Fast Inference with Min-Sum Matrix Product

(or how I finished a homework assignment 15 years later)

Pedro Felzenszwalb
University of Chicago

Julian McAuley
Australia National University / NICTA
Active contour models (snakes) for interactive segmentation

Goal: trace the boundary of an object

User initializes a contour close to an object boundary

Contour moves to the boundary

- Attracted to local features (intensity gradient)
- Internal forces enforce smoothness
Optimization problem

m control points

n possible locations for each point (blue regions)

minimize: \[E(x_1, \ldots, x_m) = \sum_{i=1}^{m} V_i(x_i, x_{i+1}) \]

\[x_i = \text{location of } i\text{-th control point} \]

Many reasonable choices for V

\[V(p, q) = \frac{1}{\text{grad}(I, p, q)} + \|p - q\|^2 \]
Dynamic programming for open snakes

Shortest path problem

m tables with n entries each

$T_i[p] = \text{cost of best placement for first } i \text{ points with } x_i = p$

- $T_i[p] = \min_q T_{i-1}[q] + V_i(q, p)$
- Pick best location in T_m, trace-back

$O(mn^2)$ time (optimal in a reasonable sense)
CS664 Homework assignment:
Implement closed snakes

pff’s solution:

• Consider one control point \(x_i \)
• Fixing its location leads to open snake problem
• Try all \(n \) possibilities for \(x_i \): \(O(mn^3) \) time total

Is this a good solution?

• pff: I think this is the best possible
• rdz: Are you sure?
An alternative solution

Single DP problem

m tables with n^2 entries

$T_i[p, q] = \text{cost of best placement for first } i \text{ points with } x_1 = p, x_i = q$

- $T_i[p, q] = \min_r T_{i-1}[p, r] + V_i(r, q)$
- compute T_i from T_{i-1} in $O(n^3)$ time
- Optimal position for x_1 minimizes $T_n[p, p]$
- still $O(mn^3)$ time total...

But, we can write: $T_i = T_{i-1} \ast V_i$

Min-sum matrix product (MSP), a.k.a. distance product
MSP (min-sum product) / APSP (all-pairs-shortest-paths)

\[C = A \times B \quad C_{ik} = \min_j A_{ij} + B_{jk} \]

MSP reduces to APSP and vice versa

SP distance matrix in graph with \(n \) nodes

\[E \times E \times E \times E \ldots = E^n \] (transitive closure of \(n \) by \(n \) adjacency matrix)

\[C_{ik} = d((1, i), (3, k)) \]
MSP algorithms

$O(n^3)$ brute force algorithm, $O(n^3 / \log n)$ via APSP

No known algorithm with $O(n^{3-e})$ runtime in the worst case

- Strassen’s algorithm doesn’t work

Our result: $O(n^2 \log n)$ expected time, assuming values are independent samples from a uniform distribution

With tweaks this really works in practice

- On inputs with significant structure from real applications in vision and natural language
Basic algorithm

MSP(A, B)

1: \(S := \emptyset \)

2: \(C_{ik} := \infty \)

3: Initialize \(Q \) with entries of \(A, B, C \)

4: while \(S \) does not contain all \(C_{ik} \) do

5: \(\text{item} := \text{remove-min}(Q) \)

6: \(S := S \cup \text{item} \)

7: if \(\text{item} = A_{ij} \) then

8: \(\text{for } B_{jk} \in S \text{ relax}(C_{ik}, A_{ij} + B_{jk}) \)

9: end if

10: if \(\text{item} = B_{jk} \) then

11: \(\text{for } A_{ij} \in S \text{ relax}(C_{ik}, A_{ij} + B_{jk}) \)

12: end if

13: end while

relax(\(C_{ik}, v \))

1: if \(v < C_{ik} \) then

2: \(C_{ik} := v \)

3: decrease-key(\(Q, C_{ik} \))

4: end if
Correctness

Assume entries in A and B are non-negative
Let $j = \operatorname{argmin} A_{ij} + B_{jk}$
We always have $C_{ik} \geq A_{ij} + B_{jk}$
So A_{ij} and B_{jk} come off the queue before C_{ik}
This implies we call $\text{relax}(C_{ik}, A_{ij} + B_{jk})$
When C_{ik} comes off the queue it equals $A_{ij} + B_{jk}$
Implementation

MSP(A, B)

1: $S := \emptyset$
2: $C_{ik} := \infty$
3: Initialize Q with entries of A, B, C
4: while S does not contain all C_{ik} do
5:
6:
7: if item = A_{ij} then
8:
9: end if
10: if item = B_{jk} then
11:
12: end if
13: end while

relax(C_{ik}, v)

1: if $v < C_{ik}$ then
2: $C_{ik} := v$
3: decrease-key(Q, C_{ik})
4: end if

Maintain $2n$ lists

$I[j]$: list of i such that A_{ij} in S

$K[j]$: list of k such that B_{jk} in S

Running time determined by number of additions and priority queue operations
Runtime Analysis

Let $N = \# \text{ pairs } A_{ij}, B_{jk} \text{ that are combined before we stop}$

(both A_{ij}, B_{jk} come off the queue)

- N additions
- $3n^2$ insertions
- at most $3n^2$ remove-min
- at most N decrease-key

