HW4 Solutions

Gabe Hope
March 2017

1 Problem 1

1.1 Part a

Recall that the maximum likelihood estimate for a Bernoulli distribution is:

\[\hat{\mu}_{MLE} = \frac{k}{n} \]

Where \(k \) is the number of 1’s (heads) and \(n \) is the total number of samples.

Therefore our maximum likelihood estimate for \(\mu \) given the results of our coin tosses is:

\[\hat{\mu}_{MLE} = \frac{4}{4+9} = \frac{4}{13} \]

1.2 Part b

Code to generate posterior plots:

```matlab
% Compute values between 0 and 1
x = [0:0.01:1];
y1 = betapdf(x, 4+1, 9+1);
y2 = betapdf(x, 4+2, 9+2);
y3 = betapdf(x, 4+10, 9+10);
y4 = betapdf(x, 4+100, 9+100);

% Create the plot with a legend
figure
hold on
plot(x, y1);
plot(x, y2);
plot(x, y3);
plot(x, y4);
legend('a=b=1', 'a=b=2', 'a=b=10', 'a=b=100')
```
1.3 Part c

Recall that the mean ($\bar{\mu}$) of the posterior predictive distribution given a set of Bernoulli samples D and a beta prior parametrized by α, β is:

$$\bar{\mu} = P(x = 1|D) = \frac{m + \alpha}{m + \alpha + l + \beta}$$

Where m is the number of 1’s (heads) in D and l is the number of 0’s (tails) in D. We see that this is equivalent to the probability that the next toss will be a heads. Applying this formula to each of our hyperparameter settings we get:

$$P(x = 1|D) = \frac{4 + 1}{4 + 1 + 9 + 1} = \frac{5}{15} = \frac{1}{3} \quad (1)$$

$$P(x = 1|D) = \frac{4 + 2}{4 + 2 + 9 + 2} = \frac{6}{17} \quad (2)$$

$$P(x = 1|D) = \frac{4 + 10}{4 + 10 + 9 + 10} = \frac{14}{33} \quad (3)$$

$$P(x = 1|D) = \frac{4 + 100}{4 + 100 + 9 + 100} = \frac{104}{213} \quad (4)$$

Note that a stronger prior brings our posterior beliefs closer to that of a fair coin.
1.4 Part d
Recall that the MAP estimate for \(\mu \) was derived to be:

\[
\mu_{MAP} = \mu = \frac{m + (\alpha - 1)}{m + l + (\alpha - 1) + (\beta - 1)}
\]

Plugging in our different hyperparameter settings we get:

\[
\mu_{MAP} = \frac{4 + (1 - 1)}{4 + 9 + (1 - 1) + (1 - 1)} = \frac{4}{13} \quad (1)
\]

\[
\mu_{MAP} = \frac{4 + (2 - 1)}{4 + 9 + (2 - 1) + (2 - 1)} = \frac{5}{15} \quad (2)
\]

\[
\mu_{MAP} = \frac{4 + (10 - 1)}{4 + 9 + (10 - 1) + (10 - 1)} = \frac{13}{31} \quad (3)
\]

\[
\mu_{MAP} = \frac{4 + (100 - 1)}{4 + 9 + (100 - 1) + (100 - 1)} = \frac{103}{211} \quad (4)
\]

2 Problem 2
We can first write the expected loss of each choice in terms of \(\rho = p(y = 1|x) \):

\[
E[L(y, r(x))] = \begin{cases}
\rho & r(x) = 0 \\
1 - \rho & r(x) = 1 \\
\lambda & r(x) = reject
\end{cases}
\]

For any given input \(x \) we want our rule to choose the labels with the minimal expected loss. We see that given these three values our rule should reject if:

\[
\lambda < \rho < 1 - \lambda
\]

Otherwise we should assign a label of 1 if:

\[
\rho > \frac{1}{2}
\]