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Abstract data types have proved to be a useful technique for structuring systems. In large systems it 
is sometimes useful to have different regions of the system use different representations for the 
abstract data values. A technique is described for communicating abstract values between such 
regions. The method was developed for use in constructing distributed systems, where the regions 
exist at different computers and the values are communicated over a network. The method defines a 
call-by-value semantics; it is also useful in nondistributed systems wherever call by value is the desired 
semantics. An important example of such a use is a repository, such as a file system, for storing long- 
lived data. 
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1. INTRODUCTION 

A b s t r a c t  da t a  types  have  p roved  to be a useful  t e c h n i q u e  for s t r u c t u r i n g  systems.  
T h e y  p e r m i t  the  p r o g r a m m e r  to encapsu l a t e  deta i ls  of the  r e p r e s e n t a t i o n  of da t a  
so t h a t  these  deta i ls  can  be changed  wi th  m i n i m a l  i m p a c t  on  the  p r o g r a m  as a 
whole.  I t  is s o m e t i m e s  useful,  especial ly  in  large programs,  to use d i f fe rent  
i m p l e m e n t a t i o n s  of a da t a  a b s t r a c t i o n  in  d i f ferent  regions  of the  p rogram.  C u r r e n t  

l anguages  t h a t  s u p p o r t  da t a  abs t rac t ion ,  however ,  l imi t  a p r o g r a m  to a single 
i m p l e m e n t a t i o n  [11, 17]. T h e  r eason  for this  l i m i t a t i o n  is the  diff icul ty of com- 
m u n i c a t i n g  b e t w e e n  the  regions  us ing  di f ferent  i m p l e m e n t a t i o n s .  

T h i s  pape r  descr ibes  a t e c h n i q u e  for c o m m u n i c a t i n g  abs t r ac t  va lues  b e t w e e n  
such  regions.  T h e  m e t h o d  def ines  a ca l l -by-va lue  semant ics .  T h e  m e t h o d  was 
deve loped  for use in  d i s t r i bu t ed  sys tems,  where  the  regions  exist  a t  d i f ferent  
c o m p u t e r s  a n d  the  va lues  are c o m m u n i c a t e d  over  the  ne twork .  I t  is also useful  in  
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nondist r ibuted systems wherever  call-by-value is the desired semantics. An 
impor tan t  example of such a use is a repository, such as a file system, for storing 
long-lived data. 

We assume a hardware  base consisting of a set of computers,  or nodes, 
connected by a network; the only (physically} shared memory  between the nodes 
is the network itself. A distr ibuted program consists of a collection of program 
modules  tha t  reside at different nodes and share no memory.  A module 's  address 
space is a collection of strongly typed objects, which are containers for values. 
T h e  modules  communicate  by means of a primitive, provided by the language, 
tha t  causes messages to be t ransferred over the network. 

For  purposes of discussion let us assume tha t  messages are sent by executing 

s e n d  C(al  . . . . .  an) t o  M 

Here  M is a module, C is the name of a request  or operat ion tha t  M is being 
asked to perform, and al . . . .  , an are the actual arguments  of operat ion C. The  
effect of executing such a s e n d  s ta tement  is tha t  a message containing the name 
C and the values of a~ . . . . .  a ,  is constructed and sent to M. We assume tha t  in 
M there  is an operat ion definition for each request  M is prepared to handle. Thus  
M contains an operat ion definition, 

C = r e q u e s t  h a n d l e r ( f 1  : T1, . . . ,  fn : Tn) 
% body of C 
e n d  C 

When  a message containing the request  named C is received at  M, this request  
handler  is executed, ~ with the formals fl . . . . .  fn initialized to contain the values 
extracted from the message. 

In the remainder  of this paper  we will assume tha t  all arguments  of the s e n d  
are t ransmit ted  by value. Therefore ,  when one of these arguments  is of abstract  
type, it will be necessary to somehow "copy"  the value of tha t  argument  to the 
receiving module. This  paper  addresses the quest ion of how tha t  copy is to be 
made. (Some kind of call by reference for s e n d  arguments,  in which a reference 
to the argument  is sent  to the receiving module, is also possible, al though we 
believe call by reference is not  very  useful in a distr ibuted program. Such a 
semantics leads to a completely different set of problems, for example, storage 
management ,  local versus remote  pointers [19], than  those discussed in this 
paper.) 

How can the value of an argument  of abstract  type be communicated  in a 
message? Recall tha t  an abstract  type provides a set of abstract  objects or values 
and a set of primitive operations: the primitive operations are the only means  of 
manipulat ing the values [15]. An implementat ion of an abstract  data  type must  
define how to represent  the values and define implementat ions for the operations 
in terms of the chosen representat ion.  One possibility for communicat ing abstract  
values is to communicate  their  representations;  tha t  is, the system transmits  the 

We are ignoring issues such  as the  reliability propert ies  of  the  primitive,  how M schedules  the  
process ing of incoming messages ,  and  whe the r  type checking of message  and  a r g u m e n t  types  is done 
a t  compile  t ime or at  run  t ime.  
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representation in the message and automatically reconstructs the abstract value 
at the receiving module. Although such a representation may be defined in terms 
of other abstract data types, ultimately it is expressed in terms of the built-in 
types of the language. Thus the representation can be transmitted assuming (as 
we do) that  the built-in types can be transmitted. 

