
Obstruction-Free Synchronization: Double-Ended Queues as an Example

Maurice Herlihy
Computer Science Department
Brown University, Box 1910

Providence, RI 02912

Victor Luchangco Mark Moir
Sun Microsystems Laboratories
1 Network Drive, UBUR02-311

Burlington, MA 01803

Abstract

We introduceobstruction-freedom, a new nonblocking
property for shared data structure implementations. This
property is strong enough to avoid the problems associ-
ated with locks, but it is weaker than previous nonblocking
properties—specifically lock-freedom and wait-freedom—
allowing greater flexibility in the design of efficient imple-
mentations. Obstruction-freedom admits substantially sim-
pler implementations, and we believe that in practice it
provides the benefits of wait-free and lock-free implemen-
tations.

To illustrate the benefits of obstruction-freedom, we
present two obstruction-free CAS-based implementations of
double-ended queues (deques); the first is implemented on a
linear array, the second on a circular array. To our knowl-
edge, all previous nonblocking deque implementations are
based on unrealistic assumptions about hardware support
for synchronization, have restricted functionality, or have
operations that interfere with operations at the opposite end
of the deque even when the deque has many elements in
it. Our obstruction-free implementations have none of these
drawbacks, and thus suggest that it is much easier to design
obstruction-free implementations than lock-free and wait-
free ones. We also briefly discuss other obstruction-free
data structures and operations that we have implemented.

1. Introduction

The traditional way to implement shared data structures
is to use mutual exclusion (locks) to ensure that concurrent
operations do not interfere with one another. Locking has a
number of disadvantages with respect to software engineer-
ing, fault-tolerance, and scalability (see [8]). In response,
researchers have investigated a variety of alternative syn-
chronization techniques that do not employ mutual exclu-
sion. A synchronization technique is wait-freeif it ensures
that every thread will continue to make progress in the face

of arbitrary delay (or even failure) of other threads. It is
lock-freeif it ensures only that some thread always makes
progress. While wait-free synchronization is the ideal be-
havior (thread starvation is unacceptable), lock-free syn-
chronization is often good enough for practical purposes (as
long as starvation, while possible in principle, never hap-
pens in practice).

The synchronization primitives provided by most mod-
ern architectures, such as compare-and-swap(CAS)
or load-locked/store-conditional(LL/SC) are powerful
enough to achieve wait-free (or lock-free) implementations
of any linearizable data object [9]. Nevertheless, with a few
exceptions (such as queues [16]), wait-free and lock-free
data structures are rarely used in practice. The underly-
ing problem is that conventional synchronization primitives
such as CAS and LL/SC are an awkward match for lock-free
synchronization. These primitives lend themselves most
naturally to optimistic synchronization, which works only
in the absence of synchronization conflicts. For example,
the natural way to use CAS for synchronization is to read a
value v from an address a, perform a multistep computation
to derive a new value w, and then to call CAS to reset the
value of a from v to w. The CAS is successful if the value
at a has not been changed in the meantime. Progress guar-
antees typically rely on complex and inefficient “helping”
mechanisms, that pose a substantial barrier to the wider use
of lock-free synchronization.

In this paper, we propose an alternative nonblocking con-
dition. A synchronization technique is obstruction-freeif
it guarantees progress for any thread that eventually exe-
cutes in isolation. Even though other threads may be in
the midst of executing operations, a thread is considered
to execute in isolation as long as the other threads do not
take any steps. (Pragmatically, it is enough for the thread
to run long enough without encountering a synchronization
conflict from a concurrent thread.) Like the wait-free and
lock-free conditions, obstruction-free synchronization en-
sures that no thread can be blocked by delays or failures of
other threads. This property is weaker than lock-free syn-
chronization, because it does not guarantee progress when

1



two or more conflicting threads are executing concurrently.
The most radical way in which our approach of im-

plementing obstruction-free algorithms differs from the
usual approach of implementing their lock-free and wait-
free counterparts is that we think that ensuring progress
should be considered a problem of engineering, not of math-
ematics. We believe that commingling correctness and
progress has inadvertently resulted in unnecessarily ineffi-
cient and conceptually complex algorithms, creating a bar-
rier to widespread acceptance of nonblocking forms of syn-
chronization. We believe that a clean separation between
the two concerns promises simpler, more efficient, and more
effective algorithms.

