pff's homepage

Papers

Scene Grammars, Factor Graphs, and Belief Propagation
J. Chua, P. Felzenszwalb
Draft
PDF

Diffusion Methods for Classification with Pairwise Relationships
P. Felzenszwalb, B. Svaiter
Draft
PDF

Automatic Discovery and Optimization of Parts for Image Classification
S. Naderi Parizi, A. Vedaldi, A. Zisserman, P. Felzenszwalb
ICLR 2015
PDF

Multiscale Fields of Patterns
P. Felzenszwalb, J. Oberlin
NIPS 2014
PDF

A Stochastic Grammar for Natural Shapes
P. Felzenszwalb
In "Shape Perception in Human and Computer Vision", Springer, 2013
PDF

Object Detection
Y. Amit, P. Felzenszwalb
In "Computer Vision, A Reference Guide", Springer, 2014
PDF

Distance Transforms of Sampled Functions
P. Felzenszwalb, D. Huttenlocher
Theory of Computing, Vol. 8, No. 19, September 2012
PDF

Sparselet Models for Efficient Multiclass Object Detection
H.O. Song, S. Zickler, T. Althoff, R. Girshick, M. Fritz, C. Geyer, P. Felzenszwalb, T. Darrell
European Conference on Computer Vision (ECCV), 2012
PDF

Reconfigurable Models for Scene Recognition
S. Naderi Parizi, J. Oberlin, P. Felzenszwalb
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012
PDF

Object Detection with Grammar Models
R. Girshick, P. Felzenszwalb, D. McAllester
NIPS 2011
PDF

Fast Inference with Min-Sum Matrix Product
P. Felzenszwalb, J. McAuley
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 33, No. 12, December 2011
PDF

Dynamic Programming and Graph Algorithms in Computer Vision
P. Felzenszwalb, R. Zabih
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 33, No. 4, April 2011
PDF

Cascade Object Detection with Deformable Part Models
P. Felzenszwalb, R. Girshick, D. McAllester
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010
PDF

Tiered Scene Labeling with Dynamic Programming
P. Felzenszwalb, O. Veksler
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010
PDF

Globally Optimal Pixel Labeling Algorithms for Tree Metrics
P. Felzenszwalb, G. Pap, E. Tardos, R. Zabih
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010
PDF

Object Detection Grammars
P. Felzenszwalb, D. McAllester
University of Chicago, Computer Science TR-2010-02, February 2010
PDF

Object Detection with Discriminatively Trained Part Based Models
P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 32, No. 9, September 2010
PDF

Visibility Constraints on Features of 3D Objects
R. Basri, P. Felzenszwalb, R. Girshick, D. Jacobs, C. Klivans
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009
PDF

Computing Rank Convolutions with a Mask
L. Babai, P. Felzenszwalb
ACM Transactions on Algorithms, Vol. 6, No. 1, December 2009
PDF

A Discriminatively Trained, Multiscale, Deformable Part Model
P. Felzenszwalb, D. McAllester, D. Ramanan
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2008
PDF

2D Min-Filters with Polygons
P. Codenotti, P. Felzenszwalb
17th Fall Workshop on Computational Geometry, 2007
PDF

Hierarchical Matching of Deformable Shapes
P. Felzenszwalb, J. Schwartz
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2007
PDF

The Generalized A* Architecture
P. Felzenszwalb, D. McAllester
Journal of Artificial Intelligence Research, Vol. 29, May 2007
PDF

A Min-Cover Approach for Finding Salient Curves
P. Felzenszwalb, D. McAllester
IEEE Workshop on Perceptual Organization in Computer Vision, 2006
PDF

Efficient Belief Propagation for Early Vision
P. Felzenszwalb, D. Huttenlocher
International Journal of Computer Vision, Vol. 70, No. 1, October 2006
PDF

Efficient Belief Propagation for Early Vision (conference version includes optical flow)
P. Felzenszwalb, D. Huttenlocher
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2004
PDF

Object Recognition by Combining Appearance and Geometry
D. Crandall, P. Felzenszwalb, D. Huttenlocher
Torwards Category-Level Object Recognition, Springer LNCS 4170, 2006
PDF

Spatial Priors for Part-Based Recognition using Statistical Models
D. Crandall, P. Felzenszwalb, D. Huttenlocher
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2005
PDF

Representation and Detection of Deformable Shapes
P. Felzenszwalb
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, No. 2, February 2005
PDF

Pictorial Structures for Object Recognition
P. Felzenszwalb, D. Huttenlocher
International Journal of Computer Vision, Vol. 61, No. 1, January 2005
PDF

Efficient Graph-Based Image Segmentation
P. Felzenszwalb, D. Huttenlocher
International Journal of Computer Vision, Vol. 59, No. 2, September 2004
PDF

Fast Algorithms for Large-State-Space HMMs with Applications to Web Usage Analysis
P. Felzenszwalb, D. Huttenlocher, J. Kleinberg
NIPS 2003
PDF

Representation and Detection of Shapes in Images
P. Felzenszwalb
PhD Thesis, Massachusetts Institute of Technology, September 2003
PDF

Learning Models for Object Recognition
P. Felzenszwalb
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2001
PDF

Efficient Matching of Pictorial Structures
P. Felzenszwalb, D. Huttenlocher
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2000
PDF

Digipaper: A Versatile Color Document Image Representation
D. Huttenlocher, P. Felzenszwalb, W. Rucklidge
IEEE International Conference on Image Processing (ICIP), 1999
PDF