Multiscale models for shapes and images

Pedro F Felzenszwalb
Brown University

Joint work with Joshua Schwartz, John Oberlin
Priors for Vision

• Markov models are widely used in computer vision
 - Natural model for curves and images
 - Tractable learning and inference

• Markov models capture local properties/regularities
 - often not enough

• Multiscale representations
 - Can capture local properties at multiple resolutions
 - Lead to rich models with a “low-dimensional” parameterization
 - (sometimes) Manageable computation
Bayesian Framework

- We observe \(y \) (curve, image)
- Hidden variables \(x \) (curve, image, class)
- Inference using Bayes rule
 \[p(x|y) \sim p(x) p(y|x) \]
- Challenges
 - \(x, y \) are a high-dimensional objects (curve, image)
 - Efficient inference and learning
Shapes / Curves

- $x = 2D$ curve

- classification
 - $p(x|c)$ for each class c
 - $p(c|x) \sim p(x|c)p(c)$

- localization/detection
 - image y
 - $p(x|y) \sim p(x) p(y|x)$
Markov models for curves

- Sequence of control points x
- Markov model captures local geometric properties
 - smooth, tends to curve to the left, etc.
- Often fails to capture important global geometric properties
Random deformations with Markov model

- Small local changes lead to large global change
- Markov models suffer from drift
- Give up long range dependencies to allow for local variation
High order Markov models

- **k-th order model**
 - \(p(x_k|x_1, ..., x_{k-1}) \)
 - Number of parameters \(\sim O(|X|^k) \)
 - Complexity of inference \(\sim O(|X|^k) \)
 - Still suffers from drift, even with reasonably large \(k \)
Multiscale sequence model

- Capture local properties at multiple resolutions
 - Original sequence x_0
 - Subsample x_0 to get $x_1, x_2 ...$
 - local property of $x_2 = $ non-local property of x_0

full model is tractable

tree-width = 2
Comparing sequence models

Graphical model (MRF)

1 2 3 4 5 6 7 8 9

1,2 2,3 3,4 4,5 5,6 6,7 7,8 8,9

1,2,3 2,3,4 3,4,5 4,5,6 5,6,7 6,7,8 7,8,9

1,2,3 3,4,5 5,6,7 7,8,9

Junction Tree

1,2 2,3 3,4 4,5 5,6 6,7 7,8 8,9

1,2,3 2,3,4 3,4,5 4,5,6 5,6,7 6,7,8 7,8,9

1,5,9

1,2,3 3,4,5 5,6,7 7,8,9
Factorizations

\[p(x_1, \ldots, x_9) = p(x_1, x_2)p(x_3|x_1, x_2)p(x_4|x_2, x_3)p(x_5|x_3, x_4)p(x_6|x_4, x_5) \ldots \]

\[p(x_1, \ldots, x_9) = p(x_1, x_9)p(x_5|x_1, x_9)p(x_3|x_1, x_5)p(x_2|x_1, x_3)p(x_4|x_3, x_5) \ldots \]
Multi-Resolution Trees

- Willsky et al.
- New variables represent sequence at coarser resolutions
- Prior defined by a tree MRF on Multi-Resolution representation

MR tree

MS sequence
Both graphs have tree-width 2

- Tractable inference $\sim O(|X|^3)$
- Reasonable number of parameters $\sim O(|X|^3)$

Multiscale model captures global shape properties
Random deformations

Multiscale model does a good job capturing global shape properties - less drift with similar deformation
Shape recognition

Swedish leaf dataset

<table>
<thead>
<tr>
<th>classification</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiscale model</td>
<td>96.28</td>
</tr>
<tr>
<td>Inner distance</td>
<td>94.13</td>
</tr>
<tr>
<td>Shape context</td>
<td>88.12</td>
</tr>
</tbody>
</table>

