Problem 1

Suppose the Fourier series coefficients of a periodic, continuous-time signal with period 4 are the following:

\[a_k = \begin{cases}
 jk & |k| < 3 \\
 0 & \text{otherwise}
\end{cases} \]

Determine the signal \(x(t) \).

\[x(t) = -2 \sin\left(\frac{\pi}{2} t\right) - 4 \sin(\pi t). \]

Problem 2

Consider the following three continuous-time signals with a fundamental period of \(T = 1/2 \):

\[x(t) = \cos(4\pi t) \]
\[y(t) = \sin(4\pi t) \]
\[z(t) = x(t)y(t) \]

(a) Determine the Fourier series coefficients of \(x(t) \).

The nonzero Fourier series coefficients are \(a_1 = \frac{1}{2}, a_{-1} = \frac{1}{2} \).

(b) Determine the Fourier series coefficients of \(y(t) \).
The nonzero Fourier series coefficients are \(b_1 = \frac{1}{2j}, b_{-1} = \frac{-1}{2j} \).

(c) Use the results of parts (a) and (b), along with the multiplication property of the continuous-time Fourier series, to determine the Fourier series coefficients of \(z(t) = x(t)y(t) \).

The Fourier series coefficients of \(z(t) = x(t)y(t) \) are the following:

\[
 h_k = \sum_{l=-\infty}^{\infty} a_l b_{k-l} = a_1 b_{k-1} + a_{-1} b_{k+1}
\]

Therefore, the nonzero coefficients are \(h_2 = \frac{1}{4j}, h_{-2} = \frac{-1}{4j} \).

(d) Determine the Fourier series coefficients of \(z(t) \) through direct expansion of \(z(t) \) in trigonometric form, and compare you result with that of part (c).

\[
 \cos(4\pi t) \sin(4\pi t) = \frac{1}{2} [\sin(8\pi t) - \sin(0)] = \frac{1}{2} \cdot \frac{1}{2j} [e^{j2(4\pi t)} - e^{-j2(4\pi t)}]
\]

So the nonzero coefficients are \(h_2 = \frac{1}{4j}, h_{-2} = \frac{-1}{4j} \) as above.

Problem 3

Let \(S_A \) be the set of all complex-valued discrete signals, \(S_B \) be the set of complex-valued discrete signals that are bounded and \(S_S \) be the set of complex-valued discrete signals that are absolutely summable. The mathematical definitions are below.

\[
 S_A = \{ x : \mathbb{Z} \rightarrow \mathbb{C} \} \quad (1)
\]

\[
 S_B = \{ x : \mathbb{Z} \rightarrow \mathbb{C} \mid \exists b \in \mathbb{R} \text{ such that } |x[n]| \leq b \} \quad (2)
\]

\[
 S_S = \{ x : \mathbb{Z} \rightarrow \mathbb{C} \mid \exists b \in \mathbb{R} \text{ such that } \sum_{n=-\infty}^{\infty} |x[n]| \leq b \} \quad (3)
\]

(a) Show that \(S_S \subseteq S_B \subseteq S_A \).

If \(x \in S_S \) there is a \(b \) such that \(\sum |x[n]| \leq b \). Since each value in the sum is non-negative we must have that each value is at most \(b \). This implies \(x \in S_B \).

If \(x \in S_B \) then it is in \(S_A \) since \(S_A \) includes all signals with no restrictions.

(b) Show that if \(x_1, x_2 \in S_B \) then \(x_1 + x_2 \in S_B \) and \(x_1 - x_2 \in S_B \).
Since $x_1, x_2 \in S_B$ there exist b_1 and b_2 such that $|x_1[n]| \leq b_1$ and $|x_2[n]| \leq b_2$. Note that $|a + b| \leq |a| + |b|$ and $|a - b| \leq |a| + |b|$. Therefore $|x_1[n] + x_2[n]| \leq |x_1[n]| + |x_2[n]| \leq b_1 + b_2$ and $x_1 + x_2 \in S_B$ because each entry has absolute value at most $b = b_1 + b_2$. Similarly $|x_1[n] - x_2[n]| \leq |x_1[n]| + |x_2[n]| \leq b_1 + b_2$ and $x_1 - x_2 \in S_B$ because each entry has absolute value at most $b = b_1 + b_2$.