Nevertheless, transmitting abstract values by transmitting their representa- 
tions is unsatisfactory for several reasons: 

(1) Different modules may use different representations for values of common 
user-defined types. Security concerns, differing patterns of use, and differing 
hardware characteristics may all encourage the use of customized implementa- 
tions of abstract types in modules. The direct transmission of underlying repre- 
sentations provides poor support for constructing customized representations for 
abstract types. 

(2} The underlying representation of a value may be transmissible, while the 
value itself may not be. For example, it may not make sense to send a value of 
type "I/O stream" to another node, even if the representation of the stream is 
transmissible (e.g., an array of integers). 

(3) Conversely, a value may be transmissible, while its representation may be 
unsuited for transmission. For example, a representation used by one implemen- 
tation may contain information, such as an index into a private table, that would 
be meaningless to another implementation. 

We conclude that what is needed is user control over transmission of abstract 
values. In the remainder of this paper we discuss a method that supports user 
control. This method satisfies the following design goals: 

Modularity. Transmission of the values of a data abstraction is defined locally 
as part of the implementation of that data abstraction. This principle is necessary 
to ensure that  knowledge of the representation is local to the implementation. 

Usability. The definition of transmission can be given in terms of any conven- 
ient data types. The programmer does not need to translate into strings of bits. 
Furthermore, the programmer need not know about the underlying network and 
its protocols. 

Linearity. The work needed to implement value transmission is linear in the 
number of different implementations for the data abstraction. 

The transmission method is described in terms of the CLU programming language 
[11, 14] but is applicable to any language that supports data abstraction. We do 
assume a single language system: all communication is between modules written 
in the same language. 

The method we propose is to define a canonical representation for each type 
that  can be used in messages; each implementation of the type must define how 
to translate between its internal representation for the values and the canonical 
representation. Such a method is an obvious approach, but there are many details 
to be worked out. Our main contribution is that we have worked out these details, 
including the user interface, specification of transmission and verification of the 
translation functions, and implementation. 
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Section 2 describes the basic method in the absence of shared and cyclic data 
structures, while Section 3 extends the method to include sharing. Section 4 
discusses the implementation of message transmission. Section 5 extends the 
method to handle cyclic objects, while Section 6 extends the method to support 
storage of long-lived data. Finally, Section 7 contains a summary and discussion 
of what we have accomplished; it also discusses the relationship of our work to 
other research, some ways of increasing the efficiency of our method, and areas 
for further research. 

2. THE BASIC METHOD 

In this section we describe our basic method of transmitting abstract values. We 
discuss the meaning of transmission and how to define transmission for an 
abstract type. We then give examples of the programs that users write to support 
transmission. Finally, we discuss how to reason about the correctness of the 
transmission programs. To simplify the discussion, we ignore the problems that 
arise in transmitting data structures containing shared components and cycles; 
solutions to these problems are given in later sections. 

2.1 The Meaning of Transmission 

Transmissibility is a property of a data abstraction and must be stated in the 
specification of that abstraction. A transmissible data type T can be thought of 
as having an additional operation, 

t r a n s m i t  : T --, T, 

which is implicitly called during message transmission. Given an input data 
object, t r a n s m i t  produces a different data object, which even resides at a different 
node from the original, whose relationship to the input object is defined by the 
specification for t r a n s m i t .  

Although the exact specification of t r a n s m i t  is type dependent, most often 
what is wanted is that the values of the two objects be equal. (The equivalence 
relation for values of a data type is defined by the type's specification; see [5, 
9].) A t r a n s m i t  operation with this property satisfies the relation 

x = t r a n s m i t  (x)  

and is said to p r e s e r v e  v a l u e  equa l i t y .  

For the built-in types, the language defines whether they are transmissible and 
the meaning of transmissibility. Almost all the built-in CLU types are transmis- 
sible. In CLU, as in other languages, there are two classes of built-in types: 
s t r u c t u r e d  and u n s t r u c t u r e d .  Objects of structured types contain collections of 
other objects; arrays and records are examples of structured types. Objects of 
unstructured types contain no other objects; integers, characters, and real num- 
bers are examples of unstructured types. 

T r a n s m i t  for almost all built-in, unstructured types in CLU does preserve value 
equality. The one exception is t r a n s m i t  for real numbers, which, because of 
round-off errors, does not preserve value equality but guarantees only that  the 
two values differ by very little. Built-in structured types are transmissible if and 
only if the component types are transmissible. Transmission for structured types 
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involves transmission of components using transmit for the component types. For 
example, if an object x is an array containing elements of type T, then transmit 
for x creates a new array object y with the same bounds as the original, and with 
elements 

y[ i] = T$transmit( x[ i]). 

{Here we are using the notation T$transmit to indicate that the transmit 
operation for type T is being used.) Thus transmit for built-in structured types 
will preserve value equality if and only if transmit for the component types does. 

For abstract types the specification of transmit is user defined. As with the 
built-in types, it is not always possible to require preservation of value equality. 
In a later section we present some examples of abstract types whose transmit 
operations do not preserve equality. 