15 species
75 examples per species
(25 training, 50 test)
Shape Detection

Template defining $p(x)$

$y \quad p(x) \quad y \quad p(x)\land y$

Template defining $p(x)$

$y \quad y \quad y \quad y \quad p(x)\land y$
Images

- MRF models widely used to model images

Applications:

- image restoration: clean picture is piecewise smooth
- image segmentation: foreground mask is spatially coherent

\[p(x) = \text{Ising model} \]
Binary images

\[p(x) = \text{Ising model} \]

\[p(x) = ? \]
Contour maps

- x is a binary image
 - pixel is “on” if contour goes through it
- Lots of regularities
 - Continuity, smoothness, closure, parallel lines, symmetries
- How can we build a reasonable model for $p(x)$?
Fields-of-Patterns

- Local property of $x \sim$ binary pattern in 3x3 window

- Look at local properties at multiple resolutions

- Local property of coarse image reflects global properties
Single-scale model

- Energy model \(p(x) = \frac{1}{Z} e^{-E(x)} \)

 - Look at 3x3 blocks of pixels \(b \)

 - Each block has one of 512 patterns

\[
E(x) = \sum_{b} V(x_b)
\]

- \(V \) is an array of 512 costs

- Captures continuity, frequency of 1s, frequency of junctions

- But no smoothness, parallelism, closed curves, etc.
Multi-scale model

- OR pyramid
 - $x^1 \ldots x^K$
 - x^{i+1} is a coarsening of x^i
- Look at 3x3 blocks at all resolutions

$$E(x) = \sum_{l} \sum_{b} V^l(x^l_b)$$

- $V^i \neq V^j$
- $K \text{ arrays of 512 costs}$
Frequency of Patterns (BSDS)

resolution →

frequency (high to low) →

Maximum likelihood model matches frequencies of patterns
Coarse patterns (BSDS)

level 4 24x24

level 5 48x48
Samples from the prior $p(x)$

training data single-scale multi-scale
Inference

- Inference with MRF generally hard
- Singlescale FOP
 - hard but model is local
 - Gibbs sampling
 - Loopy BP
- Multiscale FOP
 - model not local on x but local on pyramid
Gibbs sampling

• Repeatedly update pixels/blocks
 - Sample new value for x_q given rest of x
 - Requires energy difference between $x_q = 0$ and $x_q = 1$

• Efficient computation using multiscale representation
 - Change in x_q affects a small number of auxiliary variables
 - Energy difference is local over $x^1 \ldots x^K$
Maximum Likelihood Estimation

\[p(x) = \frac{1}{Z} e^{-E(x)} \quad E(x) = w \cdot \phi(x) \]

- \(\phi(x) \): vector of counts of each pattern at each scale
- \(w \): vector of costs
- Training examples \(x_1, \ldots, x_n \)
- Negative log-likelihood is convex
- MLE model: \(E_p[\phi(x)] = \bar{\phi}(x_i) \)
 - expected freq of each pattern = average freq in training data
Stochastic Gradient Descent

\[w' = w + \eta(E_p[\phi(x)] - \phi(x_i)) \]

- Estimate expectation by sampling from \(p \)
- Mix MCMC simulation with gradient descent
 - Let \(M \) be Markov chain with stationary distribution \(p \)
 - Maintain \(m \) states \(s_1, \ldots, s_m \sim p(x) \)
 - Update model \(w' = w + \eta(\bar{\phi}(s_i) - \bar{\phi}(x_i)) \)
 - Evolve \(s_1, \ldots, s_m \) according to \(M \) for a few steps
Contour completion

$p(x_q=1|y)$

"Stochastic completion field"

MAP
Contour completion
completion/restoration

iid noise
20% flipped

\[p(x_q=1|y) \]
completion/restoration

iid noise
20% flipped

\[p(x_q=1|y) \]
Summary

- Standard Markov models capture local properties
- MS models can capture local properties at multiple resolutions
- Local-property of coarse $x = \text{global property of } x$
- Future directions
 - coarse-to-fine inference
 - non-binary images
 - data models