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1 Introduction

This paper presents a mechanism for supporting memory management in dynamic-sized lock-
free data structures (i.e., those that can grow and shrink). Lock-free data structures avoid many
problems associated with the use of locking, including convoying, susceptibility to failures and
delays, and, in real-time systems, priority inversion. A lock-free data structure guarantees that
after a finite number of steps of any operation on the data structure, some operation completes.
This definition precludes the use of locks to protect the data structure because a thread can take an
unbounded number of steps without completing an operation if some other thread is delayed or
fails while holding a lock that the first thread requires. The difficulty of designing lock-free data
structures is reflected in numerous papers in the literature describing clever and subtle algorithms
for implementing relatively mundane data structures such as stacks [13], queues [10], and linked
lists [14, 5].

We define an abstract problem—the Repeat Offender Problem (ROP)—such that any solution
to this problem can be used by dynamic-sized lock-free data structure implementations to allow
them to free unused memory with standard memory allocators. We have paid particular attention
to formulating our problem to support one or more “worker” threads that do most of the work
of memory management. This allows us to separate the scheduling of this work from that of the
application. In particular, it allows us to use “spare” processors to do memory management work.

In this paper, we present the first solution to the ROP problem, which we call “Pass The Buck”.
Both the problem statement and our solution are quite involved, and the algorithm in particular
is subtle and requires careful explanation (and a formal proof, which is included in an appendix).
In a separate report [6], we show how to apply ROP solutions to achieve the first1 truly dynamic-
sized lock-free data structures, and evaluate their performance. In the remainder of this section,
we discuss why dynamic-sized data structures are challenging to implement in a lock-free manner
and then briefly summarize previous related work.

Before freeing an object that is part of a data structure (e.g., a node of a linked list), we must
ensure that no thread will subsequently modify the object. Otherwise, a thread might corrupt an
object allocated later that happens to reuse the memory used by the first object. Furthermore, in
some systems, even read-only accesses of freed objects can be problematic: the operating system

1Concurrently and independently, Maged Michael has developed a technique that is similar to ours [9]. We discuss
differences between the two approaches at the end of Section 3.
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may remove the page containing the object from the thread’s address space, causing a subsequent
access to crash the program because the address is no longer valid [13].

The use of locks makes it relatively easy to ensure that freed objects are not subsequently ac-
cessed because we can prevent access by other threads to (parts of) the data structure while remov-
ing objects from it. In contrast, without locks, multiple operations may access the data structure
concurrently, and a thread cannot determine whether other threads are already committed to ac-
cessing the object that it wishes to free (this can only be ascertained by inspecting the stacks and
registers of other threads). This is the root of the problem that our work aims to address.

Below we discuss various previous approaches for dealing with the problem described above.2

One easy approach is to use garbage collection (GC). GC ensures that an object is not freed while
any pointer to it exists, so threads cannot access objects after they are freed. This approach is
especially attractive because recent experience (e.g., [2]) shows that GC significantly simplifies the
design of dynamic-sized lock-free data structures. However, GC is not available in all languages
and environments, and in particular, we cannot rely on GC to implement GC.

Another common approach is to augment values in objects with version numbers or tags, and
to access such values only through the use of compare-and-swap (CAS), such that if a CAS exe-
cutes on an object after it has been deallocated, the value of the version number or tag will ensure
that the CAS fails [13, 11, 12]. In this case, the version number or tag value must be carried with
the object through deallocation and reallocation. A common approach for achieving this is to
maintain explicit “freelists”, which contain objects that are not currently in use [13, 11]. (In the
remainder of the paper, we refer to freelists as “object pools” in order to avoid confusing “free-
ing” an object—by which we mean returning it to the memory allocator through the free library
routine—with placing an object on a freelist.) In this approach, rather than freeing objects to the
memory allocator when they are no longer required, we place them in an object pool from which
new objects of the same type can be allocated later. An important disadvantage of this approach
is that data structures implemented this way are not truly dynamic-sized: after they have grown
large and subsequently shrunk, the object pool contains many objects that cannot be reused for
other purposes, cannot be coalesced, etc. In [6], we show how to eliminate the need for object
pools from Michael and Scott’s lock-free FIFO queue implementation using the results presented
here. There are also various performance-related advantages to using object pools, rather than al-
ways allocating from and freeing to the memory allocator. We therefore also show in [6] how
to construct object pools whose elements can be freed to the memory allocator. Thus, we show
how to eliminate the major disadvantage of previous object pool approaches without sacrificing
their advantages. We also present performance results in [6] that show that the overhead of mak-
ing these data structures dynamic-sized is negligible in the absence of contention, and low in all
cases. We believe these are the first dynamic-sized lock-free data structures that can continue to
reclaim memory even after threads fail.

Valois [14] proposed another approach, in which the memory allocator maintains reference
counts for objects to determine when they can be freed. Valois’s approach allows the reference
count of an object to be accessed even after the object has been released to the memory allocator.
This behaviour restricts what the memory allocator can do with released objects. For example, the
released objects cannot be coalesced. Thus, the disadvantages of maintaining explicit object pools
are shared by Valois’s approach. Furthermore, application designers sometimes need to switch
between different memory allocation implementations for performance or other reasons. Valois’s

2These approaches are all forms of type stable memory (TSM), defined by Greenwald [4] as follows: “TSM [provides]
a guarantee that an object O of type T remains type T as long as a pointer to O exists.”
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approach requires the memory allocator to support certain nonstandard functionality, and there-
fore restricts this possibility. Finally, the space overhead for per-object reference counts may be
prohibitive. (In [3], we proposed a similar approach that does allow memory allocators to be in-
terchanged, but depends on double compare-and-swap (DCAS), which is not widely supported.)

Our goal is to provide support for the design of dynamic-sized lock-free data structures that
can free objects to the memory allocator through standard interfaces (so memory allocators can be
switched with ease), and can ensure that freed objects are not subsequently accessed (so it is safe
for the memory allocator to unmap pages containing previously freed objects).

Interestingly, the previous work that comes closest to meeting this goal predates the work dis-
cussed above by almost a decade. Treiber [13] proposes a technique called obligation passing.3 The
instance of this technique for which Treiber presents specific details is in the implementation of a
lock-free linked list supporting search, insert, and delete operations. This implementation allows
freed nodes to be returned to the memory allocator through standard interfaces and without re-
quiring any special functionality of the memory allocator. However, it employs a “use counter”
such that memory is reclaimed only by the “last” thread to access the linked list in any period.
As a result, this implementation can be prevented from ever recovering any memory by a failed
thread (which defeats one of the main purposes of using lock-free implementations). Another dis-
advantage of this implementation is that the obligation passing code is bundled together with the
linked-list maintenance code (all of which is presented in assembly code). Because it is not clear
what aspects of the linked-list code the obligation passing code depends on, it is difficult to apply
this technique to other situations.

The remainder of this paper is structured as follows. In Section 2, we define ROP, and discuss
some of the issues and trade-offs we faced in specifying the problem. In Section 3, we present the
Pass The Buck algorithm. Concluding remarks appear in Section 4. A formal correctness proof for
the Pass The Buck algorithm is presented in an appendix.

2 The Repeat Offender Problem

In this section, we specify the Repeat Offender Problem (ROP). We consider a set of values, each
of which can be free, injail, or escaping. Initially, all values are free. We further consider a set of
application clients that interact with an ROP solution as described below. An application-dependent
external Arrest action can cause a free value to become injail at any time. A client can help injail
values to begin escaping, which causes them to become escaping. Values that are escaping can
finish escaping and become free again. Clients can use values, but must never use a value that is
free. A client can attempt to prevent a value v from escaping while it is being used by “posting a
guard” on v. However, if the guard is posted too late, it may fail to prevent v from escaping. Thus,
in order to safely use v, a client first posts a guard on v, and then checks to see if v is still injail. 4

If so, then an ROP solution is required to ensure that v does not escape before the guard is stood
down or posted elsewhere.

Our motivation is to use ROP solutions to allow threads (clients) to avoid dereferencing (using)
3We named our technique “Pass The Buck” before we were aware of Treiber’s work on obligation passing [13], which

indicates the similarity of the underlying philosophies of our approaches, although the details are quite different.
4In some cases, it is possible for a client p to determine independently of ROP that a value it wants to use will

remain injail until p uses the value. In this case, p can use the value without posting a guard on it. An example of such
an optimization is presented in [6].
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free injail escaping
Arrest(v) Liberate(S), v ∈ S

Liberate returns T, v ∈ T

Figure 1: Transition diagram for value v.

a pointer (value) to an object that has been freed. In this context, an injail pointer is one that has
been allocated (arrested) since it was last freed, and can therefore be used.