2.2 Implementing Transmission 

The transmit operation is neither called directly in programs nor implemented 
directly. Instead, the system causes it to be executed whenever a successful 
message communication occurs. Suppose that an invocation of 

C = r e q u e s t  h a n d l e r  ( fl : T1 . . . . .  fn : Tn) 

is run in response to 
send  C(al . . . . .  a,) to M 

Then in this invocation of C, we have 

fi = Ti $ transmit (ai) 

f o r i =  1 . . . . .  n. 
Transmission for an abstract type is implemented by users in the following 

way. As was mentioned in the introduction, a canonical representation is defined 
for each transmissible type. This canonical representation is given by defining an 
external representation type. For every abstract type that is transmissible we 
require that an external representation type be defined. The external represen- 
tation type of an abstract type T is any convenient transmissible type XT. This 
type can be another abstract type if desired; there is no requirement that X T  be 
a built-in type. Intuitively, the meaning of the external representation is that 
values of type X T  will be used in messages to represent values of type T. The 
choice of external representation type is made for the abstract type as a whole 
and is independent of any implementation of the abstract type. 

Each implementation of the abstract data type T must provide two operations 
to map between (its internal representation of) values of abstract type, T, and 
external representation type, XT. There is an operation 

encode = proc( t :  T) r e t u r n s  (XT) 

to map from T values to X T  values (for sending messages) and an operation 

decode = proe(x  :XT) r e t u r n s  (T) 

to map from X T  values to T values (for receiving messages). Intuitively, the 
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Fig. 1. Meaning of T$ transmit. 

Module A Module B 

~ncode ~~ecode 
XT $ transmit = 

correctness requirement for encode and decode is that  they preserve the abstract 
T values: encode maps a value of type T into the X T  value that  represents it, 
while decode performs the reverse mapping. More precisely, encode, decode, and 
transmit are related by the following identity. For x E T, 

T$transmit(x) = decode( XT$transmit  (encode(x))). 

This identity is illustrated in Figure 1. 
Encode and decode are not called explicitly by user programs; instead, the 

language implementation makes these calls in the course of sending and receiving 
messages. Each actual argument in a send statement must be of a transmissible 
type. If this type is one of the nonstructured, built-in types like integers or 
characters, then the system knows how to place its value in a message and how 
to extract its value from a message. For built-in structured types, like arrays, the 
system will transmit the components, using encode and decode for the component 
type, as part of transmitting the structured object. For abstract types the system 
calls encode to obtain an X T  object. I f X T  is an abstract type, then encode for X T  
is called, and this process is repeated until the argument has been translated to 
a value of built-in type. This value is then transmitted in the message. When a 
message is received, the reverse happens: a value of built-in type is extracted 
from the message, and then decode operations are called until a T value is 
obtained. (The language implementation is discussed in Section 4.) 

2.3 Examples 

As a first example of a typical user-defined type, we consider complex numbers. 
This type provides operations to create new complex numbers; add, subtract, 
multiply, and divide complex numbers; compare complex numbers; and obtain 
the real and imaginary coordinates of a complex number. Both rectangular and 
polar coordinates are useful representations for complex numbers. The choice of 
representation depends on the relative frequency of addition versus multiplica- 
tion. 

A good external representation for complex numbers might allow either coor- 
dinate system to be used. In CLU this would be expressed by giving type 
definitions, for example, 

xrep  = variant[ xy : xycoords, polar : polarcoords] 
xycoords = record[x, y: real] 
polarcoords = record[rho, theta : real] 

Here xrep  is a reserved word that identifies the external representation type XT; 
it also stands (as do xycoords and polarcoords) as an abbreviation for the type 
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complex = t ransmiss ib l e  c lus ter  is create, real, imag, add, sub, mul, divide, 
equal . . . .  

xycoords = record[x, y : real] 
polarcoords = record[rho, theta : real] 
rep = xycoords 
xrep  = variant[xy : xycoords, polar  : polarcoords] 

encode = p r o c ( c : c v t )  r e t u r n s  (xrep)  
r e t u r n ( x r e p $ m a k e  xy(c)) % Make an xy variant. 
end encode 

decode = p roc (xc :  x r ep )  r e t u r n s  (evt) 
t a g c a s e  xc 

t ag  xy(x  : xycoords): return(x)  
t ag  po lar (p  : polarcoords ): r" real := p.rho * cos(p.theta) 

i : real := p.rho * s in(p. theta)  
% Use computed values to create a record. 
r e t u r n ( r e p $  {x : r, y:  i}) 

end 
end decode 

% Definitions of procedures implementing the operations listed in the header appear  
% here. 

end complex 

Fig. 2. Complex number  example. 

appearing to the right of the equal sign. A variant is a built-in CLU type similar 
to a variant record; an object of this type can be either of type xycoords, in which 
case it is tagged by the identifier xy, or of type polarcoords, tagged by the 
identifier polar. 

In CLU an abstract type is implemented by a special kind of module called a 
cluster. Figure 2 shows part of a cluster that implements complex numbers using 
rectangular coordinates as the internal representation (rep). Here encode obtains 
the internal representation of a complex number (via cvt) 2 and builds the external 
representation for this number, using the xy variant. Decode must check the tag 
of the external representation value it receives (using the t agcase  statement) 
and do a conversion to rectangular coordinates if it receives the polar form. The 
internal representation it constructs turns into a complex number when it is 
returned (via cvt). 

Transmission for the complex number type cannot preserve strict value equality 
because of round-off errors, although it is important to define the acceptable 
margin of error. 

