1 Problem 1

1.1 Part a
The accuracy of the nearest neighbor classifier was: 0.9, and the classifier took 2.55 seconds to run.

1.2 Part b
The results using random projections are shown below:

<table>
<thead>
<tr>
<th>Dim</th>
<th>Accuracy</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.397</td>
<td>0.363</td>
</tr>
<tr>
<td>100</td>
<td>0.857</td>
<td>0.739</td>
</tr>
<tr>
<td>200</td>
<td>0.875</td>
<td>1.143</td>
</tr>
</tbody>
</table>

1.3 Part c
The results using rescaling are shown below: The results using random projections are shown

<table>
<thead>
<tr>
<th>Dim</th>
<th>Accuracy</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No projection</td>
<td>0.913</td>
<td>2.868</td>
</tr>
</tbody>
</table>

We see that the results are slightly better than the results using unscaled observations.

2 Problem 2
The VC-dimension of axis-parallel rectangles in the space R^n is $2n$. To justify this answer we will first show that the VC-dimension must be at least $2n$, and then show that it cannot be more than $2n$.

1
To prove that the VC-dimension is at least $2n$, we need to show that for any n there exists some set of $2n$ points in R^n that is shattered by our axis-parallel rectangles concept class. In particular, we will show that a specific construction of points is always shatter-able. Our construction of points is as follows: for the n-dimensional case place two points on each axis, at coordinates -1 and 1 for a total of $2n$ points.

To show that this construction is always shatterable by axis-parallel rectangles, consider the construction in an arbitrary number of dimensions n and consider an arbitrary subset of these $2n$ points: S (where, $0 \leq |S| \leq 2n$). We can construct an axis-parallel rectangle that exactly captures the points in S (and no other points) by starting with an axis-parallel rectangle that extends from -0.5 to 0.5 along each axis and extending to $(+/−1)$ along each axis if and only if the corresponding point at $(+/−1)$ is in S. Since any possible subset of our construction of $2n$ points in n dimensions can be exactly captured by our axis-parallel rectangle concept class, we see that the construction is shatterable and therefore the VC dimension of axis-parallel rectangles in n dimensions must be at least $2n$.

Now we need to justify why $2n + 1$ or more points are not shatterable. Assume we have some set S of $>2n+1$ points in R^n. For each axis a, we can chose 2 points p_{a-min} and p_{a-max} that define the extremes for that axis, meaning that p_{a-min} is the point with the minimum coordinate along axis a and p_{a-max} is the point with the maximum coordinate along axis a. Consider S', the union of these p_{a-min} and p_{a-max} for all n axes, which is a set of $\leq 2n$ points that define the extremes of S. In order capture all of the points in S' with an axis-parallel rectangle, the rectangle must extend at least to the extremes of S in each dimension, therefore any axis-parallel rectangle that captures the points in S' must, by construction, also capture all other points in S. It follows that it is not possible to define an axis parallel rectangle that captures all the points in S' but no other points in S, so clearly it is not possible to capture every possible subset of S with the axis-parallel rectangle concept class. Thus we can conclude that the VC-dimension of of axis-parallel rectangles cannot be $>2n$.

3 Code

3.1 Code

```matlab
function [X, Y] = setupData( varargin )

% Preprocess a dataset into and appropriate form for % our SVM training/prediction code.
%
% varargin: A set of (N' x d) matrices where each % matrix contains all (N') observations for % a given class.
%
% X: Combined matrix of all observations (d x N)
% Y: Vector of labels for each observation (1 x N)

% Concatenate the 'X' matrices into one training set
X = double(vertcat(varargin{:}));

% Add the extra dimension
X = [X; ones(1, size(X, 2))];

% Create a vector with the label for each observation
Y = zeros(1, size(X,2));
start = 1;
for label = 1:nargin
    numlabel = size(varargin{label}, 1);
    Y(start:(start + numlabel - 1)) = label;
    start = start + numlabel;
end
end
```
function [Xtrain, Xtest] = randproject(Xtrain, Xtest, m)

% Reduce the dimensionality of training and test data
% using random projections
%
% Xtrain: Training observations (d/m x N)
% Xtest: Test observations (d/m x N)
% m: New dimensionality

 d = size(Xtrain, 1);
 A = 1 / sqrt(m) * randn(m, d);
 Xtrain = A * Xtrain;
 Xtest = A * Xtest;

end

function [Xtrain, Xtest] = rescale(Xtrain, Xtest)

% Rescales every observation in the training and test
% to have unit length
%
% Xtrain: Training data (d x N)
% Xtest: Test data (d x X)

 Xtrain = bsxfun(@rdivide, Xtrain, sqrt(sum(Xtrain .^ 2, 1)));
 Xtest = bsxfun(@rdivide, Xtest, sqrt(sum(Xtest .^ 2, 1)));

end
function [Ytest] = NN(Xtrain, Ytrain, Xtest)
% Run the nearest neighbor algorithm to classify
% test data
% Xtrain: Training observations (d x N)
% Ytrain: Training labels (N)
% Xtest: Test observations (d x N)
% Ytest: Predicted labels (N)
 dist = -2 * (Xtrain' * Xtest);
 dist = bsxfun(@plus, sum(Xtest .^ 2, 1), dist);
 dist = bsxfun(@plus, sum(Xtrain .^ 2, 1)', dist);
 [~, nearest] = min(dist, [], 1);
 Ytest = Ytrain(nearest);
end

function [acc] = score(Ytrue, Ypred)
% Computes the accuracy of a set of predictions
% Ytrue: True labels of data (1 x N)
% Ypred: Predicted labels of data (1 x N)
% acc: Accuracy
 acc = sum(double(Ytrue == Ypred)) / numel(Ytrue);
end
% hw7.mat
% Runs all of the experiments for homework 5

% Load and combine the training and test data matrices
load digits.mat
[Xtrain, Ytrain] = setupData(train0, train1, train2, train3, train4, train5, train6, train7, train8, train9);
[Xtest, Ytest] = setupData(test0, test1, test2, test3, test4, test5, test6, test7, test8, test9);

% Part a
tic;
Ypred = NN(Xtrain, Ytrain, Xtest);
time = toc;
acc = score(Ytest, Ypred);
fprintf('Standard NN, accuracy: %f, time: %f\n', acc, time);

% Part b
% Test and evaluate the NN algorithm for a range of dimensions
fprintf('NN with random projections:\n');
for m = [10, 100, 200]
tic;
[XtrainP, XtestP] = randproject(Xtrain, Xtest, m);
Ypred = NN(XtrainP, Ytrain, XtestP);
time = toc;
acc = score(Ytest, Ypred);
fprintf('\t%d dimensions, accuracy: %f, time: %f\n', m, acc, time);
end

% Part c
fprintf('Experiments with rescaling\n');
[Xtrain, Xtest] = rescale(Xtrain, Xtest);

tic;
Ypred = NN(Xtrain, Ytrain, Xtest);
time = toc;
acc = score(Ytest, Ypred);
fprintf('Standard NN, accuracy: %f, time: %f\n', acc, time);

% Test and evaluate the NN algorithm for a range of dimensions
fprintf('NN with random projections:
');
for m = [10, 100, 200]
 tic;
 [XtrainP, XtestP] = randproject(Xtrain, Xtest, m);
 Ypred = NN(XtrainP, Ytrain, XtestP);
 time = toc;
 acc = score(Ytest, Ypred);
 fprintf('%5d dimensions, accuracy: %f, time: %f
 ', m, acc, time);
end