To support these interactions, ROP solutions provide the following procedures. A thread posts
a guard g on a value v by invoking PostGuard(g,v); this removes the guard from any value it
previously guarded. (A special null value is used to stand down the guard, that is, to remove
the guard from the previously guarded value without posting the guard on a new value). A
thread helps a set of values S to begin escaping by invoking Liberate(S); the application must ensure
that each value in S is injail before this call, and the call causes each value to become escaping.
The Liberate procedure returns a (possibly different) set of escaping values causing them to be
liberated (each of these values becomes free on the return of this procedure). These transitions
are summarized in Figure 1. Finally, a thread can check whether a value v is injail by invoking
IsInJail(v); if this invocation returns true, then v was injail at some point during the invocation5

(the converse is not necessarily true, as explained later). An ROP solution does not implement the
functionality of the Arrest action—this is application-specific—but ROP must be aware of arrests
to know when a free value becomes injail.

If a guard g is posted on a value v, and v is injail at some time t after g is posted on v and before
g is subsequently stood down or reposted on a different value, then we say that g traps v from
time t until g is stood down or reposted. The operational specification of the main correctness
condition for ROP is that it does not allow a value to escape (i.e., become free) while it is trapped.

The above description of ROP omitted some important but mundane details. We now discuss
these details and then present a formal specification of ROP that includes them. First, we did
not describe how clients choose guards to post on values. In some applications (an example is
presented in [6]), it is necessary for one client to guard multiple values at the same time, so simply
having one guard per client is not sufficient. We therefore allow clients to hire and fire guards.
Guards are hired by invoking the HireGuard procedure and are fired by invoking the FireGuard
procedure. A client may not post, stand down or fire a guard that it does not currently employ.
An ROP solution is required to ensure that a guard is never simultaneously employed by multiple
clients.

The above description should be sufficient for a basic understanding of ROP; a precise formu-
lation of ROP is given by the I/O automaton shown in Figure 2, explained below. (See [8] for
details of the I/O automata model.) We begin by adopting some notational conventions.

Notational conventions: Unless otherwise specified, p and q denote clients (threads) from P, the
set of all clients (threads); g denotes a guard from G, the set of all guards; v denotes a value from
V , the set of all values, and S and T denote sets of values (i.e., subsets of V). We assume that V

5Our formal specification requires this point to coincide with the response of the IsInJail(v) operation. Technically,
we should have a separate internal action that observes the status of v. However, because in practice clients cannot
determine the point at which the response action occurred, and therefore cannot distinguish between implementations
that meet these two specifications, we did not bother with this technicality.
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actions

Environment ROP output
HireInvp() HireRespp(g)

FireInvp(g) FireRespp()

PostInvp(g, v) PostRespp()

IsInJailInvp(v) IsInJailRespp(b)

LiberateInvp(S) LiberateRespp(S)

Arrest(v)

state variables
For each client p ∈ P:

pcp : {idle, hire, fire, post(g, v), injail(v), liberate} init idle
guardsp : set of guards init empty

For each value v ∈ V :
status[v]: {injail, escaping, free} init free

For each guard g ∈ G:
post[g] : V init null;
trapping[g] : bool init false;

numescaping : int init 0
transitions

HireInvp()

Pre: pcp = idle
Eff: pcp ← hire

FireInvp(g)

Pre: pcp = idle
g ∈ guardsp

post[g] = null
Eff: pcp ← fire

guardsp ← guardsp − {g}

PostInvp(g, v)

Pre: pcp = idle
g ∈ guardsp

Eff: pcp ← post(g, v)

post[g]← null
trapping[g]← false

IsInJailInvp(v)

Pre: pcp = idle
Eff: pcp ← injail(v)

LiberateInvp(S)

Pre: pcp = idle
for all v ∈ S,

v 6= null and status[v] = injail
Eff: pcp ← liberate

numescaping← numescaping + |S|

for all v ∈ S, status[v]← escaping

Arrest(v)

Pre: status[v] = free
v 6= null

Eff: status[v]← injail
for all g such that post[g] = v,

trapping[g]← true

HireRespp(g)

Pre: pcp = hire
g ∈ G

g /∈ ⋃
q guardsq

Eff: pcp ← idle
guardsp ← guardsp ∪ {g}

FireRespp()

Pre: pcp = fire
Eff: pcp ← idle

PostRespp()

Pre: for some g, v, pcp = post(g, v)

Eff: pcp ← idle
post[g]← v

trapping[g]← (status[v] = injail)

IsInJailRespp(b)

Pre: for some v, pcp = injail(v)

b ⇒ (status[v] = injail)
Eff: pcp ← idle

LiberateRespp(S)

Pre: pcp = liberate
for all v ∈ S,

status[v] = escaping
and for all g ∈ ⋃

q guardsq ,
(post[g] 6= v or ¬trapping[g])

Eff: pcp ← idle
numescaping← numescaping − |S|

for all v ∈ S, status[v]← free

Figure 2: I/O Automaton specifying the Repeat Offender Problem.
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contains a special null value that is never used, arrested or liberated.

The automaton consists of a set of environment actions and a set of ROP output actions. Each
action consists of a precondition for performing the action and the effect on state variables of per-
forming the action. Most environment actions are invocations of ROP operations and are paired
with corresponding ROP output actions that represent the system’s response to the invocations. In
particular, the PostInvp(g, v) action models client p invoking PostGuard(g,v), and the PostRespp()

action models the completion of this procedure. The HireInvp() action models client p invoking
HireGuard(), and the corresponding HireRespp(g) action models the system assigning guard g to
p. The FireInvp(g) action models client p calling FireGuard(g), and the FireRespp() action models
the completion of this procedure. The LiberateInvp(S) action models client p calling Liberate(S)

to help the values in S begin escaping, and the LiberateRespp(T) action models the completion
of this procedure with a set of values T that have finished escaping. Finally, the Arrest(v) action
models the environment arresting value v.

The state variable status[v] records the current status of value v, which can be free, injail, or
escaping. Transitions between the status values are caused by calls to and returns from ROP pro-
cedures, as well as by the application-specific Arrest action, as described above. The post variable
maps each guard to the value (if any) it currently guards. The pcp variable models control flow of
client p, for example ensuring that p does not invoke a procedure before the previous invocation
completes; pcp also encodes parameters passed to the corresponding procedures in some cases.
The guardsp variable represents the set of guards currently employed by client p. The numescaping
variable is an auxiliary variable used to specify nontriviality properties, as discussed later. Finally,
trapping maps each guard g to a boolean value that is true iff g has been posted on some value v

and has not subsequently been reposted or stood down, and at some point since the guard was
posted on v, v has been injail (i.e., it captures the notion of guard g trapping the value on which it
has been posted). This is used by the LiberateResp action to determine whether v can be returned.
(Recall that a value should not be returned if it is trapped.)

Preconditions on the invocation actions specify assumptions about the circumstances under
which the application invokes the corresponding ROP procedures. Most of these preconditions
are mundane well-formedness conditions such as the requirement that a client posts only guards
that it currently employs. The precondition for LiberateInv captures the assumption that the ap-
plication passes only injail values to Liberate, and the precondition for the Arrest action captures
the assumption that only free values are arrested. The application designer must determine how
these guarantees are made.

Preconditions on the response actions specify the circumstances under which the ROP proce-
dures can return. Again, most of these preconditions are quite mundane and straightforward. The
interesting case is the precondition of LiberateResp, which states that Liberate can return a value
only if it has been passed to (some invocation of) Liberate, it has not subsequently been returned
by (any invocation of) Liberate, and no guard g has been continually guarding the value since it
was last injail (recall that this is captured by trapping[g]).

Desirable properties

As specified so far, an ROP solution in which Liberate always returns the empty set, or simply does
not terminate, is correct. Clearly, in contexts such as that motivating our work, such solutions are
unacceptable: each escaping value represents a resource that will be reclaimed only when the
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value is liberated (returned by some invocation of Liberate). One might be tempted to specify
that every value passed to a Liberate operation is eventually returned by some Liberate operation.
However, without special operating system support, it is not possible to guarantee such a strong
property in the face of failing threads. We do not attempt here to specify the “correct” nontriviality
condition, as we do not want to unduly limit the range of solutions. Instead, we discuss some
properties that might be useful in specifying nontriviality properties for proposed solutions.

The state variable numescaping counts the number of values that are currently escaping (i.e.,
that have been passed to some invocation of Liberate and have not subsequently been returned
from any invocation of Liberate). If we require a solution to ensure that numescaping is bounded by
some function of application-specific quantities, we exclude the trivial solution in which Liberate
always returns the empty set. However, because this bound necessarily depends on the number
of concurrent Liberate operations and the number of values with which each Liberate operation is
invoked, it does not exclude the solution in which Liberate never returns.