As a second example, we introduce a key-item table that stores pairs of values, 
where one value (the key) is used to retrieve the other (the item). The key-item 
table type has operations for creating empty tables, inserting pairs, retrieving the 
item paired with a given key, deleting pairs, and iterating through all key-item 

2 Cv t  indicates a conversion between abstract  and internal representation type. Cvt  may appear only 
in a cluster; it maps between the r e p  of that  cluster and the abstract  type implemented by that  
cluster. When cv t  appears as the type of an argument,  the mapping is from abstract  type to r e p  type; 
when it appears as a result type, the mapping is the other way. 
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d a t a  t y p e  table]key, item : type] i s  create, isin, enter, lookup, delete, allpairs 

r e q u i r e s  Key and item are transmissible. 
KeyS transmit  preserves  value equali ty.  
Key is totally ordered by operations equal and It {less than) .  

table is transmissible 
e f f ec t  If t is a table and k is a key, then: 

isin( t, k)  = isin(transmit(t) ,  k)  
isin(t, k)  implies lookup(transmit( t ) ,  k)  = i tem$transmi t ( lookup( t ,  k)) 

create = p roc (  ) r e t u r n s  (table) 
e f f ec t  r e tu rns  a new, empty table. 

isin = p r o c ( t  : table, k : key) r e t u r n s  ( bool ) 
e f f e c t  r e tu rns  true if there is an entry for k in t, else returns false. 

enter = proc  (t : table, k : key, i : item) 
m o d i f i e s  t 
e f f ec t  inserts the pair (k, i) in t, t hus  modifying t. 

If k is already in t, changes its associated item to i. 

lookup = p r o c ( t :  table, k :key) r e t u r n s  (item) s i g n a l s  (no__entry) 
e f f ec t  if k is entered in t returns the associated item, else signals no_entry .  

delete = p r o e ( t  : table, k : key) 
m o d i f i e s  t 
e f f ec t  removes the entry for k (if any) from t, t hu s  modifying t. 

allpairs = i t e r ( t  : table) y i e l d s  (record[ k : key, i : item]) 
e f f ec t  yields all entries in t, each exactly once, in some arbitrary order. 

e n d  table 

Fig. 3. Informal specification of table. 

pairs. An informal specification of key- i tem table is shown in Figure 3. This type 
is parameterized by the types of both keys and items. As stated in the r e q u i r e s  
clause of the specification, certain restrictions are placed on these types, namely, 
both must  be transmissible, and keys must  be totally ordered. The operation 
allpairs is an iterator [11]; this is a limited kind of coroutine that  can be called 
only by a for  loop to provide results (in this case, key- i tem pairs) to its caller one 
at a time. 

Tables  can be implemented in many different ways, depending on local re- 
sources, or patterns of use. A straightforward choice of external representation of 
a key- i tem table is an array of key- i tem pairs, expressed in CLU by 

x r e p  = array[pair]  

pa i r  = record[k : key, i: item] 

In CLU, array[  T] indicates an array whose elements are of type T. The  size of 
CLU arrays can vary dynamically. When a new array is created it is empty, and 
new elements  can be appended at either the high or the low end. 

A partial implementat ion for table using a sorted binary tree representation is 
shown in Figure 4. Here encode and decode work on table objects (not on their 
representations) and make use of other table operations to do the translations. 
This  representation makes use of the fact that  pointers are implicit in CLU; in 
many other languages nodes would contain explicit pointers to tables. 
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table = t ransmiss ib le  cluster [key, item : type] is create, enter, seen, lookup ,  a l lpa i r s ,  
delete 

w h e r e  key is  transmiss ible ,  
item is transmiss ible ,  
key has  lt : proctype(key, key) returns ( bool) ,  

equal : p r o c t y p e ( k e y ,  key)  returns (bool) 
p a i r  = record[  k : key,  i : item] 
node = record[  k : key,  i : i tem,  left, r i g h t  : tab le[key ,  i tem]] 
rep  = v a r i a n t [ e m p t y :  nul l ,  s o m e  : node] 
x r e p  = a r r a y [ p a i r ]  

% The internal representation is a sorted binary tree. 
% All pairs in the table to the left (right) of a node 
% have keys less than (greater than) the key in that node. 

encode = proe( t  : tab le[key ,  item] returns (xrep) 
x r :  x r e p  := x r e p $ n e w (  ) % Create an empty array. 
% Use allpairs to extract the pairs from the tree. 
f o r p  : p a i r  in allpairs(t) do 

x r e p $ a d d h ( x r ,  p )  % Add the pair to the high end of the array. 
end 

re turn(xr )  
end encode 

decode = proc(xr:  xrep) returns  (table[key, i tem])  
t : table[key, item] := create( ) % Create empty table. 
for p : p a i r  in xrep$elements(xr) do 

% x r e p  $ elements yields all elements of array xr.  
enter(t, p . key ,  p . i t e m )  % Enter pair in table. 
end 

return(t)  
end decode 

% Implementations of table operations appear here. 
end table 

Fig. 4. Partial implementation of table. 

The implementor of the key-item table type does not need to encode or decode 
the values of keys or items. In fact, our scheme permits the key-item table to be 
implemented without advance knowledge of the key or item type; we only require 
that key and item values are themselves transmissible and that key values are 
ordered, as discussed above. 

