Object Detection Grammars

Pedro Felzenszwalb
Brown University

Joint work with Ross Girshick and David McAllester
Object category detection

Detect people, cars, trees, lamp posts, etc.
The challenge

Objects in each category vary greatly in appearance

[Pascal VOC images]
Deformable part models (DPM)

- Model an object by a collection of parts arranged in a deformable configuration
- Use mixture models to handle more significant variation
Deformable models

• Can take us a long way...

• But not all the way
Structure variation

- Object in rich categories have variable structure

- These are NOT deformations

- Mixture of deformable models?
 - too many combined choices
Grammar/Compositional models

- Some parts should be optional
 - A person could have a hat or not

- There should be subtypes (mixtures) at the part level
 - A person could wear a skirt or pants
 - A mouth can be smiling or frowning

- Parts are recursively objects
 - People have faces and faces have eyes

- person -> face, trunk, arms, lower-part
- face -> eyes, nose, mouth
- face -> hat, eyes, nose, mouth
- hat -> baseball-cap
- hat -> sombrero
- lower-part -> shoe, shoe, legs
- lower-part -> bare-foot, bare-foot, legs
- legs -> pants
- legs -> skirt
Previous Work

- Compositional Engine
 Jin, Geman, CVPR 2006

- Hidden State Shape Models
 Wang, Athitsos, Sclaroff, Betke, PAMI 2008
Object detection grammars

(A tractable compositional framework)

• Generalization of deformable part models
 (tree-structured pictorial structures)

• Object defined by a stochastic grammar
 - Each derivation has a different set of parts
 - Productions capture spatial relationships between parts and sub-parts
 - Terminals model local image data
Relationship to pictorial structures / DPM

- **Pictorial structure**
 - parts (local appearance)
 - springs (spatial relationships)
 - parts and springs forms a graph --- structure is fixed

- **Object detection grammar**
 - Grammar generates tree of symbols --- structure is variable
 - Location of symbol is related to location of parent
 - Appearance model associated with each terminal
Object detection grammars

• Set of terminal symbols T
 - (templates)

• Set of nonterminal symbols N
 - (objects/parts)

• Set of placements Ω within an image

• Placed symbol $X(\omega)$
 - $X \in T \cup N$
 - $\omega \in \Omega$

ω might be (x,y) position and scale

face(((90,10),50))

eye(((100,80),10))
Production rules

• Productions define expansions of nonterminals into bags of symbols

\[X(\omega) \xrightarrow{\text{--s--->}} \{ Y_1(\omega_1), \ldots, Y_n(\omega_n) \} \]

placed nonterminal score Bag of placed symbols

• We expand a nonterminal into a bag of terminals by repeatedly applying productions

 - There are choices along the way
 - Expansion score = sum of scores of productions used along the way
 - \[X(\omega) \xrightarrow{\text{~~s~~->}} \{ A_1(\omega_1), \ldots, A_n(\omega_n) \} \] (sequence of expansions)
 - Leads to a derivation tree
Appearance for terminals

• Each terminal has an appearance model

 - Defined by a scoring function $f(A, \omega, I)$

 - Score for placing terminal A at position ω within image I

$f(A, \omega, I)$ might be the response of a HOG filter F_A at position ω within I
Appearance for nonterminals

• Extend the appearance model from terminals to nonterminals

\[f(X, \omega, l) = \max_{X(\omega) \sim \omega \sim \{ A_1(\omega_1), \ldots, A_n(\omega_n) \}} \left(s + \sum_{i} f(A_i, \omega_i, l) \right) \]

• Best expansion of \(X(\omega) \) into a bag of placed terminals

 - Takes into account

 1) expansion score

 2) appearance model of placed terminals at their placements

• Detect objects (any symbol) by finding high scoring placements
Isolated deformation grammars

- Productions defined by two kinds of schemas

- Structure schema
 - One production for each placement ω
 \[X(\omega) \rightarrow s \rightarrow \{ Y_1(\omega+\delta_1), \ldots, Y_n(\omega+\delta_n) \} \]

- Deformation schema
 - One production for each ω and displacement δ
 \[X(\omega) \rightarrow s(\delta) \rightarrow \{ Y(\omega+\delta) \} \]

- Leads to efficient algorithm for computing scores $f(X,\omega,I)$
Face grammar

\[N = \{\text{FACE}, \text{EYE}, \text{EYE}', \text{MOUTH}, \text{MOUTH}'\},\]
\[T = \{\text{FACE}.\text{FILTER}, \text{EYE}.\text{FILTER}, \text{SMILE}.\text{FILTER}, \text{FROWN}.\text{FILTER}\}.\]

1) Face defined by global template and parts
\[\forall \omega : \text{FACE}(\omega) \xrightarrow{0} \{\text{FACE}.\text{FILTER}(\omega), \text{EYE}'(\omega \oplus \delta_l), \text{EYE}'(\omega \oplus \delta_r), \text{MOUTH}'(\omega \oplus \delta_m)\}.
\]