A combination of a boundedness requirement and some form of progress requirement on
Liberate operations seems to be the most appropriate way to specify the nontriviality requirement.
We later prove that the Pass The Buck algorithm provides a bound on numescaping that depends
on the number of concurrent Liberate operations. Because the bound (necessarily) depends on the
number of concurrent Liberate operations, if an unbounded number of threads fail while execut-
ing Liberate, then an unbounded number of values can be escaping. We emphasize, however, that
our implementation does not allow failed threads to prevent values from being freed in the future,
as Treiber’s approach does [13].

Our Pass The Buck algorithm has two more desirable properties. First, the Liberate operation is
wait-free (that is, it completes after a bounded number of steps, regardless of the timing behaviour
of other threads). This is useful because it allows us to calculate an upper bound on the amount of
time Liberate will take to execute, which is useful in determining how to schedule Liberate work.

Finally, our algorithm has a property we call value progress. Roughly, this property guarantees
that, unless a thread fails, a value does not remain escaping forever provided Liberate is invoked
“enough” times.

Modular decomposition

A key contribution of this paper is the insight that an effective way to solve ROP in practice is
to separate the implementation of the IsInJail operation from the others. The reason is that, in
our experience using ROP solutions to implement dynamic-sized lock-free data structures [6],
values are used in a manner that allows threads to efficiently determine whether a value is injail
with sufficient accuracy for the particular application. As a concrete example, when values represent
pointers to objects that are part of a concurrent data structure, these values become injail (allocated)
before the objects they refer to become part of the data structure, and are removed from the data
structure before being passed to Liberate. Thus, simply observing that an object is still part of a
data structure is sufficient to conclude that a pointer to it is injail.

Because we intend ROP solutions to be used with application-specific implementations of the
IsInJail operation, the specification of this operation is somewhat weak: an implementation of
IsInJail that always returns false meets the specification. However, this implementation would be
useless, usually because it would not guarantee the required progress properties of the application
that uses it. Because the circumstances under which IsInJail can and should return true¡ depend on
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the application, we retain the weak specification of IsInJail, and leave it to application designers
to provide implementations of IsInJail that are sufficiently strong for their applications. (Note that
an integrated, application-independent implementation of this operation, while possible, would
be expensive: it would have to monitor and synchronize with all actions that potentially affect the
status of each value.)

This proposed modular decomposition suggests the following methodology for implementing
dynamic-sized lock-free objects: Use an “off-the-shelf” implementation of an ROP solution for the
HireGuard, FireGuard, PostGuard, and Liberate operations, and then exploit specific knowledge of
the application to design an optimized implementation of IsInJail. More precisely, we decompose
the ROP I/O automaton into two component automata: the ROPlite automaton, and the InJail
automaton. ROPlite has the same environment and output actions as ROP, except for IsInJailInv
and IsInJailResp. InJail has input action IsInJailInv and output action IsInJailResp. In addition,
the InJail automaton “eavesdrops” on ROPlite: all environment and output actions of ROPlite are
input actions of InJail (though in many cases the implementation of the InJail automata will ignore
these inputs because it can determine whether a value is injail without them, as discussed above).

We present our Pass The Buck algorithm, which implements ROPlite in a simple and practical
way, in Section 3.

Issues and tradeoffs in specifying ROP

We could have rolled the functionality of hiring and firing guards into the PostGuard operation.
We kept this functionality separate in order to allow implementations to make the PostGuard
operation as efficient as possible, as this is the most common operation. This separation allows
the implementation more flexibility in how it manages resources associated with guards because
the cost of hiring and firing guards can be amortized over many PostGuard operations.

In some applications, it may be desirable to be able to quickly “mark” a value for liberation,
without doing any of the work of liberating the value. (Consider, for example, an interactive
system in which user threads should not execute relatively high-overhead “administrative” work
such as liberating values, but additional processor(s) may be available to perform such work.) We
did not model such an operation, as it is straightforward to communicate such values to a worker
thread that invokes Liberate—the ROP solution does not need to know anything about this.

3 One Solution: Pass The Buck

In this section, we describe one ROP solution. Our primary goal when designing this solution
was to minimize the performance penalty to the application when no values are being liberated.
That is, the PostGuard operation should be implemented as efficiently as possible, perhaps at the
cost of a more expensive Liberate operation. Such solutions are desirable for at least two reasons.
First, PostGuard is necessarily invoked by the application, so its performance always impacts ap-
plication performance. On the other hand, Liberate work can be done by a spare processor, or by a
background thread, so that it does not directly impact application performance. Second, solutions
that optimize PostGuard performance are desirable for scenarios in which values are liberated
infrequently, but we must retain the ability to liberate them. An example is the implementation
of a dynamic-sized data structure that uses an object pool to avoid allocating and freeing objects
under “normal” circumstances but can free elements of the object pool when it grows too large.
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struct { value val; int ver } HO t
// HO t fits into CAS-able location

constant MG: max. number of guards
shared variable

GUARDS: array[0..MG-1] of bool init false;
MAXG: int init 0;
POST: array[0..MG-1] of value init null;
HNDOFF: array[0..MG-1] of HO t init 〈null, 0〉;

int HireGuard() {
1 int i = 0, max;
2 while (!CAS(&GUARDS[i],false,true))
3 i++;
4 while ((max = MAXG) < i)
5 CAS(&MAXG,max,i);
6 return i;
}

void FireGuard(int i) {
7 GUARDS[i] = false;
8 return
}

void PostGuard(int i, value v) {
9 POST[i] = v;
10 return
}

value set Liberate(value set vs) {
11 int i = 0;
12 while (i <= MAXG) {
13 int attempts = 0;
14 HO t h = HNDOFF[i];
15 value v = POST[i];
16 if (v != null && vs→search(v)) {
17 while (true) {
18 if (CAS(&HNDOFF[i], h, 〈v, h.ver+1〉)) {
19 vs→delete(v);
20 if (h.val != null) vs→insert(h.val);
21 break;

}
22 attempts++;
23 if (attempts == 3) break;
24 h = HNDOFF[i];
25 if (attempts == 2 && h.val != null) break;
26 if (v != POST[i]) break;

}
27 } else {
28 if (h.val != null && h.val != v)
29 if (CAS(&HNDOFF[i], h, 〈null, h.ver+1〉))
30 vs→insert(h.val);

}
31 i++;

}
32 return vs;
}

Figure 3: Code for Pass The Buck.

In this case, no liberating is necessary while the size of the data structure is relatively stable. With
this goal in mind, we describe our Pass The Buck algorithm below, after some preliminaries.

Preliminaries: Our algorithm is presented in a C/C++-like pseudocode style, and should be
self-explanatory. For convenience, we assume a shared-memory multiprocessor with sequentially
consistent memory [7].6 We further assume that the multiprocessor supports a compare-and-swap
(CAS) instruction that accepts three parameters: an address, an expected value, and a new value. The
CAS instruction atomically compares the contents of the address to the expected value, and, if they
are equal, stores the new value at the address and returns true. If the comparison fails, no changes
are made to memory, and the CAS instruction returns false.

The Pass The Buck algorithm is shown in Figure 3. The GUARDS array is used to allocate
guards to threads. Here we assume a bound MG on the number of guards simultaneously em-
ployed; it is straightforward to remove this restriction. The POST array consists of one location
per guard, which holds the value the guard is currently assigned to guard if one exists, and null
otherwise. The HNDOFF array is used by Liberate to “hand off” responsibility for a value to a
later Liberate operation if the value cannot be liberated immediately because it has been trapped
by a guard.

The HireGuard and FireGuard procedures essentially implement long-lived renaming; we use
6We have implemented our algorithms for SPARC R©-based machines providing only TSO (Total Store Ordering)

[15]—a memory model that is slightly weaker than sequential consistency—which required additional memory barrier
instructions to be included in places.
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the renaming algorithm presented in [1]. Specifically, for each guard g, we maintain an entry
GUARDS[g], which is initially false. Thread p hires guard g by atomically changing GUARDS[g]

from false (unemployed) to true (employed); p attempts this with each guard in turn until it suc-
ceeds (lines 2 and 3). The FireGuard procedure simply sets the guard back to false (line 7). The
HireGuard procedure also maintains the shared variable MAXG, which is used by the Liberate
procedure to determine how many guards to consider. Liberate considers every guard for which
a HireGuard operation has completed. Therefore, it suffices to have each HireGuard operation en-
sure that MAXG is at least the index of the guard returned. This is achieved with the simple loop
at lines 4 and 5.

PostGuard is implemented as a single store of the value to be guarded in the specified guard’s
POST entry (line 9), in accordance with our goal of making PostGuard as efficient as possible.

The most interesting part of the Pass The Buck algorithm lies in the Liberate procedure. Recall
that Liberate should return a set of values that have been passed to Liberate and have not since
been returned by Liberate (i.e., escaping values), subject to the constraint that Liberate cannot
return a value that has been continuously guarded by the same guard since some point when it
was injail (i.e., Liberate must not return trapped values).