It is a little more difficult to define whether transmission of key-item tables 
preserves value equality, because here we are not defining a single type, but a 
collection of types; each type in this collection corresponds to a particular choice 
of key type and item type. Tables may be useful even if the key type or item type 
does not preserve value equality; it is up to the definer of table to decide what 
requirements to place on the parameter types. Whatever the requirements are, 
they should be stated in the specification. 

For example, for tables we might require that keys, but not items, preserve 
value equality. (Thus complex numbers could be used as items but not as keys.) 
With this requirement, transmit for tables does not preserve value equality. 
Instead, the specification of table$transmit would be similar to that for arrays: 
table$transmit produces a new table containing the same key values as the 
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original, and each key is associated with the t r ansmi t t ed  verson of its original 

i tem. 

2.4 Reasoning about Transmission 

Recall that 

T$ t ransmi t ( x )  = decode(XT$t ransmi t (encode(x )  ) ) 

for x E T. I t  is not  sufficient to prove  this ident i ty  for a par t icular  cluster, because 
t ha t  would only show tha t  the t ranslat ions done by  encode and decode in tha t  
cluster  are compatible .  Instead,  we need a more  general  me thod  tha t  works when  
encode and decode come f rom different implementa t ions  of the  type.  

In  defining the  external  represen ta t ion  we have  in mind a relat ionship be tween 
the values  of X T  objects  and the values of the  abs t rac t  type  T; tha t  is, the values 
of the  X T  objects  are in tended to represen t  the  abs t rac t  values. This  relat ionship 
can be expressed by  means  of a function tha t  maps  X T  values into the abs t rac t  
values  they  are in tended to represen t  [8]. First, there  m a y  be an external  
represen ta t ion  invariant  t ha t  defines the subset  of X T  values tha t  are legal 
external  representat ions .  T h e n  we define an abstraction function t ha t  m a p s  the 
legal X T  values to abs t rac t  T values: 3 

AxT : XT---> T. 

For  example,  for tables  we have  

x r e p  = array[pair] 

pa i r  = record[k : key, i : item] 

T h e  external  represen ta t ion  invar iant  is (informally) t ha t  all e lements  of the 
a r ray  contain different keys, and we can write the  abs t rac t ion  function as 

AxT(xr) = (xr[i] I i between low and high bound of xr} 

Here  we have  chosen to model  values of tables  as sets of k e y - i t e m  pairs. 
We can use the external  represen ta t ion  and its associated invar iant  and 

abs t rac t ion  function to define the  specification of encode and decode and thus 
de te rmine  the correctness  of encode and decode implementa t ions .  Associated 
with the  internal  represen ta t ion  of a cluster  are a represen ta t ion  invar iant  and 
abs t rac t ion  function, 

ART : R T - *  T, 

where R T  is the internal  represen ta t ion  type  of T. At this point  we have  three  
types  {abstract, RT ,  X T ) ,  two invariants,  two abs t rac t ion  functions (AxT and 
ART), and encode and decode. These  are re la ted to each o ther  by  establishing 
two identities, one for encode and one for decode. These  two identit ies are wha t  
mus t  be shown to establish the correctness  of encode and decode. For  types  t ha t  

3 The method to be described can easily be generalized to use two abstraction functions, one on the 
sending side and one on the receiving side. Two functions are useful when XT$transmit does 
something strange, and encode and decode compensate for this strangeness. It is not clear that such 
a generalization is of practical interest. 
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preserve value equality, these identities are likely to be 

A R T ( r )  = AxT(encode(r)), (1) 

AxT(xr) = ART(decode(xr) ), (2) 

where xr and r are respectively of type X T  and RT, satisfying the external and 
internal representation invariants. (Note that in these identities the types of 
encode and decode differ slightly from those given above. In identity (1), r is the 
concrete rep object that represents the abstract object passed to encode; in 
identity (2), decode returns the concrete rep of the abstract object it constructs.) 
Intuitively, identity (1) says that the values of both r and encode(r) represent the 
same abstract value. Identity (2) says that the values of both xr and decode(xr) 
represent the same abstract value. In addition, encode and decode must preserve 
invariants; that is, the result of encode must satisfy the external representation 
invariant, and the result of decode must satisfy the internal representation 
invariant. 

The identities above are inadequate for transmitting types, like complex 
numbers, that  do not preserve value equality. For such types we require 
"closeness" instead of exact equality. Whatever the requirements on encode and 
decode, they must be stated as part of defining the external representation. For 
complex numbers, then, we might retain identity (1), thus requiring that encode 
not introduce any round-off error, but replace identity (2) by 

]AxT(Xr) -- ART(decode(xr)) I < e. (2*) 

In addition, for complex numbers another inexactness results from transmission 
of reals, 

[ AxT(xr) -- AxT(XT$transmit(xr)) ] < 8. 

It must be proved as part of defining the external representation that the error e 
+ 8 is small enough to satisfy the specification of complexStransmit. 

The identities and transmit are related by the following theorem. 

THEOREM. Given the specification of XT$transmit, and assuming that 
encode satisfies identity (1) and that decode satisfies identity (2), then 
encode (XT$transmit(decode(x) ) ) satisfies the specification of TStransmit for all 
x E T .  

This theorem is proved just once for a type; this proof should be given at the 
time the external representation is chosen and the identities are stated. The later 
proofs of the individual implementations of encode and decode justify the 
assumptions of the theorem. 