To support our case, we have implemented several
obstruction-free shared data structures that display proper-
ties not yet achieved by comparable lock-free implementa-
tions. In this paper, we present two obstruction-free double-
ended queue (deque) implementations. Elsewhere [11], we
describe a software transactional memory implementation
used to construct an obstruction-free red-black tree [5]. To
our knowledge, there are no lock-free implementations of
any data structure as complicated as a red-black tree.

As an aside, we note that there is no “obstruction-free
hierarchy” comparable to the “wait-free consensus hierar-
chy”: One can solve obstruction-free consensus using only
read/write registers by derandomizing randomized wait-free
consensus algorithms such as the one in [4].

Because obstruction-freedom does not guarantee
progress in the presence of contention, we need to pro-
vide some mechanism to reduce the contention so that
progress is achieved. However, lock-free and wait-free
implementations typically also require such mechanisms
to get satisfactory performance. We can use these same
mechanisms with obstruction-free implementations, as we
discuss below. Because obstruction-freedom guarantees
safety regardless of the contention, we can change mecha-
nisms, even dynamically, without changing the underlying
nonblocking implementation.

One simple and well-known method to reduce con-
tention is for operations to “back off” when they encounter
interference by waiting for some time before retrying. Var-
ious choices for how long to wait are possible; randomized
exponential backoff is one scheme that is effective in many
contexts. Other approaches to reducing contention include
queuing and timestamping approaches, in which threads
agree amongst themselves to “wait” for each other to fin-
ish. While simplistic applications of these ideas would give
rise to some of the same problems that the use of locks does,
we have much more freedom in designing sophisticated ap-
proaches for contention control than when using locks, be-
cause correctness is not jeopardized by interrupting an oper-
ation at any time and allowing another operation to continue
execution.

In fact, it is possible to design contention manage-
ment mechanisms that guarantee progress to every oper-
ation that takes enough steps, provided the system satis-
fies some very weak (and reasonable) assumptions. Thus,
the strong progress properties of wait-free implementations
can be achieved in practice by combining obstruction-free
implementations with appropriate contention managers. In
scenarios in which contention between operations is rare,
we will benefit from the simple and efficient obstruction-
free designs; the more heavy-weight contention resolution
mechanisms will rarely be invoked. In contrast, in most
lock-free and wait-free implementations, the mechanisms
that are used to ensure the respective progress properties im-
pose significant overhead even in the absence of contention.
A study of the performance of various contention man-
agers in practice, and tradeoffs between system assump-
tions, progress guarantees and performance is beyond the
scope of this paper.

In some contexts, explicit contention reduction mecha-
nisms may even be unnecessary. For example, in a unipro-
cessor where threads are scheduled by time slice, relatively
short obstruction-free operations will be guaranteed to run
alone for long enough to complete. Similarly, in priority-
scheduled uniprocessors, an operation runs in isolation un-
less it is preempted by a higher priority operation. (As an
aside, it has been shown previously that the consensus hier-
archy collapses in such systems [2, 17]. However, in these
results, correctness, as well as progress, depends on the sys-
tem assumptions.)

In Section 2, we discuss previous work on nonblocking
deques. Section 3 presents a simple obstruction-free deque
implementation on a linear array, and Section 4 extends this
algorithm to circular arrays. A detailed formal proof for the
extended algorithm is given in a full version of the paper
[10]. We conclude in Section 5.

2. Related Work on Nonblocking Deques

In this section, we briefly summarize related work on
nonblocking deques. Double-ended queues (deques) are
formally defined in [6, 13]. Informally, deques generalize
FIFO queues and LIFO stacks by supporting a sequence of
values and operations for adding (pushing) a value to or re-
moving (popping) a value from either end. Thus, imple-
menting a shared deque combines all of the intricacies of
implementing queues and stacks.