Because we want the Liberate operation to be wait-free, if some guard g is guarding a value
v in the value set of some thread p executing Liberate, then p must either determine that g is
not trapping v or remove v from p’s value set before returning that set. To avoid losing values,
any value that p removes from its set must be stored somewhere so that, when the value is no
longer trapped, another Liberate operation may pick it up and return it. The interesting details
of the Pass The Buck algorithm concern how threads determine that a value is not trapped, and
how they store values while keeping space overhead for stored values low. Below we explain the
Liberate procedure in more detail, paying particular attention to these issues.

The loop at lines 12 through 31 iterates over all guards ever hired. For each guard, if p cannot
determine for some value v in its set that v is not trapped, then p attempts to “hand off” that value
(there can be at most one such value per guard). If p succeeds in doing so (line 18), it removes v

from its set (line 19) and proceeds to the next guard (lines 21 and 31). Also, as explained in more
detail below, p might simultaneously pick up a value handed off previously by another Liberate
operation, in which case this value can be shown not to be trapped by that guard, so p adds this
value to its set (line 20). If p fails to hand v off, then it retries. If it fails repeatedly, it can be shown
that v is not trapped by that guard, so p can move on to the next guard without removing v from
its set (lines 23 and 25). When p has examined all guards (see line 12), it can safely return any
values remaining in its set (line 32).

We describe the processing of each guard in more detail below. First, however, we present a
central property of the correctness proof of this algorithm, which will aid the presentation that
follows; this lemma is quite easy to see from the code and the high-level description given thus
far; it is formalized in Invariant 12 of the correctness proof given in the appendix.

Single Location Lemma: Each escaping value v is stored at a single guard or is in the value set of
a single Liberate operation (but not both). Also, only escaping values are in any of these locations.

The processing of each guard g proceeds as follows: At lines 15 and 16, p determines whether
the value currently guarded by g (if any)—call it v—is in its set. If so, p executes the loop at
lines 17 through 26 in order to either determine that v is not trapped, or to remove v from its set.
In order to avoid losing v in the latter case, p “hands off” v by storing it in the HNDOFF array.

10



(Each entry of this array consists of a value and a version number. The latter is incremented with
each modification of the entry for reasons that will become clear later. As is usual with version
numbers, we assume that enough bits are used for the version numbers that “wraparound” is
impossible in practice; see [12] for discussion and justification.) Because there is at most one value
that is potentially trapped by guard g at any time, a single location HNDOFF[g] for each guard g

is sufficient. To see why, observe that if p needs to hand off v because it is guarded, then the value
(if any)—call it w—previously stored in HNDOFF[g] is no longer guarded, so p can pick w up and
add it to its set. (Because p attempts to hand off v only if v is in p’s set, the Single Location Lemma
implies that v 6= w.) While this explanation gives the basic idea of our algorithm, it is somewhat
oversimplified, as there are various subtle race conditions that must be avoided. We explain how
the algorithm deals with these race conditions in more detail below.

To hand v off, p uses a CAS operation to attempt to replace the value previously stored in
HNDOFF[g] with v (line 18); this ensures that, upon success, p knows which value it replaced, so
it can add that value to its set (line 20). We explain later why it is safe to do so. If the CAS fails due
to a concurrent Liberate operation, then p rereads HNDOFF[g] (line 24) and loops around to retry
the handoff. There are various conditions under which we break out of this loop and move on to
the next guard. (Note in particular that the loop completes after at most three CAS attempts; see
lines 13, 22, and 23. Thus our algorithm is wait-free.) We explain later why it is safe to stop trying
to hand off v in each of these cases. Before doing so, we explain one more aspect of the algorithm.

As described so far, p picks up a value from HNDOFF[g] only if its value set contains a value
that is guarded by guard g. Therefore, without some additional mechanism, it would be quite
possible for a value to be stored in HNDOFF[g] and never be picked up from there. This would
violate the value progress property discussed in Section 2. To avoid this problem, even if p does not
need to remove a value from its set, it still picks up the previously handed off value (if any) by
replacing it with null (see lines 28 through 30).

We now consider each of the ways p can break out of the loop at lines 17 through 26, and
explain why it is safe to do so. We first consider the case in which p exits the loop due to a
successful CAS at line 18. In this case, as described earlier, p removes v from its set (line 19), adds
the previous value in HNDOFF[g] to its set (line 20), and moves on to the next guard (lines 21
and 31). An important part of understanding our algorithm is to understand why it is safe to
take the previous value—call it w—of HNDOFF[g] to the next guard. The reason is that we read
POST[g] (line 15 or 26) between reading HNDOFF[g] (line 14 or 24) and attempting the CAS at
line 18. Because each modification to HNDOFF[g] increments its version number field, it follows
that w was in HNDOFF[g] when p read POST[g]. Also, recall that w 6= v in this case. Therefore,
when p read POST[g], w was not guarded by g. Furthermore, because w remained in HNDOFF[g]

from that moment until the CAS, w cannot become trapped in this interval (because a value can
become trapped only while it is injail, and all values in the HNDOFF array and in the sets of
Liberate operations are escaping). The same argument explains why it is safe to pick up the value
replaced by null at line 29.

It remains to consider how p can break out of the loop without performing a successful CAS.
In each case, p can infer that v is not trapped by g, so it can give up on its attempt to hand off v. If
p breaks out of the loop at line 26, then v is not trapped by g at that moment simply because it is
not even guarded by g. The other two cases (lines 23 and 25) occur only after a certain number of
times around the loop, implying a certain number of failed CAS’s.

To see why we can infer that v is not trapped in each of these two cases, consider the timing
diagram in Figure 4. (For the rest of this section, we use the notation vp to indicate the value of
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Figure 4: Timing diagram illustrating interesting cases for Pass The Buck.

thread p’s local variable v in order to distinguish between the local variables of different threads.)
In this diagram, we construct an execution in which p fails its CAS three times. The bottom line
represents thread p: at (A), p reads HNDOFF[g] for the first time (line 14); at (B), p’s CAS fails;
at (C), p rereads HNDOFF[g] at line 24; and so on for (D), (E), and (F). Because p’s CAS at (B)
fails, some other thread q0 executing Liberate performed a successful CAS after (A) and before
(B); choose one and call it (G). (The arrows between (A) and (G) and between (G) and (B) indicate
that we know (G) comes after (A) and before (B).) Similarly, some thread q1 executes a successful
CAS on HNDOFF[g] after (C) and before (D)—call it (H); and some thread q2 executes a successful
CAS on HNDOFF[g] after (E) and before (F)—call it (I). (Note that threads q0 through q2 might
not be distinct, but there is no loss of generality in treating them as if they were.)

Consider the CAS at (H). Thread q1’s previous read of HNDOFF[g] (at line 14 or line 24)—call
it (J)—must come after (G) because every successful CAS increments the version number field of
HNDOFF[g]. Similarly, q2’s previous read of HNDOFF[g] before (I)—call it (K)—must come after
(H).

We consider two cases. First, suppose (H) is an execution of line 18 by q1. In this case, between
(I) and (H), q1 read POST[g] = vq1

, either at line 15 or at line 26; call this read (L). By the Single
Location Lemma, because vp is in p’s set, the read at L implies that vp was not guarded by g at
(L). Therefore, vp was not trapped by g at (L), which implies that it is safe for p to break out of the
loop after (D) in this case (observe that attemptsp = 2 in this case).

For the second case, suppose (H) is an execution of line 29 by thread q1. In this case, because
q1 is storing null instead of a value in its own set, the above argument does not work. However,
because p breaks out of the loop at line 25 only if it reads a non-null value from HNDOFF[g] at line
24, it follows that if p does so, then some successful CAS stored a non-null value to HNDOFF[g] at
or after (H), and in this case the above argument can be applied to that CAS to show that vp was
not trapped. If p reads null at line 24 after (D), then it continues through its next loop iteration.

In this case, there is a successful CAS (I) that comes after (H). Because (H) stored null in the
current case, no subsequent execution of line 29 by any thread will succeed before the next suc-
cessful execution of the CAS in line 18 by some thread. To see why, observe that the CAS at line
29 never succeeds while HNDOFF[g] contains null (see line 28). Therefore, for (I) to exist, there
is a successful execution of the CAS at line 18 by some thread after (H) and at or before (I). Using
this CAS, we can apply the same argument as before to conclude that vp was not trapped. This
argument is formalized in an appendix. It is easy to see that our ROP solution is wait-free.
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Our algorithm also satisfies the value progress property described in Section 2. Briefly, this is
because a value cannot remain handed off at a particular guard forever if Liberate is executed
enough times. Specifically, a value v is handed off at guard g, then the first Liberate operation to
begin processing guard g after v is not trapped by g will ensure that v is picked up and taken to
the next guard (or returned from Liberate if g is the last guard), either by that Liberate operation
or some concurrent Liberate operation.