(c) Show that if $x_1, x_2 \in S_S$ then $x_1 + x_2 \in S_S$ and $x_1 - x_2 \in S_S$.

This is very similar to (b).

For each signal below, determine if it is bounded and/or absolutely summable.

(d) $x[n] = 2$

Bounded, not absolutely summable.

(e) $x[n] = \sin(n/10)$

Bounded, not absolutely summable.

(f) $x[n] = u(n)$

Bounded, not absolutely summable.

(g) $x[n] = u(n)\frac{1}{2^n}$

Bounded and absolutely summable.

(h) $x[n] = 1/n$

Not well defined at $n = 0$.

An arbitrary signal $x[n]$ that is zero outside of a finite range $n_0 \leq n \leq n_1$.

Bounded and absolutely summable.

Problem 4

A system is **stable** if it maps bounded signals to bounded signals.

(a) Let $h[n]$ be a signal that is zero everywhere except for $n \in A$ where A is a finite set. Show that C_h is stable.

Let x be a bounded signal. Let $y[n] = h[n] * x[n]$. We need to show y is bounded. Since
x is bounded, there is a b such that |x[n]| ≤ b. Let c = \max_{k \in A} |h[k]|.

\[|y[n]| = \left| \sum_{k \in A} h[k]x[n - k] \right| \leq \sum_{k \in A} |h[k]| |x[n - k]| \leq \sum_{k \in A} cb \leq |A| cb \]

(b) Let \(h[n] = u(n) \). Is \(C_h \) stable? Justify your answer.

No. If the input is the bounded constant signal \(x[n] = 1 \) the output is not bounded.

(c) Let \(h[n] = u(n) \frac{1}{2^n} \). Is \(C_h \) stable? Justify your answer.

Yes. If the input \(x[n] \) is bounded there is a bound \(b \) such that |x[n]| ≤ b. Let \(y[n] \) be the output.

\[|y[n]| = \left| \sum_{k=0}^{\infty} \frac{1}{2^k} x[n] \right| \leq \sum_{k=0}^{\infty} \frac{1}{2^k} |x[n]| \leq \sum_{k=0}^{\infty} \frac{1}{2^k} b = 2b \]

So the output \(y[n] \) is bounded by 2b.

Problem 5

Invertibility is relative...

We say a system is invertible over a set of signals \(S \) when it maps different signals from \(S \) to different signals. Equivalently, a system \(A \) is invertible over \(S \) if there exists another system \(B \) such that \(B(A(x)) = x \) for all signals \(x \in S \).

For each system below, determine if it is invertible over each of \(S_A \), \(S_B \), and \(S_S \).

(a) \(y[n] = 2x[n - 1] \)

Invertible over each set, with inverse \(z[n] = y[n + 1]/2 \).

(b) \(y[n] = x[2n] \) (subsampling)

Not invertible over any of the sets. Take \(x_1[n] = 0 \) and \(x_2[n] \) that is zero everywhere except \(x_2[1] = 1 \). Then \(x_1 \) and \(x_2 \) both map to the zero signal. Since both \(x_1 \) and \(x_2 \) are in \(S_S \), \(S_B \) and \(S_A \) the system is not invertible over any of the sets.

(c) \(y[n] = x[n] - x[n - 1] \) (derivative)

Not invertible over \(S_A \) or \(S_B \) because two different constant signals map to the same (zero) signal.
The derivative is invertible over S_S. To see this, suppose it was not. Then there must exist two different signals x_1 and x_2 in S_S that map to the same signal. Since the system is linear $x_1 - x_2$ maps to the zero signal. Since $x_1 \neq x_2$ $x = x_1 - x_2$ is not zero everywhere. Part (c) of Problem 3 implies that $x \in S_S$. If x is not zero everywhere there must be a k for which $x[k] \neq 0$. But since x maps to the zero signal we must have $x[k - 1] = x[k]$. Moreover $x[k - 2] = x[k - 1]$ and so on. Therefore x is a constant non-zero signal. But such x cannot be in S_S, which is a contradiction.

(d) $y[n] = x[n] + \frac{1}{2}x[n - 1000]$ (simple echo)

Not invertible over S_A but is invertible over S_B and S_S. The reasoning is similar to (c).