Arora, et al.proposed a limited-functionality CAS-based
lock-free deque implementation [3]. Their deque allows
only one process to access one end, and only pop operations
to be done on the other. Thus, they did not face the difficult
problem of concurrent pushes and pops on the same end of
the deque. They further simplified the problem by allow-
ing some concurrent operations to simply abort and report



failure.
Greenwald proposed two lock-free deque implementa-

tions [7]. Both implementations depend on a hardware
DCAS (double compare-and-swap) instruction, which is
not widely supported in practice, and one of them does
not support noninterfering concurrent operations at oppo-
site ends of the deque. Various members of our group have
also proposed several lock-free deque implementations that
depend on DCAS [1, 6, 14].

Michael proposed a simple and efficient lock-free, CAS-
based deque implementation [15]. However, the technique
used by this algorithm fundamentally causes all operations
to interfere with each other. Therefore, it offers no in-
sight into designing scalable nonblocking data structures in
which noninterfering operations can proceed in parallel.

3. Obstruction-Free Deque Implementation

In this section we present our array-based obstruction-
free deque implementation. This algorithm is extremely
simple, but it is not a real deque in the sense that it does
not really generalize queues: if we only push on one end
and pop from the other, we will exhaust the space in the
array and will not be able to push any more items. In the
next section, we show how to extend the algorithm to “wrap
around” in the array in order to overcome this problem.

The data declarations and right-side push and pop op-
erations are shown in Figure 1; the left-side operations are
symmetric with the right-side ones.

We assume the existence of two special “null” values
LN and RN (left null and right null) that are never pushed
onto the deque. We use an array A to store the current
state of the deque. The deque can contain up to MAX val-
ues, and the array is of size MAX+2 to accommodate a left-
most location that always contains LN and a rightmost lo-
cation that always contains RN. (These extra locations are
not strictly necessary, but they simplify the code.) Our al-
gorithm maintains the invariant that the sequence of val-
ues in A[0].val..A[MAX+1].val always consists of
at least one LN, followed by zero or more data values, fol-
lowed by at least one RN. The array can be initialized any
way that satisfies this invariant. To simplify our presenta-
tion, we assume the existence of a function oracle(),
which accepts a parameter left or right and returns an
array index. The intuition is that this function attempts to
return the index of the leftmost RN value in A when invoked
with the parameter right, and attempts to return the in-
dex of the rightmost LN value in A when invoked with the
parameter left. The algorithm is linearizable [12] even if
oracle can be incorrect (we assume that it at least always
returns a value between 1 and MAX+1, inclusive, when in-
voked with the parameterright and always returns a value
between 0 and MAX, inclusive, when invoked with the pa-

rameter left; clearly it is trivial to implement a function
that satisfies this property). Stronger properties of the or-
acle are required to prove obstruction-freedom; we discuss
these properties and how they can be achieved later.

As explained in more detail below, we attach version
numbers to each value in order to prevent concurrent op-
erations that potentially interfere from doing so. The ver-
sion numbers are updated atomically with the values using
a compare-and-swap (CAS) instruction.1 As usual with ver-
sion numbers, we assume that sufficient bits are allocated
for the version numbers to ensure that they cannot “wrap
around” during the short interval in which one process exe-
cutes a single iteration of a short loop in our algorithm.

The reason our obstruction-free deque implementation
is so simple (and the reason we believe obstruction-free im-
plementations in general will be significantly simpler than
their lock-free and wait-free counterparts) is that there is
no progress requirement when any interference is detected.
Thus, provided we maintain basic invariants, we can sim-
ply retry when we detect interference. In our deque imple-
mentation, data values are changed only at the linearization
point of successful push and pop operations. To prevent
concurrent operations from interfering with each other, we
increment version numbers of adjacent locations (without
changing their associated data values). As a result of this
technique, two concurrent operations can each cause the
other to retry: this explains why our implementation is so
simple, and also why it is not lock-free. To make this idea
more concrete, we describe our implementation in more de-
tail below.