As stated earlier, Michael [9] has independently and concurrently developed a solution to a
very similar problem. Michael’s algorithm buffers to-be-freed values so that it can control the
number of values passed to Scan (his equivalent of the Liberate operation) at a time. This has
the disadvantage that there are usually O(GP) values that could potentially be freed, but are not
(where G is the number of “hazard pointers”—the equivalent of guards—and P is the number of
participating threads). However, this technique allows him to achieve a nice amortized bound on
time spent per value freed. He also has weaker requirements for Scan than we have for Liberate;
in particular, Scan can return some values to the buffer if they cannot yet be freed. This admits
a very simple solution that uses only read and write primitives (recall that ours requires CAS),
and allows several optimizations. However, it also means that if a thread terminates while values
remain in its buffer, then those values will never be freed, so his algorithm does not satisfy the
value progress property. This is undesirable because a single value might represent a large amount
of resources, which would never be reclaimed in this case. The number of such values is bounded
by O(GP). We can perform the same optimizations and achieve the same amortized bound under
normal operation, while still retaining the value progress property (although we would require
threads to invoke a special wait-free operation before terminating to achieve this). In this case,
our algorithm would perform almost identically to Michael’s (with a slight increase in overhead
upon thread termination), but would of course share the disadvantages discussed above, except
for the lack of value progress.

In [6] we present a dynamic-sized lock-free FIFO queue achieved by applying our ROP so-
lution (without the optimizations discussed above) to the non-dynamic-sized implementation of
Michael and Scott [11] together with the non-dynamic-sized freelist of Treiber [13]. Performance
experiments presented in that paper show that the overhead of the dynamic-sized FIFO queue
over the non-dynamic-sized one of [11] is negligible in the absence of contention, and low in all
cases.

Michael has shown how to apply his technique to achieve dynamic-sized implementations of
a number of different data structures, including queues, double-ended queues, list-based sets, and
hash tables (see [9] for references). Because the interfaces and safety properties of our approaches
are almost identical, those results can all be achieved using any ROP solution too. In addition,
using the one presented here would allow us to achieve value progress in those implementations.
Michael also identified a small number of implementations to which his method is not applicable.
In some cases, this may be because Michael’s approach is restricted to use a fixed number of
hazard pointers per thread; in contrast, ROP solutions provide for dynamic allocation of guards.
Furthermore, in [6], we have presented a general methodology based on any ROP solution that
can be applied to achieve dynamic-sized versions of these data structures too. This methodology
is based on reference counts, and therefore shares the disadvantages thereof, including space and
time overhead for reference counts, as well as the need to deal with cyclic garbage.
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4 Concluding Remarks

We have defined the Repeat Offender Problem (ROP), and presented one solution to this problem.
Such solutions provide a mechanism for supporting memory management in dynamic-sized lock-
free data structures. The utility of this mechanism has been demonstrated elsewhere [6], where
we present what we believe are the first dynamic-sized lock-free data structures that can continue
to reclaim memory even if some threads fail (although Maged Michael [9] has independently and
concurrently achieved such implementations, as discussed in Section 3).

By specifying the ROP as an abstract and general problem, we allow for the possibility of
using different solutions for different applications and settings, without the need to redesign or
reverify the data structure implementations that employ ROP solutions. We have paid particular
attention to allowing much of the work of managing dynamically allocated memory to be done
concurrently with the application, using additional processors if they are available.

The ideas in this paper came directly from insights gained and questions raised in our work
on lock-free reference counting [3]. This further demonstrates the value of research that assumes
stronger synchronization primitives than are currently widely supported.

Future work includes exploring other ROP solutions, and applying ROP solutions to the de-
sign of other lock-free data structures. It would be particularly interesting to explore the various
ways for scheduling Liberate work.

Acknowledgements: We thank Steve Heller, Paul Martin, and Maged Michael for useful feedback,
suggestions, and discussions. In particular, Steve Heller suggested formulating ROP to allow the
use of “spare” processors for memory management work.
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A Formal Proof that PTB Implements ROPlite

In this appendix, we give a formal proof that the Pass The Buck algorithm (PTB) of Section 3
implements ROPlite, that is, it solves the Repeat Offender Problem except that it does not provide
an IsInJail operation.

To prove that PTB implements ROPlite, we first define an I/O automaton model [8] for the
PTB algorithm and then show that this automaton implements the ROP automaton in Section 2
(without the IsInJailInv and IsInJailResp actions).

The PTB automaton appears in Figures 5, 6 and 7. It has the same environment actions and
output actions as the ROP automaton in Figure 2 except that it does not have the IsInJailInv and
IsInJailResp actions because PTB does not implement the IsInJail operation.

The PTB automaton also has internal actions that model the execution of code that implements
the operations. Because an action changes the state of the automaton atomically, each action cor-
responds to code that includes at most one access to shared variables. (Access to local variables
always appears atomic because other threads cannot see the effects of such access.) The names of
the internal actions indicate the lines of the code that implement them in Figure 3. For line2-3p, an
occurrence of the action corresponds to a single iteration of the while loop. Not all lines of code
are modelled by internal actions: Lines 1 and 11 are collapsed into the invocation actions because
they access only local variables, and lines 6, 8, 10 and 32 are modelled by the response actions. We
discuss the internal actions of Liberate in more detail below.

The PTB automaton specified here can be viewed as the composition of two subautomata, rep-
resenting the environment and the PTB algorithm, and the state variables defined in Figure 5 can
be partitioned between these subautomata. The environment state variables are exactly the variables
of the ROP automaton. These variables are used to determine when the environment actions are
enabled. The internal PTB state variables represent state used by the PTB algorithm. These consist
of the shared global variables GUARDS, POST, HNDOFF and MAXG; the local variables (includ-
ing the parameters) of each operation; and a local program counter lnp that records the next line
of code to be executed by thread p.

The environment actions of the PTB automaton are identical to their counterparts in the ROP
automaton except that they may also set some local variables. The response actions are enabled by
the value of the local program counter being equal to the line number corresponding to a return
statement. They set the program counter to idle and modify the environment state variables in
the same way as the ROP automaton does.7 Like the response actions, the internal PTB actions
are enabled by the local program counter having the appropriate line number, and their effects
clauses straightforwardly express the effects of executing the corresponding lines of code.

In addition to the environment assumptions expressed in the ROP automaton, the PTB algo-
rithm assumes that the number of guards simultaneously employed (including those in the midst
of being hired or fired) is bounded by MG; the set G of guards is {0, . . . , MG − 1}. Failure to satisfy
this assumption may result in an attempt at line 2 to write beyond the end of the POST array,
possibly overwriting unrelated data structures and causing arbitrary failures. As in the code in
Figure 3, we simply assume that this does not happen; we do not specify the behavior of the

7That the environment state variables are modified in the same way by both automata is immediate from the def-
inition in all cases except that of PostResp actions. Invariant 1 below establishes that in any reachable state of this
automaton, the PostResp actions also update the environment state variables in the same way as in the ROP automa-
ton.
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actions
Environment PTB output PTB internal
HireInvp() HireRespp(g) line2-3p

FireInvp(g) FireRespp() line4p

PostInvp(g, v) PostRespp() line5p

LiberateInvp(S) LiberateRespp(S) line7p

Arrest(v) line9p

line12p

line13+p

line15+p

line18+p

line22+p

line25+p

line28+p

line31p

state variables

(internal PTB state variables)
GUARDS: array[0..MG-1] of bool init all false;
MAXG: int init 0;
POST: array[0..MG-1] of value init all null;
HNDOFF: array[0..MG-1] of value set init all empty;
For each thread p ∈ P:

lnp : {idle, 2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 18, 22, 25, 28, 31, 32} init idle
ip : int
vp : value
vsp : value set
maxp : int
attemptsp : value

(environment state variables)
For each thread p ∈ P:

pcp : {idle, hire, fire, post(h, v), injail(v), liberate} init idle
guardsp : set of guards init empty

For each value v ∈ V :
status[v]: {injail, escaping, free} init free

For each guard g ∈ G:
post[g]: V init null
trapping[g]: bool init false

numescaping: int init 0

Figure 5: Actions and state variables for the PTB automaton.
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HireGuard HireInvp()

Pre: pcp = idle
Eff: pcp ← hire

ip ← 0

lnp ← 2

line2-3p

Pre: lnp = 2

Eff: if ¬GUARDS[ip ] then
GUARDS[ip ]← true
lnp ← 4

else
ip ← ip + 1

line4p

Pre: lnp = 4

Eff: maxp ← MAXG
if maxp < ip then

lnp ← 5

else
lnp ← 6

line5p

Pre: lnp = 5

Eff: if MAXG = maxp then MAXG← ip
lnp ← 4

HireRespp(g)

Pre: lnp = 6

g = ip
Eff: lnp ← idle

pcp ← idle
guardsp ← guardsp ∪ {g}

FireGuard FireInvp(g)