Lemma: $E[N] = O(n^2 \log n)$

Using a Fibonacci heap the expected time is $O(n^2 \log n)$
Main lemma

Let \(N = \# \) pairs \(A_{ij}, B_{jk} \) that come off the queue

If entries in \(A \) and \(B \) are iid samples from a uniform distribution over \([0,1]\) then \(E[N] = O(n^2 \log n) \)

proof sketch:

Let \(X_{ijk} = 1 \) if \(A_{ij} \) and \(B_{jk} \) both come off the queue

\[
E[N] = \sum_{ijk} E[X_{ijk}] = \sum_{ijk} P(X_{ijk} = 1).
\]

Minimum priority in \(Q \) is non-decreasing

Let \(M \) be maximum value in \(C \)

\(X_{ijk} = 1 \) if \(A_{ij} \) and \(B_{jk} \) are at most \(M \)
$X_{ijk} = 1$ if A_{ij} and B_{jk} are at most M

The probability that M is large is low

$M \geq \epsilon$ iff one $C_{ik} \geq \epsilon$

$C_{ik} \geq \epsilon$ iff all $A_{ij} + B_{jk} \geq \epsilon$

$P(A_{ij} + B_{jk} \geq \epsilon) = 1 - \epsilon^2/2 \leq e^{-\epsilon^2/2}$

$P(M \geq \epsilon) \leq n^2 e^{-n\epsilon^2/2}$ (union + independence)

The probability that A_{ij} and B_{jk} are both small is low

$P(A_{ij} \leq \epsilon \land B_{jk} \leq \epsilon) = \epsilon^2.$

$P(X_{ijk} = 1) \leq n^2 e^{-n\epsilon^2/2} + \epsilon^2.$

Pick $\epsilon = \frac{6 \log n}{n}$

$P(X_{ijk} = 1) \leq \frac{1+6 \log n}{n}$

$E[N] \leq n^2(1 + 6 \log n)$
Improvements - normalizing the inputs

1) Subtract min value from each row of A and column of B
 (add back to C in the end)

2) Remove entries from I/K if we finish a row/column of C

3) (A* search)

Let $a(j)$ be minimum value in column j of A

Let $b(j)$ be minimum value in row j of B

- Put A_{ij} into Q at priority $A_{ij} + b(j)$
- Put B_{jk} into Q at priority $B_{jk} + a(j)$
Practical issues

Fibonacci heap not practical (believe me, we tried)

Practical alternatives:

• Integer queue gives approximation algorithm
• Avoid queue by sorting A and B
 – ok, but not as fast as integer queue
• Scaling method
 – Avoids sorting
 – exact, and fastest in practice
Scaling method

1: $C_{ik} := \infty$

2: $T := t-min$

3: while $\max_{ik} C_{ik} > T$ do

4: $I[j] := \{i \mid A_{ij} \leq T\}$

5: $K[j] := \{k \mid B_{jk} \leq T\}$

6: for $j \in \{1 \ldots n\}$ do

7: for $i \in I[j]$ do

8: for $k \in K[j]$ do

9: $C_{ik} = \min(C_{ik}, A_{ij} + B_{jk})$

10: end for

11: end for

12: end for

13: $T := 2T$

14: end while

Consider entries of A and B that are at most T

If maximum entry in resulting C is at most T we are done
Experimental results with real data

naive method uses $O(n^3)$ brute-force algorithm MSP

[12] gives an $O(n^{2.5})$ algorithm with (weaker) assumption that entries come in random order

Algorithm 1: integer queue (approximate)
Algorithm 2: scaling method (exact)
Other Applications

MAP estimation with pairwise graphical model

- m variables, n possible values for each variable

$$E(x_1, \ldots, x_m) = \sum_{i=1}^{m} V_i(x_i) + \sum_{(i,j) \in E} V_{ij}(x_i, x_j)$$

Tree-width 2 model

- m MSP of n by n matrices
- $O(mn^3) \rightarrow O(mn^2 \log n)$
Language modeling

Something between bigram and trigram model

- **Bigram**: \(P(x_t \mid x_{t-1}) \)
- **Trigram**: \(P(x_t \mid x_{t-1}, x_{t-2}) \)
- **Skip-chain**: \(P(x_t \mid x_{t-1}, x_{t-2}) \sim q_1(x_t, x_{t-1}) \cdot q_2(x_t, x_{t-2}) \)

Task: recover a sentence from noisy data

Assume each character is corrupted with probability \(c \)

Use skip model as prior over sentences \(P(x) \)

Given corrupted text \(y \), find \(x \) maximizing \(P(x \mid y) \sim P(y \mid x)P(x) \)
Language modeling

naive method takes $O(mn^3)$
m is the length of the sentence
n is the alphabet size
Point pattern matching

Map points in template to points in target preserving distances between certain pairs

2D Graph matching

Wall time (seconds)

0 1000 2000 3000 4000

n (size of target graph)

Algorithm 1
Algorithm 2
naïve method
method from [12]

(c) Point-matching model

template

target
Parsing with stochastic context-free grammars

- $O(n^3)$ with dynamic programming (CKY)
- Reduces to MSP with Valiant’s transitive closure method

RNA Secondary structure prediction

- $O(n^3)$ dynamic programming
- Reduces to parsing with special grammar
Some open questions

Why does it actually work?
Characterize what “normalization” is doing
How does it relax assumptions on input distribution

$O(n^{3-e})$ worst case (randomized) algorithm for MSP

Can we get a practical parsing method?
Avoid transitive closure machinery?