The basic idea behind our algorithm is that a
rightpush(v) operation changes the leftmost RN value
to v, and a rightpop() operation changes the rightmost
data value to RN and returns that value (the left-side op-
erations are symmetric, so we do not discuss them further
except when dealing with interactions between left- and
right-side operations). Each rightpush(v) operation
that successfully pushes a data value (as opposed to return-
ing “full”) is linearized to the point at which it changes an
RN value to v. Similarly, each rightpop operation that
returns a value v (as opposed to returning “empty”) is lin-
earized to the point at which it changes the val field of
some array location from v to RN. Furthermore, the val
field of an array location does not change unless an oper-
ation is linearized as discussed above. The rightpush
operation returns “full” only if it observes a non-RN value
in A[MAX].val. Given these observations, it is easy to see
that our algorithm is linearizable if we believe the following

1A CAS(a,e,n) instruction takes three parameters: an address a,
an expected value e, and a new value n. If the value currently stored at
address a matches the expected value e, then CAS stores the new value n
at address a and returns true; we say that the CAS succeedsin this case.
Otherwise, CAS returns false and does not modify the memory; we say
that the CAS fails in this case.



type element = record val: valtype; ctr: int end

A: array[0..MAX+1] of element initially there is some k in [0,MAX]
such that A[i] = <LN,0> for all i in [0,k]

and A[i] = <RN,0> for all i in [k+1,MAX+1].

rightpush(v) // v is not RN or LN
RH0: while (true) {
RH1: k := oracle(right); // find index of leftmost RN
RH2: prev := A[k-1]; // read (supposed) rightmost non-RN value
RH3: cur := A[k]; // read (supposed) leftmost RN value
RH4: if (prev.val != RN and cur.val = RN) { // oracle is right
RH5: if (k = MAX+1) return "full"; // A[MAX] != RN
RH6: if CAS(&A[k-1],prev,<prev.val,prev.ctr+1>) // try to bump up prev.ctr
RH7: if CAS(&A[k],cur,<v,cur.ctr+1>) // try to push new value
RH8: return "ok"; // it worked!

} // end if (prev.val != RN and cur.val = RN)
} // end while

rightpop()
RP0: while (true) { // keep trying till return val or empty
RP1: k := oracle(right); // find index of leftmost RN
RP2: cur := A[k-1]; // read (supposed) value to be popped
RP3: next := A[k]; // read (supposed) leftmost RN
RP4: if (cur.val != RN and next.val = RN) { // oracle is right
RP5: if (cur.val = LN and A[k-1] = cur)"; // adjacent LN and RN
RP6: return "empty
RP7: if CAS(&A[k],next,<RN,next.ctr+1>) // try to bump up next.ctr
RP8: if CAS(&A[k-1],cur,<RN,cur.ctr+1>) // try to remove value
RP9: return cur.val // it worked; return removed value

} // end if (cur.val != RN and next.val = RN)
} // end while

Figure 1. Obstruction-free deque implementation: Data declarations and right-side operations

three claims (and their symmetric counterparts):

• At the moment that line RH7 of a rightpush(v)
operation successfully changes A[k].val for some k
from RN to v, A[k-1].val contains a non-RN value
(i.e., either a data value or LN).

• At the moment that line RP8 of the rightpop oper-
ation successfully changes A[k-1].val for some k
from some value v to RN, A[k].val contains RN.

• If a rightpop operation returns “empty”, then at
the moment it executed line RP3, A[k].val=RN and
A[k-1].val=LN held for some k.

Using the above observations and claims, a proof by
simulation to an abstract deque in an array of size MAX is
straightforward. Below we briefly explain the synchroniza-
tion techniques that we use to ensure that the above claims
hold. The techniques all exploit the version numbers in the
array locations.