Pre: pcp = idle
g ∈ guardsp

post[g] = null
Eff: pcp ← fire

guardsp ← guardsp − {g}

ip ← g

lnp ← 7

line7p

Pre: lnp = 7

Eff: GUARDS[ip ]← false
lnp ← 8

FireRespp()

Pre: lnp = 8

Eff: lnp = idle
pcp ← idle

PostGuard PostInvp(g, v)

Pre: pcp = idle
g ∈ guardsp

Eff: pcp ← post(g, v)

post[g]← null
trapping[g]← false
vp ← v

ip ← g

lnp ← 9

line9p

Pre: lnp = 9

Eff: POST[ip ]← vp

lnp ← 10

PostRespp()

Pre: lnp = 10

Eff: lnp ← idle
pcp ← idle
post[ip ]← vp

trapping[ip ]← (status[vp ] = injail)

Arrest Arrest(v)

Pre: status[v] = free
v 6= null

Eff: status[v]← injail
for all g such that post[g] = v,

trapping[g]← true

Figure 6: Transitions for the PTB automaton, part 1: All but Liberate.
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Liberate LiberateInvp(S)

Pre: pcp = idle
for all v ∈ S,

status[v] = injail
v 6= null

Eff: pcp ← liberate
numescaping← numescaping + |S|

for all v ∈ S, status[v]← escaping
vsp ← S

ip ← 0

lnp ← 12

line12p

Pre: lnp = 12

Eff: if ip ≤ MAXG then
lnp ← 13

else
lnp ← 32

line13-14p

Pre: lnp = 13

Eff: attemptsp ← 0

hp ← HNDOFF[ip]

lnp ← 15

line15-17p

Pre: lnp = 15

Eff: vp ← POST[ip ]

if vp 6= null ∧ vp ∈ vsp then
lnp ← 18

else
lnp ← 28

line28-30p

Pre: lnp = 28

Eff: if hp .val 6= null ∧ hp .val 6= vp

∧ HNDOFF[ip] = hp then
HNDOFF[ip]← 〈null, hp.ver + 1〉
vsp ← vsp ∪ {hp .val}

lnp ← 31

line18-21p

Pre: lnp = 18

Eff: if HNDOFF[ip ] = hp then
HNDOFF[ip ]← 〈vp , hp .ver + 1〉
vsp ← vsp − {vp}

if hp .val 6= null then vsp ← vsp ∪ {hp .val}

lnp ← 31

else
lnp ← 22

line22-24p

Pre: lnp = 22

Eff: attemptsp ← attemptsp + 1

if attemptsp = 3 then
lnp ← 31

else
hp ← HNDOFF[ip ]

lnp ← 25

line25-26p

Pre: lnp = 25

Eff: if (attemptsp = 2 ∧ hp .val 6= null)
∨ vp 6= POST[ip ] then

lnp ← 31

else
lnp ← 18

line31p

Pre: lnp = 31

Eff: ip ← ip + 1

lnp ← 12

LiberateRespp(S)

Pre: lnp = 32

S = vsp

Eff: lnp ← idle
pcp ← idle
numescaping← numescaping − |S|

for all v ∈ S, status[v]← free

Figure 7: Transitions for the PTB automaton, continued: Liberate.
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automaton when ip ≥ MG in the execution of either line2-3p or line7p.

We now prove several invariants and lemmas about the PTB automaton. Of these, Invariants 1,
2, 12 and 18 are the ones actually used in the proof of Theorem 1, which says that PTB implements
ROPlite. The rest are used to prove Invariants 12 and 18. Informally, Invariant 1 says that pcp has
the appropriate value when p is executing a PTB operation. Invariant 2 says that every guard is
employed by at most one thread, and that if g is employed then GUARDS[g] = true.8 Invariant 12
says that the escaping values are those that appear in the HNDOFF array or in the vsp set of
some thread p with pcp = liberate, and that each escaping value appears in exactly one of these
locations. Invariant 18 says that if a guard g traps a value v and v is in the vsp set of some thread
executing Liberate, then that thread has not yet finished processing g.

We prove most invariants by induction on the number of transitions in an execution. That
is, we prove that the invariant holds in the initial state and that for each reachable state s, if the
invariant holds in s and s a−→s ′ then the invariant holds in s ′. For many of the invariants, checking
this is straightforward, and we omit the details of the proof. Because we assume s (and thus s ′) is
reachable, we can assume the earlier invariants hold in s and s ′ in the proofs of later invariants.

Invariant 1 If lnp ∈ {2, 4, 5, 6} then pcp = hire. If lnp ∈ {7, 8} then pcp = fire. If lnp ∈ {9, 10} then
pcp = post(ip, vp). If lnp ∈ {12, 13, 15, 18, 22, 25, 28, 31, 32} then pcp = liberate.

Proof: Straightforward by induction.

Invariant 2 Every guard g is in exactly one of the following sets: guardsp for some p, {ip} for some
p with lnp ∈ {4, 5, 6, 7}, or {g : ¬GUARDS[g]}.

Proof: This invariant holds initially because guardsp is empty and lnp = idle for all p and
¬GUARDS[g] for all g. Suppose that the invariant holds in s and that s a−→s ′. Let Sp be {ip} if
lnp ∈ {4, 5, 6, 7} and ∅ otherwise. The only actions that change any of the sets listed in the invariant
are line2-3p for some p with ¬s.GUARDS[s.ip], HireRespp(g) and FireInvp(g) for some p and g,
and line7p for some p. In each case, one guard is removed from one set and added to another, so
the invariant is preserved.

For line2-3p with ¬s.GUARDS[s.ip], s.ip is removed from {g : ¬GUARDS[g]} and added to Sp.

For HireRespp(g), g = s.ip, s.lnp = 6 and s ′.lnp = idle, so g is removed from Sp and added to
guardsp.

For FireInvp(g), g is removed from guardsp and added to Sp.

Finally, for line7p, s.ip is removed from Sp and added to {g : ¬GUARDS[g]}.

Invariant 3 For all p, lnp ∈ {9, 10} =⇒ ip ∈ guardsp.

Proof: Straightforward by induction.

Invariant 4 For all p and q, if lnp ∈ {9, 10} and lnq ∈ {9, 10} then ip 6= iq.

Proof: Immediate from Invariants 2 and 3.

8To make it provable by induction, the actual invariant is strengthened slightly. This is also true for Invariant 18.
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Invariant 5 For all p, lnp = 10 =⇒ POST[ip] = vp.

Proof: Straightforward by induction with Invariant 4.

Invariant 6 For all g,

post[g] =

{
null if ∃p(lnp ∈ {9, 10} ∧ ip = g)

POST[g] otherwise

Proof: Straightforward by induction with Invariants 1, 4 and 5.

Invariant 7 For all p, lnp = 5 =⇒ maxp < ip.

Proof: Straightforward by induction.

Invariant 8 For all p, lnp ∈ {2, 4, 5} =⇒ ip ≥ 0.

Proof: Straightforward by induction.

Invariant 9 For all g and p, if g ∈ guardsp or lnp = 6 ∧ ip = g then 0 ≤ g ≤ MAXG.

Proof: Straightforward by induction with Invariants 7 and 8.

Invariant 10 For all g, if post[g] 6= null then 0 ≤ g ≤ MAXG.

Proof: Straightforward by induction with Invariants 3, 7 and 9.

Invariant 11 For all p, if lnp ∈ {18, 22, 25} then vp ∈ vsp.

Proof: Straightforward by induction.

Invariant 12 Every non-null value is in exactly one of the following sets: {HNDOFF[g].val} for
some g, vsp for some p with pcp = liberate, and {v : status[v] 6= escaping}.

Proof: This invariant holds initially because HNDOFF[g].val = null for all g, pcp = idle for
all p, and status[v] = injail 6= escaping for all v. Suppose that s is a reachable state in which the
invariant holds, and that s a−→s ′. Let HSg = {HNDOFF[g].val} and VSp be vsp if pcp = liberate
and ∅ otherwise. With Invariant 1, it is easy to see that the only actions that change any of the
sets in the invariant are LiberateInvp(S) and LiberateRespp(S) for some p and S, line18-21p for
some p with s.HNDOFF[s.ip] = s.hp, and line28-30p for some p with s.hp.val /∈ {null, s.vp} and
s.HNDOFF[s.ip] = s.hp.

For LiberateInvp(S), every value in S is removed from {v : status[v] 6= escaping} and added to
VSp.

For LiberateRespp(S), s.pcp = liberate by Invariant 1, so S = VSp. Thus, every value in S is
removed from VSp and added to {v : status[v] 6= escaping}.