2.5 Conclusion 

A major advantage of our transmission method is modularity: transmission can 
be implemented, and then proved or understood, one module at a time. First note 
that  the choice of external representation must be made independently of any 
implementations. Then, given the information about the external representation, 
including the invariant and abstraction function, and identities (1) and (2), the 
correctness of encode and decode can be shown locally for each cluster. 
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Note that transmissibility constrains the possible implementations of a type as 
follows. All values produced by a particular implementation must be transmissi- 
ble, and all transmissible values must be represented. That  is, for each RT value 
there must exist a corresponding XT value, and vice versa. We believe this 
constraint should apply to the built-in types as well as the abstract ones. Of 
course, the built-in types may have different implementations at different nodes. 
For example, suppose the external representation for integers were 32 bits. Then 
on a 16-bit machine, two words could be used to represent an integer, while on a 
36-bit machine, only 32 of the 36 bits could be used to represent integers. It is 
worth noting that the constraints imposed by transmissibility are similar to those 
imposed by transportability. 

3. SHARING 

In the previous sections objects of a given type were viewed merely as containers 
for values of that type, and the identities of the objects themselves were ignored. 
This model is insufficient for many interesting data types, such as graphs, in 
which sharing of subcomponents is of interest. In this section we extend our 
scheme to provide the user with a simple means to control the effect of transmis- 
sion on the internal sharing structure of values. The scheme is general enough to 
support transmission of cyclic structures, but we defer discussion of cycles to 
Section 5. 

To model sharing, we must extend the definition of type to include the notion 
of an object name; each object of a type has a name as well as a value. Intuitively, 
if x and y have the same name, then they are exactly the same object. Changing 
the value of one will change the value of the other. We use the notation 

X ~ - m - y  

to indicate name equality of objects x and y. (The distinction between name 
equality and value equality is the same as the distinction between EQ and 
EQUAL in LISP [16].) 

If the value of x contains the name of y, then y is said to be a component of x. 
When an object is named more than once, we say the object is shared. Sharing 
comes in two varieties: intraobject sharing and interobject sharing. Intraobject 
sharing occurs when components are shared within a single object, as in Figure 
5a. Interobject sharing occurs when components are shared between distinct 
objects. An example is given in Figure 5b. Here a record has two components: a 
table containing cells as items, and an individual cell that  happens to be one of 
the cells in the table. 

Shared structures cause the following question to be raised about transmission: 
Should transmission preserve the internal sharing structure of the transmitted 
object? For example, suppose that a table contains integer cells as items, and 
that two (or more) keys share the same cell (see Figure 6a). In the transmitted 
table, should the two keys share the same cell (as in Figure 6a), or should they be 
associated with different cells (as in Figure 6b)? Note that different behavior will 
result in the two cases: if the keys share a cell, then a change to that cell looked 
up using one key will be observed if the cell is looked up using the other key, 
while if the keys do not share the cell, the change will not be observed. 
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record 

cel l  

(a) 

record 

table 

(b) 

Fig. 5. Illustrations of sharing: 
(a) intraobject  sharing; (b) inter- 

object  sharing. 

table 

(a) 

table 

kk2~ cell kl ~r"ff"l 

cell 

(b) 

Fig. 6. Effects of transmission on 
sharing structure: (a) two keys 
sharing a cell containing the  value 
0; (b) two keys referring to two 
different cells, each containing the 

value 0. 

Probably for the key-item table, and for types in general, sharing should be 
preserved. In general, preservation of intraobject sharing is a necessary part of 
preserving value equality, while preservation of interobject sharing may be 
needed to preserve value equality of a containing object. Nevertheless, only the 
definer of the type can decide about sharing preservation, since the decision 
affects the behavior of the transmitted data. Whatever the decision, it should be 
stated in the specification of transmit. 

What support should we give for communicating sharing structure? While it is 
not necessary to provide any support, we believe that users will usually want 
sharing to be preserved, and that a language definition should make the most 
common and useful functionality easy to implement. Furthermore, explicit pres- 
ervation of sharing by the language user in the absence of such support is difficult. 
For example, by choosing a more complicated external representation type, users 
implementing key-item tables could explicitly encode the intraobject sharing 
structure within individual tables; nevertheless, a user wishing to preserve inter- 
object sharing as in Figure 5b would find it difficult to do so. 

Therefore, we extend our scheme to preserve sharing structure automatically. 
First, we redefine the transmit operation discussed earlier to take a second 
argument: an environment that identifies the objects whose sharing matters. The 
environment allows us to delimit the context within which sharing should be 
preserved. For example, it appears useful to have the transmit operations preserve 
sharing when transmitting a single argument, or perhaps an entire message, but 
it does not appear useful to preserve sharing between objects sent in distinct 
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messages. Secondly, we define t r a n s m i t  for all built-in types to preserve both 
intra- and interobject sharing. 

As an example, we state the sharing properties for CLU arrays. Languages 
provide different methods for allowing objects to name other objects. In many 
languages this is done by using explicitly introduced pointer objects. In CLU, 
however, the concept of an object name is fundamental: all CLU data objects 
have names as well as values, and objects may refer to other objects by containing 
their names. For example, CLU arrays contain the names of their elements; thus 
the CLU type a r r a y [ T ]  would correspond to "array of pointer to T" in other 
languages. Similarly, tables contain the names of key and item objects. 

