which allows for a hybrid utilization of
both policies.

In this test a burst in the stream is initiated at the 4 sec-
ond mark and we observe how the scheduling policies (ODF,
MEM, and Hybrid) are able to cope with the significant vol-
ume given a meager 2GB of available RAM. Figure 7 shows
the results for both latency and memory usage.

Initially, we find that the burst of data most negatively
affects the MEM policy while Hybrid mimics ODF since
plenty of memory is available. It is only once the memory
footprint starts to significantly increase that we see Hybrid
deviate and become more memory-conscious while taking
a small latency penalty. Soon, ODF hits swap space and
its latencies skyrocket while Hybrid, with a more conserva-
tive approach, avoids hitting swap space while still allowing

latency-minimization to be a priority. This results in the
Hybrid policy consistently providing good (but not always
best) latencies throughout the experiment.

5.3 Workflow Optimizations
By enabling the creation of complex workflows of MapRe-

duce jobs, C-MR supports the ability to perform a variety
of workflow optimizations which includes sharing common
sub-workflows. To show this, we used a financial analy-
sis application which performs a moving average conver-
gence/divergence (MACD) query. This query, common to
financial trading applications, performs two moving aver-
ages of differing window sizes at similar slide intervals over
the same stream. The difference of the two moving aver-
ages is returned as the result. In Figure 8a, we depict three
different workflow implementations – one using a wrapper
interface to pipeline data to multiple Phoenix++ instances
and the other two being a simple C-MR workflow and an
optimized C-MR workflow.

With C-MR we can fork output streams to decrease redun-
dant computations through stream sharing; C-MR handles
the generation and propagation of window-boundary punc-
tuations through these forks towards their specific down-
stream operators. In the optimized C-MR workflow, we
allowed the two Reduce steps to share both the Map op-
erator and an introduced Combine operator. Even though
the two Reduce window sizes are different, the Combine op-
erator produces sub-window aggregates which both Reduce
operators can consume. This prevents a large amount of re-
dundant computations. The Phoenix++ workflow required
a considerable amount of work to pipeline data between its
MapReduce jobs and to also perform stream synchroniza-
tion at the input for the MapReduce job which merges and
processes its two input streams.

This test performed a MACD analysis on a replayed stock
data stream with window sizes of 5 minutes and 10 minutes
and a common window slide of 1 minute. In the optimized
workflow, the Combine operation produced sub-window ag-
gregates of 1 minute window sizes to the parallel Reduce
operations. The latency results of this test are shown in
Figure 8b. We see that the Phoenix++ workflow performs
the worst because it incurs a large amount of redundant
processing and because of its inability to facilitate latency-
oriented scheduling. Also, the optimized C-MR workflow
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Figure 8: We characterize the ability to execute MapReduce workflows with a sample MACD application which was imple-
mented with two levels of optimization in C-MR as well as through repeated invocations to a Phoenix++ wrapper interface
through which we performed stream and window management ourselves. Workflows are depicted in Figure (a) and latency
and throughput results are shown in Figures (b) and (c) respectively.

outperforms the simple C-MR workflow with a 31% decrease
in average latency.

We also replayed the same stock data stream as 1 large
batch which arrives instantaneously to analyze throughput.
The results of this test can be seen in Figure 8c. Given
this particular workload, we see that both of the C-MR
strategies outperform the Phoenix++ workflow with regard
to the volume of data they can process. The performance
gap for throughput is somewhat smaller than we saw for la-
tency as Phoenix++ is quite optimized for throughput per-
formance. C-MR, on the other hand, currently employs a
latency-oriented scheduling policy and incurs a higher per-
tuple overhead for doing so. In spite of this, the computa-
tion savings and workflow optimizations provided by C-MR
allows for better performance.

6. CONCLUSIONS
We presented the C-MR framework which supports the

continuous execution of complex workflows of MapReduce
jobs on unbounded data streams. By modifying the under-
lying MapReduce processing model, we were able to preserve
stream order and execution semantics while providing a pro-
gressive, end-to-end latency-oriented scheduling framework.

Unlike batch-processing applications, the unbounded na-
ture of data-streams and end-to-end latency objectives of
stream applications prevent the possibility of simple bottom-
up workflow processing. To support stream applications, it
is necessary to support scheduling workflows of stream oper-
ators and facilitate the interactions between them. Doing so
opens up the possibility for us to employ end-to-end latency-
oriented scheduling policies and many of the workflow opti-
mization techniques that the stream processing community
has exploited in the past such as sub-query sharing, incre-
mental sub-window processing, and adaptive query process-
ing.
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