The empty case (the third claim above) is the simplest:
rightpop returns “empty” only if it reads the same value
from A[k-1] at lines RP2 and RP5. Because every CAS
that modifies an array location increments that location’s
version number, it follows that A[k-1] maintained the
same value throughout this interval (recall our assumption
about version numbers not wrapping around). Thus, in par-
ticular, A[k-1].val contained LN at the moment that line
RP3 read RN in A[k].val.

The techniques used to guarantee the other two claims
are essentially the same, so we explain only the first one.
The basic idea is to check that the neighbouring location
(i.e., A[k-1]) contains the appropriate value (line RH2;
see also line RH4), and to increment its version number
(without changing its value; line RH6) between reading the
location to be changed (line RH3) and attempting to change
it (line RH7). If any of the attempts to change a location
fail, then we have encountered some interference, so we
can simply restart. Otherwise, it can be shown easily that
the neighbouring location did not change to RN between



the time it was read (line RH2) and the time the location
to be changed is changed (line RH7). The reason is that
a rightpop operation—the only operation that changes
locations to RN—that was attempting to change the neigh-
bouring location to RNwould increment the version number
of the location the rightpush operation is trying to mod-
ify, so one of the operations would cause the other to retry.

3.1. Oracle Implementations

The requirements for the oracle function assumed in
the previous section are quite weak, and therefore a num-
ber of implementations are possible. We first describe the
requirements, and then outline some possible implementa-
tions. For linearizability, the only requirement on the oracle
is that it always returns an index from the appropriate range
depending on its parameter as stated earlier; satisfying this
requirement is trivial. However, to guarantee obstruction-
freedom, we require that the oracle is eventually accurate if
repeatedly invoked in the absence of interference. By “ac-
curate”, we mean that it returns the index of the leftmost
RN when invoked with right, and the index of the right-
most LN when invoked with left. It is easy to see that
if any of the operations executes an entire loop iteration in
isolation, and the oracle function returns the index spec-
ified above, then the operation completes in that iteration.
Because the oracle has no obligation (except for the trivial
range constraint) in the case that it encounters interference,
we have plenty of flexibility in implementing it. One sim-
ple and correct implementation is to search the array lin-
early from one end looking for the appropriate value. De-
pending on the maximum deque size, however, this solution
might be very inefficient. One can imagine several alterna-
tives to avoid this exhaustive search. For example, we can
maintain “hints” for the left and right ends, with the goal
of keeping the hints approximately accurate; then we could
read those hints, and search from the indicated array posi-
tion (we’ll always be able to tell which direction to search
using the values we read). Because these hints do not have
to be perfectly accurate at all times, we can choose various
ways to update them. For example, if we use CAS to up-
date the hints, we can prevent slow processes from writing
out-of-date values to hints, and therefore keep hints almost
accurate all the time. It may also be useful to loosen the
accuracy of the hints, thereby synchronizing on them less
often. In particular, we might consider only updating the
hint when it is pointing to a location that resides in a dif-
ferent cache line than the location that really contains the
leftmost RN for example, as in this case the cost of the inac-
curate hint would be much higher.

4. Extension to Circular Arrays

In this section, we show how to extend the algorithm in
the previous section to allow the deque to “wrap around”
the array, so that the array appears to be circular. In other
words, A[0] is “immediately to the right” of A[MAX+1].
As before, we maintain at least two null entries in the array:
we use the array A[0..MAX+1] for a deque with at most
MAX elements. The array can be initialized arbitrarily pro-
vided it satisfies the main invariant for the algorithm, stated
below. One option is to use the initial conditions for the
algorithm in the previous section.

We now describe the new aspects of the algorithm. Code
for the right-side operations of the wrap-around deque im-
plementation are shown in Figure 2. The left-side opera-
tions are symmetric, and we do not discuss them further
except as they interact with the right-side operations. All
arithmetic on array indices is done modulo MAX+2.