2) Parts can move relative to their idea location
\[\forall \omega, \delta : \text{EYE}'(\omega) \xrightarrow{||\delta||^2} \{\text{EYE}(\omega \oplus \delta)\},\]
\[\forall \omega, \delta : \text{MOUTH}'(\omega) \xrightarrow{||\delta||^2} \{\text{MOUTH}(\omega \oplus \delta)\}.
\]

3) Parts defined by templates
\[\forall \omega : \text{EYE}(\omega) \xrightarrow{0} \{\text{EYE}.\text{FILTER}(\omega)\},\]
\[\forall \omega : \text{MOUTH}(\omega) \xrightarrow{s} \{\text{SMILE}.\text{FILTER}(\omega)\},\]
\[\forall \omega : \text{MOUTH}(\omega) \xrightarrow{f} \{\text{FROWN}.\text{FILTER}(\omega)\}.\]
Learning

\[f(X, \omega, l) = \max_{X(\omega) \sim s \sim \{ A_1(\omega_1), ..., A_n(\omega_n) \}} \left(s + \sum f(A_i, \omega_i, l) \right) \]

\[f(X, \omega, l) = \max_z w \cdot \phi(l, z) \]

- \(z \) is an expansion of \(X(\omega) \) into a bag of terminals
- \(w \) is a vector of model parameters
 - Score of each structure schema
 - Deformation parameters of each deformation schema
 - Appearance model for each terminal (HOG template)
- \(w \) can be trained using a Latent SVM
Building a person grammar

- Consider mixture of DPMs learned from PASCAL VOC data
- Components differ in how much of the person is visible
- Components have independent parameters
 - Inefficient use of training data
- We can build a grammar that
 - Allows more flexibility in modeling visibility
 - Shares parts among different interpretations
Person detection grammar [NIPS 2011]

- Instantiation includes a variable number of parts
 - 1,...,k and occluder if k < 6
- Parts can translate relative to each other
- Parts have subtypes
- Parts have deformable sub-parts (not shown)
- Beats all other methods on PASCAL 2010 (49.5 AP)
Building the model

- Type in manually defined grammar

\[
\begin{align*}
Q(\omega) & \xrightarrow{s_k} \{ Y_1(\omega \oplus \delta_1), \ldots, Y_k(\omega \oplus \delta_k), O(\omega \oplus \delta_{k+1}) \} \\
Q(\omega) & \xrightarrow{s_6} \{ Y_1(\omega \oplus \delta_1), \ldots, Y_6(\omega \oplus \delta_6) \} \\
Y_p(\omega) & \xrightarrow{0} \{ Y_{p,t}(\omega) \} \\
O(\omega) & \xrightarrow{0} \{ O_t(\omega) \} \\
O_t(\omega) & \xrightarrow{\alpha_t \cdot \phi(\delta)} \{ A_t(\omega \oplus \delta) \} \\
Y_{p,t}(\omega) & \xrightarrow{\alpha_{p,t} \cdot \phi(\delta)} \{ Z_{p,t}(\omega \oplus \delta) \} \\
Z_{p,t}(\omega) & \xrightarrow{0} \{ A_{p,t}(\omega), W_{p,t,r,1}(\omega \oplus \delta_{p,t,r,1}), \ldots, W_{p,t,r,N_p}(\omega \oplus \delta_{p,t,r,N_p}) \} \\
W_{p,t,r,u}(\omega) & \xrightarrow{\alpha_{p,t,r,u} \cdot \phi(\delta)} \{ A_{p,t,r,u}(\omega \oplus \delta) \}
\end{align*}
\]

- Learn parameters from bounding box annotations
 - Production scores
 - Deformation models
 - Templates (appearance model) for terminals
Detections with person grammar

Qualitative results 1
(a) Full visibility
(b) Occlusion boundaries

Figure: Example detections. Parts are blue. The occlusion part, if used, is dashed cyan. (a) Detections of fully visible people. (b) Examples where the occlusion part detects an occlusion boundary.

Qualitative results 2
(a) Early termination
(b) Mistakes

Figure: Example detections. Parts are blue. The occlusion part, if used, is dashed cyan. (a) Detections where there is no occlusion, but a partial person is appropriate. (b) Mistakes, where the model did not detect occlusion properly.
Evolution of models

HOG [DT 05] AP=0.16
DPM [FMR 2008] AP=0.27
2 DPM [FGMR 2010] AP=0.36
6 DPM (voc-release4) AP=0.43

Grammar [GFM 2011] AP=0.47
Summary

- The big challenge is modeling appearance variation

- Object detection grammars can express many types of models
 - Models with variable structure
 - Models with repeated/shared parts
 - etc. -- think of it as a programming language

- General implementation
 - Isolated deformation grammar + HOG filters + LSVM training

- As in NLP, learning grammar structure is an open problem