In the following, a and a'  are arrays, i, i ' ,  j ,  j '  are integers, t and t '  are of type 
T (the element type of the array), and E is an environment. We have 

(1) I n t r a o b j e c t  s h a r i n g .  Let a'  = = t r a n s m i t ( a ,  E ) ,  i '  = = t r a n s m i t ( i ,  E), and 
j '  = = t r a n s m i t ( j ,  E ) .  Then 

a[i] = = a [ j ]  ~ a ' [ i ' ]  = = a ' [ j ' ] .  

(2) I n t e r o b j e e t  s h a r i n g .  Let a' - -= t r a n s m i t ( a ,  E ) ,  i '  = = t r a n s m i t ( i ,  E ) ,  and 
t '  = = t r a n s m i t ( t ,  E ) .  Then 

t = = a[i] ~ t '  = = a '[ i ' ] .  

As mentioned above, the user must define what transmission means for abstract 
types, but probably both inter- and intraobject sharing should be preserved. For 
example, in transmitting tables we want to preserve intratable sharing for items 
(any particular key appears in a table at most once, so intratable sharing for keys 
is not an issue) and interobject sharing for both keys and items. The specification 
of the sharing properties of transmission for tables is similar to that shown for 
arrays. 

When implementing transmission for abstract types in which sharing preser- 
vation is desired, a good strategy is to choose an external representation type for 
which t r a n s m i t  preserves sharing as well as value equality. Such a choice will 
simplify the job of writing e n c o d e  and decode .  To preserve sharing, e n c o d e  and 
d e c o d e  merely move the component objects into the external or internal repre- 
sentation, respectively (e.g., e n c o d e  stores in the external representation the 
names of the component objects contained in the internal representation.) The 
e n c o d e  and d e c o d e  operations for tables shown in Figure 4 preserve sharing in 
this way. 

4. IMPLEMENTATION 

Although the meaning of value transmission is controlled by the user, much of 
the actual work is performed by the run-time system that underlies the language 
implementation. As was mentioned earlier, each transmissible type can be 
thought of as having a t r a n s m i t  operation, but t r a n s m i t  is actually implemented 
by the system, using the e n c o d e  and d e c o d e  operations provided by the user. In 
implementing t r a n s m i t  the system performs a number of tasks, including sharing 
detection, message formatting, and interaction with the communication medium. 
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In this section we describe an implementation of transmit. This implementation 
differs from our actual running implementation in some minor details; it is simpler 
to describe but less efficient. 

Message transmission involves translating an arbitrary graph structure (the 
object) into linear form (the message), and vice versa. A number of algorithms 
have been developed for efficient linearization of graphs [1, 4]. Our algorithm 
differs from these because of the necessity of applying user-defined translation 
operations (encode and decode) during object traversal. 

Modules exchange information through a communication substrate, which is 
the language implementation's interface to the communication medium. The 
communication substrate encapsulates such functions as routing and addressing 
of messages, the observation of transmission protocols, and the detection and 
correction of transmission errors. We do not describe the communication sub- 
strate in detail, because its structure will be highly dependent on specific char- 
acteristics of the communication medium and the nodes. 

A message stream data type is provided by the communication substrate to 
implement message construction and interpretation. Information enters and 
leaves a message stream in discrete units called tokens. The message stream type 
has operations to insert and extract various kinds of tokens. When a module 
executes a send  statement, the system constructs an output message stream. For 
each actual argument object in the message the system traverses the object, 
placing tokens in the stream. The communication substrate then delivers the 
message stream to the receiving module's node, where the tokens are removed 
from the stream, and the transmitted objects are reconstructed. 

A map data type i sused  to detect sharing; it implements the environment 
discussed previously. A different map is used for each argument, since we choose 
to preserve sharing only within the individual arguments (rather than within the 
message as a whole). Each token in a message stream has an associated stream 
address. A map is a table that associates (names of} objects and stream addresses. 
When the system begins to transmit an argument object's value, an empty map 
is created to keep track of component identities. As the object is traversed, (the 
name of) the object itself, and each of its components, is recorded in the map, 
along with the stream address of the start of the corresponding sequence of 
tokens. Similarly, when a message is interpreted, each reconstructed component 
is entered in the map, along with its associated stream address; again a different 
map is used for each argument. 

There are three kinds of tokens: data tokens, header tokens, and back reference 
tokens. Data tokens are used to transmit the values of unstructured language- 
defined types such as integers, booleans, or strings. 

For both abstract types and language-defined structured types, the first token 
of an encoded abstract value or structured value is always either a header token 
or a back reference token. A header token marks the start of an encoded value of 
structured or abstract type. Header tokens may contain type-dependent infor- 
mation; for example, a variant header token contains the value of the tag. An 
array header token contains the low bound of the array, and the number of 
elements in the array; the low bound is needed to reconstruct tbe value of the 
array, and the size is needed both to reconstruct the array and to interpret the 
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subsequent  tokens  in the s t r eam (i.e., to de termine  how m a n y  of the subsequent  
tokens  correspond to a r ray  elements).  