There are two main differences between this algorithm
and the one in the previous section. First, it is more difficult
to tell whether the deque is full; we must determine that
there are exactly two null entries. Second, rightpush
operations may encounter LN values as they “consume” the
RN values and wrap around the array (similarly, leftpush
operations may encounter RN values). We handle this sec-
ond problem by enabling a rightpush operation to “con-
vert” LN values into RN values. This conversion uses an
extra null value, which we denote DN, for “dummy null”.
We assume that LN, RN and DN are never pushed onto the
deque.

Because the array is circular, the algorithm maintains the
following invariants instead of the simpler invariant main-
tained by the algorithm in the previous section:

• All null values are in a contiguous sequence of loca-
tions in the array. (Recall that the array is circular, so
the sequence can wrap around the array.)

• The sequence of null values consists of zero or more
RN values, followed by zero or one DN value, followed
by zero or more LN values.

• There are at least two different types of null values in
the sequence of null values.

Thus, there is always at least one LN or DN entry, and at
least one RN or DN entry.

Instead of invoking oracle(right) directly, the
push and pop operations invoke a new auxiliary procedure,
rightcheckedoracle. In addition to an array index k,
rightcheckedoracle returns left and right, the
contents it last saw in A[k-1] and A[k] respectively. It
guarantees right.val = RN and left.val != RN.
Thus, if it runs in isolation, rightcheckedoracle al-
ways returns the correct index, together with contents of the



/* Returns k,left,right, where left = A[k-1] at some time t, and right = A[k]
at some time t’ > t during the execution, with left.val != RN and right.val = RN.

*/
rightcheckedoracle()
RO0: while (true) {
RO1: k := oracle(right);
RO2: left := A[k-1]; // order important for check
RO3: right := A[k]; // for empty in rightpop
RO4: if (right.val = RN and left.val != RN) // correct oracle
RO5: return k,left,right;
RO6: if (right.val = DN and !(left.val in {RN,DN})) // correct oracle, but no RNs
RO7: if CAS(&A[k-1], left, <left.val,left.ctr+1>)
RO8: if CAS(&A[k], right, <RN,right.ctr+1>) // DN -> RN
RO9: return k,<left.val,left.ctr+1>,<RN,right.ctr+1>;

} // end while

rightpush(v) // !(v in {LN,RN,DN})
RH0: while (true) {
RH1: k,prev,cur := rightcheckedoracle(); // cur.val = RN and prev.val != RN
RH2: next := A[k+1];
RH3: if (next.val = RN)
RH4: if CAS(&A[k-1], prev, <prev.val, prev.ctr+1>)
RH5: if CAS(&A[k], cur, <v, cur.ctr+1>) // RN -> v
RH6: return "ok";
RH7: if (next.val = LN)
RH8: if CAS(&A[k], cur, <RN, cur.ctr+1>)
RH9: CAS(&A[k+1], next, <DN, next.ctr+1>); // LN -> DN
RH10: if (next.val = DN) {
RH11: nextnext := A[k+2];
RH12: if !(nextnext.val in {RN,LN,DN})
RH13: if (A[k-1] = prev)
RH14: if (A[k] = cur) return "full";
RH15: if (nextnext.val = LN)
RH16: if CAS(&A[k+2], nextnext, <nextnext.val,nextnext.ctr+1>)
RH17: CAS(&A[k+1], next, <RN, next.ctr+1>); // DN -> RN

} // end if (next.val = DN)
} //end while

rightpop()
RP0: while (true) {
RP1: k,cur,next := rightcheckedoracle(); // next.val = RN and cur.val != RN
RP2: if (cur.val in {LN,DN} and A[k-1] = cur) // depends on order of RO2 & RO3.
RP3: return "empty";
RP4: if CAS(&A[k],next,<RN,next.ctr+1>)
RP5: if CAS(&A[k-1],cur,<RN,cur.ctr+1>) // v -> RN
RP6: return cur.val;

} // end while

Figure 2. Wraparound deque implementation: Right-side operations.



appropriate array entries that prove that the index is correct.
If no RN entry exists, then by the third invariant above, there
is a DN entry and an LN entry; rightcheckedoracle
attempts to convert the DN into an RN before returning.

