HW3 Solutions

Gabe Hope
February 2017

1 Problem 1

1.1 Part a (and b)

Our problem is to find the MAP estimate of w:

$$w_{MAP} = \max_w p(w|T)$$

Using Bayes’ rule and the fact that $p(T)$ does not depend on w we see that:

$$w_{MAP} = \max_w \frac{p(T|w)p(w)}{p(T)} = \max_w p(T|w)p(w)$$

$$= \min_w -\log p(T|w) - \log p(w)$$

The negative log likelihood of the training set ($p(T|w)$) is the same as in standard linear regression:

$$-\log p(T|w) = \sum_{i=1}^{N} \left(\frac{y_i - f_w(x_i))^2}{2\sigma^2}\right) - \log \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)$$

The negative log prior is simply the negative log pdf of a multivariate Gaussian distribution with mean 0 and covariance aI:

$$-\log p(w) = \frac{1}{2}w^T(aI)^{-1}w - \log \left(\frac{1}{\sqrt{(2\pi)^d|\Sigma|}}\right)$$

Putting these two pieces together and dropping the terms that do not depend on w we get:

$$w_{MAP} = \min_w \frac{1}{2a}w^Tw + \frac{1}{2\sigma^2}\sum_{i=1}^{N}(y_i - f_w(x_i))^2$$

Note that above we made use of the fact that:

$$\frac{1}{aI} = \frac{1}{\frac{1}{a}I}$$
Finally multiplying through by the constant σ^2 we get:

$$w_{MAP} = \min_w \frac{\sigma^2}{2a} w^T w + \frac{1}{2} \sum_{i=1}^{N} (y_i - f_w(x_i))^2$$

This is equivalent to our desired form with $\lambda = \frac{\sigma^2}{a}$.

2 Problem 2

Using the fact that the n random variables in our problem are independent, we can write the distribution over random vectors as a product of Bernoulli distributions:

$$p(x|u) = \prod_{i=1}^{n} u_i^{x_{ji}} (1 - u_i)^{(1-x_{ji})}$$

Since the likelihood over the training set is the product of the likelihoods of all the samples, we can formulate the maximum likelihood estimator for u as:

$$u_{ML} = \max_u p(T|u) = \max_u \prod_{j=1}^{k} \prod_{i=1}^{n} u_i^{x_{ji}} (1 - u_i)^{(1-x_{ji})}$$

Where we are using x_{ji} to refer to the i^{th} entry of sample j. Taking the log of the likelihood we get:

$$u_{ML} = \max_u \sum_{j=1}^{k} \sum_{i=1}^{n} (x_{ji}) \log(u_i) + (1 - x_{ji}) \log(1 - u_i)$$

Taking the derivative with respect to u_i and setting it equal to zero gives us the following as in our original derivation of the Bernoulli MLE:

$$\frac{\partial}{\partial u_i} = 0 \rightarrow \sum_{j=1}^{k} \left(\frac{x_{ji}}{u_i} + \frac{1 - x_{ji}}{1 - u_i} (-1) \right) = 0$$

Solving for u_i we get:

$$u_{iML} = \frac{\sum_{j=1}^{k} x_{ji}}{k}$$

Note that this is equivalent to using the Bernoulli ML estimator for each dimension independently.
3 Question 3

3.1 Part a

For our naive Bayes model, we are interested in the maximum likelihood estimate of u using our training data T:

$$u_{ML} = \max_u p(T|u)$$

$$= \max_u \log p(T|u)$$

We can break up our likelihood $p(T|u)$ using the assumption that the samples in our training set are independent:

$$u_{ML} = \max_u \sum_{j=1}^{k} \log p(x_j, y_j|u) = \max_u \sum_{j=1}^{k} (\log p(x_j|y_j, u) + \log p(y_j|u))$$

$$= \max_u \sum_{j=1}^{k} \log p(x_j|y_j, u)$$

Above we used the fact that $p(y_j|u) = p(y_j)$, noting that the class probabilities are not dependent on the parameter u.

We can now use our modelling assumptions that the pixel probabilities are independent conditioned on the class and each pixel is drawn from a Bernoulli distribution specific to the class and model. This means that we can further expand our likelihood as follows:

$$u_{ML} = \max_u \sum_{j=1}^{k} \sum_{i=1}^{n} \log p(x_{ji}|y_j, u)$$

$$= \max_u \sum_{j=1}^{k} \sum_{i=1}^{n} (x_{ji}) \log(u_{yi,i}) + (1 - x_{ji}) \log(1 - u_{yi,i})$$

Taking the derivative with respect to the parameter for a particular class c and feature i we get:

$$\frac{\partial}{\partial u_{ji}} = 0 \rightarrow \sum_{y_j=c} \left(\frac{x_{ji}}{u_{ci}} + \frac{1 - x_{ji}}{1 - u_{ci}} (-1) \right) = 0$$

Where our sum is over all samples in T with class label c. As in the Bernoulli MLE example, it follows that the MLE for a parameter u_{ci} is simply a ratio of the count of 1s at pixel i from samples with class c divided by the total number of samples with class c:

$$u_{ci} = \frac{\sum_{y_j=c} x_{ji}}{\sum_{y_j=c} 1}$$
3.2 Part b
Visualization of MLE:

![Images of digits](image1.png)

3.3 Part c
Fraction of digits correctly classified: **0.7956**
Confusion matrix:

```
  437  0  3  0  2  32  13  0  12  1
  0  471  2  3  0  13  4  0  7  0
  8  12 379  36  8  2  6 12  32  5
  1  10  4 415  6 23  5 13 10  13
  1  1  0  1 364  5 13  4  7  94
14  2  3  67 19 346  7  5 17  20
  7  9  8  0  6  33 414  0  3  0
  1 18  8  4 14  0  2 396  9  48
  4 16  3 50 12 18  1 4 347  35
  2  8  4  8 50  7  0  7  5 409
```

3.4 Code

```matlab
load('digits.mat')
```
% Setup our collections of data in cell arrays, so we can loop through them later
alltrain = {train0, train1, train2, train3, train4, train5, train6, train7, train8, train9};
alltest = {test0, test1, test2, test3, test4, test5, test6, test7, test8, test9};

figure
u = cell(10);

% For each class compute the MLE of the parameter u and display the result as a heatmap
for digit = 1:10
 T = alltrain(digit);
 u{digit} = sum(T, 1) / size(T, 1);
 subplot(2, 5, digit);
 imagesc(reshape(u{digit}, 28, 28)');
 axis off
end

% Classify our test data and build a confusion matrix
confusion = zeros(10,10);
for truelabel = 1:10
 T = alltest(truelabel);
 log_probs = zeros(10, 500);
 % Compute the log-likelihoods of the images given each class
 for model = 1:10
 log_probs(model, :) = log(u{model} + 1e-20) * T' + log(1 - u{model} + 1e-20) * (1-T)';
 end
 % Make predictions based on the most probable class
 [maxp, predictions] = max(log_probs, [], 1);
 counts = zeros(10, 500);
 for digit = 1:10
 counts(digit, :) = predictions == digit;
 end
 % Fill the appropriate row of the confusion matrix
 confusion(truelabel, :) = sum(counts, 2);
end
%Print the accuracy and confusion matrix
accuracy = sum(diag(confusion)) / sum(sum(confusion))
confusion