21



For line18-21p with s.HNDOFF[s.ip] = s.hp, values other than s.vp and s.hp are not added
to or removed from any of the sets. By Invariant 11, s.vp ∈ s.vsp (because s.lnp = 18), so s.vp

is removed from VSp and added to HSs.ip . If s.hp.val 6= null then by the inductive hypothesis,
s.hp /∈ s.vsp and so s.hp is removed from HSs.ip and added to VSp.

For line28-30p with s.hp.val /∈ {null, s.vp} and s.HNDOFF[s.ip] = s.hp, by the inductive hy-
pothesis, s.hp.val /∈ s.vsp and so s.hp.val is removed from HSs.ip and added to VSp.

Thus, the invariant that each value is in exactly one of the sets is preserved.

Invariant 13 For all p, if lnp ∈ {15, 18, 22, 25, 28, 31} then hp.ver ≤ HNDOFF[ip].ver.

Proof: Straightforward by induction.

Lemma 1 For all p and g, if s is a reachable state in which s.ip = g and s.hp 6= s.HNDOFF[g], and
s a−→s ′, then s ′.hp 6= s ′.HNDOFF[g] or a ∈ {line13-14p, line22-24p}.

Proof: Fix p and g. If a /∈ {line13-14p, line22-24p} then s ′.hp = s.hp and s ′.HNDOFF[g] =

s.HNDOFF[g], unless there is some q with s.iq = g, s.hq = s.HNDOFF[g] and either a = line18-21q

or a = line28-30q and s.hq.val /∈ {null, s.vq}. If there is such a q then s ′.HNDOFF[g].ver =

s.HNDOFF[g].ver + 1, and by Invariant 13, s ′.hp.ver = s.hp.ver ≤ s.HNDOFF[g].ver, so s ′.hp 6=
s ′.HNDOFF[g].

Lemma 2 For all g and v 6= null, if s is reachable, s a−→s ′, and s ′.post[g] = v and s ′.trapping[g] then
either s.post[g] = v and s.trapping[g] or s′.status[v] = injail.

Proof: Fix g and v. If s ′.post[g] = v and s ′.trapping[g] and s.post[g] 6= v ∨ ¬s.trapping[g] then either
a = PostRespp() for some p with s.ip = g, s.vp = v and s.status[v] = injail, or a = Arrest(v) with
s.post[g] = v. In either case, s ′.status[v] = injail.

Invariant 14 For all g, v 6= null and p, if post[g] = v = HNDOFF[g].val, trapping[g], ip = g and
hp = HNDOFF[g] then lnp 6= 18 and lnp = 28 =⇒ vp = v.

Proof: Fix g, v and p. This invariant holds initially because trapping[g] = false. Suppose it
holds in a reachable state s, s a−→s ′, s ′.post[g] = v = s ′.HNDOFF[g].val, s ′.trapping[g], and s′.hp =

s ′.HNDOFF[g].

If s.ip 6= g then s ′.ip 6= g or s ′.lnp /∈ {18, 28}, so the invariant holds in s ′.

If s.ip = g and s.hp 6= s.HNDOFF[g] then by Lemma 1, because s ′.hp = s ′.HNDOFF[g], we
have a = {line13-14p, line22-24p}, so s ′.lnp /∈ {18, 28}.

If s.HNDOFF[g].val 6= v then a = line18-21q for some q with s.iq = g and s.hq = s.HNDOFF[g].
If s ′.lnp /∈ {18, 28} then the invariant holds in s ′. Otherwise, s ′.lnp ∈ {18, 28}, so s.lnp ∈ {18, 28} (be-
cause a = line18-21q, so p 6= q). In the latter case, by Invariant 13, s.hp.ver ≤ s.HNDOFF[g].ver,
and because s ′.HNDOFF[g].ver = s.HNDOFF[g].ver + 1 and s ′.hp.ver = s.hp.ver, we have s ′.hp 6=
s ′.HNDOFF[g], so the invariant holds in s ′.

Otherwise, s.HNDOFF[g].val = v, s.ip = g and s.hp = s.HNDOFF[g]. By Invariant 12,
s ′.status[v] = escaping 6= injail, so by Lemma 2, s.post[g] = v and s.trapping[g]. Thus, by the in-
ductive hypothesis, s.lnp 6= 18 and s.lnp = 28 =⇒ s.vp = v. If a /∈ {line15-17p, line25-26p}
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then s ′.lnp 6= 18 and s ′.lnp = 28 =⇒ s ′.vp = v, so the invariant holds in s ′. Otherwise,
s.lnp ∈ {15, 25}, so by Invariant 1, s.pcp = liberate, and by Invariant 12, v /∈ s.vsp. Also, by
Invariant 6, s.POST[g] = s.post[g] = v.

If a = line15-17p then s ′.vp = s.POST[g] = v and s ′.lnp = 28, so the invariant holds in s ′.

If a = line25-26p then by Invariant 11, s.vp ∈ s.vsp, so s.vp 6= v = s.POST[g]. Thus, s ′.lnp = 31

and the invariant holds in s ′.

Lemma 3 For all g, v 6= null and p, if s is reachable, s a−→s ′, s.post[g] = v = s.HNDOFF[g].val,
s.trapping[g], s.ip = g and s.lnp ∈ {18, 28} then v /∈ s ′.vsp.

Proof: Because v = s.HNDOFF[g].val, by Invariants 1 and 12, v /∈ s.vsp. Either s ′.vsp = s.vsp,
and so v /∈ s ′.vsp, as required, or a ∈ {line18-21p, line28-30p} and s.hp = s.HNDOFF[s.ip]. In
the latter case, because s.ip = g and s.lnp ∈ {18, 28}, by Invariant 14, we have s.lnp 6= 18 and
s.vp = v /∈ s.vsp. Thus, a = line28-30p, and because s.hp.val = v, v /∈ s.vsp = s ′.vsp.

Lemma 4 For all g and p, if s a−→s ′, s ′.ip = g and s ′.lnp ∈ {15, 18, 22, 25}, then s.ip = g and s.vsp =

s ′.vsp.

Proof: Straightforward by inspection.

Invariant 15 For all g, v 6= null, p and q 6= p, if post[g] = v ∈ vsp, trapping[g], ip = iq = g,
lnp ∈ {15, 18, 22, 25}, lnq = 18 and hq = HNDOFF[g] then hp = HNDOFF[g], attemptsp = 0 and
lnp 6= 22.

Proof: Fix g, v, p and q. This invariant holds initially because trapping[g] = false. Suppose that
it holds in a reachable state s, s a−→s ′, and s ′.post[g] = v ∈ s ′.vsp, s ′.trapping[g], s′.ip = s ′.iq = g,
s ′.lnp ∈ {15, 18, 22, 25}, s ′.lnq = 18 and s ′.hq = s ′.HNDOFF[g]. By Lemma 4, s.ip = s.iq = g and
v ∈ s.vsp = s ′.vsp.

If s.lnp /∈ {15, 18, 22, 25} then a = line13-14p, so s ′.hp = s.HNDOFF[s.ip] = s ′.HNDOFF[g],
s ′.attemptsp = 0 and s ′.lnp = 15 6= 22, as required.

Otherwise, s.lnp ∈ {15, 18, 22, 25}, so by Invariant 1, s.pcp = liberate, and by Invariant 12,
s ′.status[v] = escaping 6= injail (because v ∈ s ′.vsp), so by Lemma 2, s.post[g] = v and s.trapping[g].
Because s ′.lnq = 18, we have a /∈ {line13-14q, line22-24q}, so by Lemma 1, s.hq = s.HNDOFF[g].
Also, s.lnq = 18 because otherwise, either a = line15-17q and s.POST[g] ∈ s.vsq or a = line25-26q

and s.vq = s.POST[g], which, by Invariant 11, also implies s.POST[g] ∈ s.vsq. However, both these
cases are impossible because, by Invariant 6, s.POST[g] = v, and by Invariants 1 and 12, v /∈ s.vsq

because v ∈ s.vsp and p 6= q.

Thus, by the inductive hypothesis, s.hp = s.HNDOFF[g], s.attemptsp = 0 and s.lnp 6= 22. So
s ′.attemptsp = s.attemptsp = 0, and s ′.hp = s.hp = s.HNDOFF[g]. Because s.lnq = s ′.lnq = 18,
we have s ′.hq = s.hq, thus, s ′.hp = s.HNDOFF[g] = s.hq = s ′.hq = s ′.HNDOFF[g]. Finally,
s ′.lnp 6= 22 because s.lnp 6= 22 and s.HNDOFF[s.ip] = s.hp. Thus, the invariant holds in s ′.

Invariant 16 For all p, lnp = 15 =⇒ attemptsp = 0.

Proof: Straightforward by induction.
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Invariant 17 For all p, if lnp = 22 then hp 6= HNDOFF[ip].

Proof: Straightforward by induction with Lemma 1.