Other than calling rightcheckedoracle instead of
oracle(right) (which also eliminates the need to read
and check the cur and next values again), the only change
in the rightpop operation is that, in checking whether the
deque is empty, cur.valmay be either LN or DN, because
there may be no LN entries.

Because the array is circular, a rightpush operation
cannot determine whether the array is full by checking
whether the returned index is at the end of the array. In-
stead, it ensures that there is space in the array by checking
that A[k+1].val = RN. In that case, by the third invari-
ant above, there are at least two null entries other than A[k]
(which also contains RN), so the deque is not full. Other-
wise, rightpush first attempts to convert A[k] into an
RN entry. We discuss how this conversion is accomplished
below.

When a rightpush operation finds only one RN en-
try, it tries to convert the next null entry—we know there
is one by the third invariant above—into an RN. If the next
null entry is an LN entry, then rightpush first attempts to
convert it into a DN entry. When doing this, rightpush
checks that cur.val = RN, which ensures there is at
most one DN entry, as required by the second invariant
above. If the next null entry is a DN entry, rightpush
will try to convert it into an RN entry, but only if the entry to
the right of the one being converted (the nextnext entry)
is an LN entry. In this case, it first increments the version
number of the nextnext entry, ensuring the failure of any
concurrentleftpush operation trying to push a value into
that entry. If the nextnext entry is a deque value, then the
rightpush operation checks whether the right end of the
deque is still at k (by rereading A[k-1] and A[k]), and
if so, the deque is full. If not, or if the nextnext en-
try is either an RN or DN entry, then some other operation
is concurrent with the rightpush, and the rightpush
operation retries.

Assuming the invariants above, it is easy to see that
this new algorithm is linearizable in exactly the same way
as the algorithm in the previous section, except that a
rightpush operation that returns “full” linearizes at the
point that nextnext is read (line RH11). Because we
subsequently confirm (line RH13) that A[k-1] and A[k]
have not changed since they were last read, we know the
deque extends from A[k+2] to A[k-1] (with A[k-1] as
its rightmost value), so that A[k] and A[k+1] are the only
nonnull entries, and thus, the deque is full.

Proving that the invariants above are maintained by the
new algorithm is nontrivial, and we defer a complete proof
to the full paper [10]. The main difficulty is verifying that

when a rightpush actually pushes the new value onto
the deque (line RH5), either the next entry is an RN entry,
or it is a DN entry and the nextnext entry is an LN entry.
This is necessary to ensure that after the push, there are still
at least two null entries, one of which is an RN or DN entry.
One key to the proof is to note that the value of an entry
is changed only by lines RO8, RH5, RH9, RH17, RP5, and
their counterparts in the left-side operations. Furthermore,
these lines only change an entry if the entry has not changed
since it was most recently read. These lines are annotated
in Figure 2 with how they change the value of the entry.

Time complexity The obvious measure of the time com-
plexity of an obstruction-free algorithm (without regard to
the particular contention manager and system assumptions)
is the worst-case number of steps that an operation must
take in isolation in order to be guaranteed to complete.
For our algorithms, this is a constant plus the obstruction-
free time complexity of the particular oracle implementa-
tion used.

