Problem 1

Let X be a set of elements. A function $f : X \times X \to \mathbb{R}$ is called a metric if it satisfies:

- $d(x, x) = 0$.
- $d(x, y) \geq 0$.
- $d(x, y) = d(y, x)$.
- $d(x, y) \leq d(x, z) + d(z, y)$.

Let $G = (V, E)$ be an undirected graph. Let w be a non-negative weight function on the edges of G. Is w always a metric? If yes prove it, if no explain why not and give a counter example.

Let $d(a, b)$ be the weight of a shortest path from a to b. Prove that $d(a, b)$ is a metric.

Now consider the case of a directed graph. Does $d(a, b)$ define a metric? If yes prove it, if no explain why not and give a counter example.

Problem 2

Let $G = (V, E)$ be a directed graph. Let $w : V \times V \times V \to \mathbb{R}$ be a non-negative weight function on sequences of 3 vertices.
In analogy to the usual length of a path in a weighted graph we can define the value of a path \(P = (v_1, \ldots, v_k) \) by a sum

\[
v(P) = \sum_{i=1}^{k-2} w(v_i, v_{i+1}, v_{i+2}).
\]

Give an efficient algorithm for computing a minimum value path between a pair of vertices. You should give the fastest algorithm you can. Prove the correctness of the algorithm and a running time bound.

Hint: You could use a standard shortest path algorithm on a “bigger graph”. You can also modify Dijkstra or Bellman-Ford algorithm to solve the problem directly.

Can you give a possible application for this problem?

Problem 3

Let \(G = (V, E) \) be a directed graph. Let \(c : E \rightarrow \mathbb{R} \) define a capacity for an edge. The capacity of a path \(P \) is the minimum capacity among edges in \(P \). For example, if the capacity represents a bound on the number of cars per second that a road supports, the bottle-neck of \(P \) gives the maximum number of cars per second that can go along \(P \). In another example the edges might represent circuits, and \(c(e) \) is the maximum clock-rate for \(e \) to operate reliably. The capacity of \(P \) gives the maximum clock-rate for the pipeline defined by \(P \) to operate reliably.

Show how to modify Dijkstra’s algorithm to find the highest capacity path from the source \(s \) to every vertex in the graph. Prove the correctness of your algorithm.