Invariant 18 For all g and v 6= null, if post[g] = v and trapping[g] then

1. for all h > g, v 6= HNDOFF[h].val;

2. for all p, if pcp = liberate and v ∈ vsp then lnp ∈ {12, 13, 15, 18, 22, 25, 28, 31} and ip ≤ g;

3. for all p, if pcp = liberate, v ∈ vsp, ip = g and lnp = {18, 22, 25, 28, 31} then

• vp = v,

• lnp /∈ {28, 31},

• attemptsp = 2 =⇒ hp = HNDOFF[g] ∧ hp.val = null,

• attemptsp = 1 =⇒ hp = HNDOFF[g] ∨ HNDOFF[g].val = null.

Proof: Fix g and v. This invariant holds initially because trapping[g] = false. Suppose it holds
in a reachable state s, s a−→s ′, and s ′.post[g] = v and s ′.trapping[g]. By Lemma 2, either s.post[g] =

v and s.trapping[g] or s ′.status[v] = injail 6= escaping. In the latter case, by Invariant 12, v 6=
s ′.HNDOFF[h].val for all h and v /∈ s ′.vsp for any p such that pcp = liberate, so this invariant
holds in s ′. For the rest of the proof, we consider the case in which s.post[g] = v and s.trapping[g].

For the first clause, fix h > g. By the inductive hypothesis, v 6= s.HNDOFF[h].val, and thus,
v 6= s ′.HNDOFF[h].val unless a = line18-21p for some p with s.ip = h, s.vp = v and s.hp =

s.HNDOFF[h]. However, if this action is enabled in s then s.lnp = 18, so by Invariant 1, s.pcp =

liberate, and by the inductive hypothesis (second clause), either v /∈ s.vsp or s.ip ≤ g. The first
possibility contradicts Invariant 11 because s.vp = v; the second contradicts s.ip = h > g. Thus,
v 6= s ′.HNDOFF[h].val.

For the second and third clauses, fix p. If s.pcp 6= liberate then either s ′.pcp 6= liberate, in which
case these clauses hold in s ′, or a = LiberateInv(S) for some S. In the latter case, s ′.lnp = 12 and,
by Invariant 10, s ′.ip = 0 ≤ g, so both clauses hold in s ′.

If s.pcp = liberate and v /∈ s.vsp then either v /∈ s ′.vsp, in which case both clauses hold in s ′, or
a ∈ {line18-21p, line28-30p}, s.HNDOFF[s.ip] = s.hp and s.hp.val = v. In the latter case, s ′.lnp = 31

and s ′.ip = s.ip ≤ g because by the inductive hypothesis (first clause), s.HNDOFF[h].val 6= v =

s.HNDOFF[s.ip] for all h > g. Furthermore, because s.lnp ∈ {18, 28}, if s.ip = g then by Lemma 3,
v /∈ s ′.vsp. So both clauses hold in s ′.

It remains only to check the case in which s.pcp = liberate and v ∈ s.vsp. In this case, by
the inductive hypothesis (second clause), s.lnp ∈ {12, 13, 15, 18, 22, 25, 28, 31} and s.ip ≤ g. Thus,
s ′.lnp ∈ {12, 13, 15, 18, 22, 25, 28, 31} and s ′.ip ≤ g unless either a = line12p and s.ip > s.MAXG or
a = line31p and s.ip = g. The first case is impossible because, by Invariant 10, s.MAXG ≥ g ≥ s.ip;
the second case is impossible because s.ip = g =⇒ lnp 6= 31 by the third clause of the inductive
hypothesis. So the second clause of the invariant holds in s ′.

For the third clause, if s.ip 6= g then s ′.ip 6= g unless a = line31p, in which case s ′.lnp = 12, so
the third clause holds in s ′. If s.ip = g and s.lnp /∈ {18, 22, 25, 28, 31} then s ′.lnp /∈ {18, 22, 25, 28, 31}

unless a = line15-17p. In this case, by Invariant 6, s.POST[s.ip] = s.post[s.ip] = v ∈ s.vsp, so
s ′.vp = v, s ′.lnp = 18 and, by Invariant 16, s ′.attemptsp = s.attemptsp = 0. So the invariant holds
in s ′.
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If s.ip = g and s.lnp ∈ {18, 22, 25, 28, 31} then, by the inductive hypothesis (third clause), so
s.lnp /∈ {28, 31} and s.vp = v. The only actions we need to consider are line18-21p, line22-24p,
line25-26p, and line18-21q and line28-30q for some q 6= p with s.iq = g and s.hq = s.HNDOFF[g].
We check for each of these actions that the third clause of the invariant holds in s ′.

For a = line18-21p, we have two cases. If s.hp = s.HNDOFF[g] then by Invariant 11, v =

s.vp ∈ s.vsp, and by Invariants 1 and 12, s.hp.val 6= v, so v /∈ s ′.vsp, and the third clause holds in
s ′. Otherwise, s ′.lnp = 22 and the third clause is preserved by a.

For a = line22-24p, by Invariant 17 and the inductive hypothesis, s.attemptsp 6= 2, and
s.attemptsp = 1 =⇒ s.HNDOFF[g].val = null. Thus, s ′.lnp = 25, s ′.vp = s.vp = v, s ′.hp =

s.HNDOFF[g] = s ′.HNDOFF[g] and s ′.attemptsp = 2 =⇒ s ′.hp.val = null.

For a = line25-26p, by Invariant 6 and the inductive hypothesis, s.vp = v = s.post[s.ip] =

s.POST[s.ip] and s.attemptsp = 2 =⇒ s.hp.val = null. Thus, s ′.lnp = 18 and the third clause is
preserved by a.

For a = line18-21q for some q 6= p with s.iq = g and s.hq = s.HNDOFF[g], by Invariant 15,
s ′.attemptsp = s.attemptsp = 0. Also, s ′.vp = s.vp = v and s ′.lnp = s.lnp /∈ {28, 31}.

For a = line28-30q for some q 6= p with s.iq = g and s.hq = s.HNDOFF[g], we consider three
cases. If s.attemptsp = 2 then s.hq.val = s.HNDOFF[g].val = null by the inductive hypothesis, so
a preserves the third clause. If s.attemptsp = 1 and s.hq.val ∈ {null, s.vq} then again, a preserves
the third clause. If s.attemptsp = 1 and s.hq.val /∈ {null, s.vq} then s ′.attemptsp = s.attemptsp = 1

and s ′.HNDOFF[g].val = null.

We now prove the main theorem, which says that PTB implements ROPlite (assuming a well-
behaved environment). This proof uses a special case of the simulation relation, or refinement,
method [8].

Theorem 1 The PTB automaton (including the environment part) implements the ROP automaton
(including the environment part).

Proof: We can prove that one automaton A implements another automaton B with the same input
and output actions (but different internal actions) by giving a function f from the states of A to the
states of B that satisfies the following properties:

1. If s is an initial state of A then f(s) is an initial state of B.

2. If s is a reachable state of A and s a−→s ′ then f(s) a−→f(s ′) if a is external and f(s ′) = f(s) if a is
internal.

The existence of such a function, called a refinement or a simulation, implies that A implements
B [8].9 Because the state variables of the ROP automaton are exactly the environment state vari-
ables of the PTB automaton, we simply use the function that maps states of the PTB automaton to
the states of the ROP automaton with identical values for those state variables. The first property
above is satisfied because the environment state variables are initialized to the same values in both
automata.

Suppose that s is a reachable state of the PTB automaton and s a−→s ′. If a is an internal action,
then f(s ′) = f(s) because the internal actions do not modify any of the environment state variables.

9This is a special case of refinements and simulations, but it is sufficient for our purposes.
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If a is an environment action then the precondition of a is identical in the two automata and the
environment state variables are updated in the same way by both automata, so f(s) a−→f(s ′), as
required.

For the PTB output actions, we need to argue that a is enabled in f(s) and that both au-
tomata update the environment state variables in the same way. For HireResp, FireResp and
LiberateResp actions, the latter is obvious because the statements of the effects clause that affect
the environment state variables are identical.

For HireRespp(g), s.lnp = 6 and s.ip = g, so by Invariant 1, s.pcp = hire, and by Invariant 2,
g /∈ ⋃

q s.guardsq.

For FireRespp(), s.lnp = 8, so by Invariant 1, s.pcp = fire.

For LiberateRespp(S), s.lnp = 32 and S = s.vsp, so s.pcp = liberate by Invariant 1, s.status[v] =

escaping for all v ∈ s.vsp = S by Invariant 12, and for all g and v 6= null such that s.post[g] = v

and s.trapping[g], we have v /∈ s.vsp = S by Invariant 18 (second clause).

For PostRespp() for some p, s.lnp = 10, so by Invariant 1, s.pcp = post(s.ip, s.vp). Thus,
PostRespp() is enabled in f(s), and the environment state variables are updated in the same way
in both automata, so f(s) a−→f(s ′), as required.
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