5. Concluding Remarks

We have introduced obstruction-freedom—a new non-
blocking condition for shared data structures that weakens
the progress requirements of traditional nonblocking condi-
tions, and as a result admits solutions that are significantly
simpler and more efficient in the typical case of low con-
tention. We have demonstrated the merits of obstruction-
freedom by showing how to implement an obstruction-free
double-ended queue that has better properties than any pre-
vious nonblocking deque implementation of which we are
aware. We are also exploring other obstruction-free al-
gorithms and techniques. Based on our progress to date,
we are convinced that obstruction-freedom is a significant
breakthrough in the search for scalable and efficient non-
blocking data structures. Apart from ongoing work on other
obstruction-free algorithms, an important part of our work
is in investigating the use of various mechanisms to man-
age contention in order to allow obstruction-free imple-
mentations to make progress even under contention. There
has been much work on similar issues, for example in the
context of databases. We are working on evaluating ex-
isting and new schemes for this purpose. The beauty of
obstruction-freedom is that we can modify and experiment
with the contention management mechanisms without need-
ing to modify (and therefore reverify) the underlying non-
blocking algorithm. In contrast, work on different mech-
anisms for guaranteeing progress in the context of lock-
free and wait-free algorithms has been hampered by the fact
that modifications to the “helping” mechanisms has gener-
ally required the proofs for the entire algorithm to be done
again.



References

[1] O. Agesen, D. Detlefs, C. Flood, A. Garthwaite, P. Martin,
M. Moir, N. Shavit, and G. Steele. DCAS-based concurrent
deques. Theory of Computing Systems, 2003. To appear. A
preliminary version appeared in the Proceedings of the 12th
ACM Symposium on Parallel Algorithms and Architectures.

[2] J. Anderson and M. Moir. Wait-free synchronization in
multiprogrammed systems: Integrating priorty-based and
quantum-based scheduling. In Proceedings of the 18th An-
nual ACM Symposium on Principles of Distributed Comput-
ing, pages 123–132, 1999.

[3] N. S. Arora, B. Blumofe, and C. G. Plaxton. Thread schedul-
ing for multiprogrammed multiprocessors. In Proceedings
of the 10th Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 119–129, 1998.

[4] J. Aspnes and M. Herlihy. Fast randomized consensus us-
ing shared memory. Journal of Algorithms, 11(3):441–461,
1990.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduc-
tion to Algorthms. McGraw Hill, 1st edition, 1989.

[6] D. Detlefs, C. Flood, A. Garthwaite, P. Martin, N. Shavit,
and G. Steele. Even better DCAS-based concurrent deques.
In Proceedings of the 14th International Conference on Dis-
tributed Computing, pages 59–73, 2000.

[7] M. Greenwald. Non-Blocking Synchronization and System
Design. PhD thesis, Stanford University Technical Report
STAN-CS-TR-99-1624, Palo Alto, CA, August 1999.

[8] M. Greenwald and D. Cheriton. The synergy between non-
blocking synchronization and operating system structure. In
Proceedings of the Second Symposium on Operating System
Design and Implementation, pages 123–136, 1996.

[9] M. Herlihy. A methodology for implementing highly con-
current data objects. ACM Transactions on Programming
Languages and Systems, 15(5):745–770, 1993.

[10] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free
synchronization: Double-ended queues as an example. In
preparation, 2003.

[11] M. Herlihy, V. Luchangco, and M. Moir. Software transac-
tional memory for supporting dynamic data structures. In
preparation, 2003.

[12] M. Herlihy and J. Wing. Linearizability: A correctness con-
dition for concurrent objects. ACM Transactions on Pro-
gramming Languages and Systems, 12(3):463–492, 1990.

[13] D. E. Knuth. The Art of Computer Programming: Funda-
mental Algorithms. Addison-Wesley, 1968.

[14] P. Martin, M. Moir, and G. Steele. DCAS-based concurrent
deques supporting bulk allocation. Technical Report TR-
2002-111, Sun Microsystems Laboratories, 2002.

[15] M. Michael. Dynamic lock-free deques using single-
address, double-word cas. Technical report, IBM TJ Watson
Research Center, January 2002.

[16] M. Michael and M. Scott. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. In Pro-
ceedings of the 15th Annual ACM Symposium on the Princi-
ples of Distributed Computing, pages 267–276, 1996.

[17] S. Ramamurthy, M. Moir, and J. Anderson. Real-time object
sharing with minimal system support. In Proceedings of the
15th Annual ACM Symposium on Principles of Distributed
Computing, pages 233–242, 1996.