Back reference tokens denote  shared components .  A back reference token 
contains the s t r eam address  of  the encoded value of an object. At the sending 
module,  when  an objec t ' s  value is reduced to tokens,  the (name of the) object  and 
the s t r e am address  of  its header  token are entered in the  map.  I f  the object  is 
encountered  again, this s t r eam address  is extracted f rom the m a p  and placed in 
the s t r e am in a back  reference token. At the receiving module,  each recons t ruc ted  
componen t  is entered  in the  m a p  with its s t r eam address. When  a back  reference 
is encountered,  the previously reconst ructed  object  is ext rac ted f rom the map.  

For  each t ransmissible  type  T, the  language implementa t ion  provides put  and 
get operations,  to t ransla te  be tween T values and sequences of tokens.  These  two 
opera t ions  are par t  of  the language implementa t ion;  they  are not  imp lemen ted  
by  users of  the language. The  put  operat ion for a r rays  does the  following: 

1. If the array object has already been entered in the map, place a back reference token in 
the stream, and return. 

2. Otherwise, enter the object and the current stream address in the map. 
3. Place a header token containing size information in the stream, and invoke put for each 

component object. 

Here  is the get operat ion for arrays:  

1. Remove the first token from the stream. If it is a back reference, return the indicated 
object from the map. 

2. Otherwise, create an empty array, and enter the new object and the current stream 
address in the map. 

3. Invoke the get operation for each component object, and initialize the array. 

Put and get for the o ther  s t ruc tured  types  are similar. T h e  put  operat ion for an 
abs t rac t  type  uses the  following algorithm: 

1. If the object has already been entered in the map, place a back reference token in the 
stream, and return. 

2. Otherwise, enter the object and the current stream address in the map. 
3. Place a header token in the stream, use encode to construct an external representation, 

and invoke the external representation's put operation. 

Finally, get for an abs t rac t  type  uses the  following algorithm: 

1. Remove the first token from the stream. If it is a back reference, return the indicated 
object from the map. 

2. Otherwise, construct the external representation by invoking itsget operation, and then 
use decode to create the abstract object. 

3. Enter the new abstract object and its stream address in the map, and return the object. 

These  a lgor i thms suffice to preserve  acyclic sharing. (Cyclic sharing is slightly 
more  compl ica ted and will be addressed in the next  section.) 

As an example  of  the message  format ,  in Figures 7 and  8 we show a table  
object  and its associated message representat ion.  In  this example  the  table  has  
integer keys and cells as i tems, and the  external  represen ta t ion  of cells is 
record[ val : int ]. 
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Fig. 7. Example table object. 

Token # Token Type Token Value Explanation 

1 Header 
2 Header 1,2 

3 Header 
4 Data 
5 Header 
6 Header 
7 Data 
8 Header 
9 Data 

10 BackRef 

0 

17 
5 

Fig. 8. Example 

Header for table 
Header for array 
(Table external representation with low bound 1 and size 2) 
Header of first array element (a record) 
The first key 
Header for the first item 
Header for item's external representation (a record) 
The item's value 
Header for second array element 
The second key 
The shared item 

of message representation for table. 

The  above implementat ion is based on the assumption tha t  message transmis- 
sion is type-checked at  compile time. Run-t ime type checking would require type 
information to be sent in messages (see Section 6). 

5. CYCLIC OBJECTS 

The  naming relation among objects can be modeled as a directed graph. If  the 
graph corresponding to an object  contains a directed cycle, we say the object  has 
a cyclic value. Simple examples of objects having cyclic values are circular lists 
and doubly linked lists, where each e lement  names both  its predecessor and 
successor. The  method  described so far does not  fully define value transmission 
for cyclic values. In this section we extend our scheme to encompass cyclic values, 
subject  to a simple restriction on the decode operations of such types. 

The  put operat ion described in Section 4 handles both  acyclic and cyclic 
objects. The  first thingput does when it encounters  a new object  to be t ransmit ted 
is to place a header  token for the object in the message s t ream and enter  the 
{name of the) object  in the map along with the address of the header  token. If a 
reference to the object  is encountered later, a back reference token is placed in 
the message stream. In the case of a cyclic object, the object referred to has not  
ye t  been fully reduced to tokens, but  this causes no difficulty. 

A problem does arise when trying to reconstruct  a cyclic object. Get does not  
enter  an object  in the map until it has been fully reconstructed.  When recon- 
structing a cyclic object, get will encounter  back reference tokens tha t  refer  to 
objects tha t  are not  fully reconstructed.  Since these objects are not  present  in the 
map, the implementat ion in Section 4 t reats  the situation as an error. 
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Just as it is not necessary for the system to preserve sharing, the system need 
not help the programmer in transmitting cyclic values. In this case the program- 
mer must encode cyclic values into acyclic external representations. We believe 
that  programmers would find this awkward in practice. 

Therefore, our system provides a certain amount of help in transmitting cyclic 
objects. As mentioned above, the occurrence of a cycle during reconstruction is 
indicated when the back reference token is extracted from the message stream 
but the object referred to has not yet been entered in the map. At this point, get 
creates an uninitialized object, that is, an object that  has a name, but no value, 
and enters it in the map with the stream address contained in the back reference 
token. Reconstruction can then continue with this uninitialized object used in 
place of the as yet nonexistent object that is needed to close the cycle. The 
uninitialized object, however, can be used only in a very restricted way: its name 
can be used, but not its value (since it has none). An operation uses the value of 
an object of type T if it causes a T operation to be applied to that  object. The 
only way a T operation can be applied to an uninitialized object is through the 
user-defined decode operation. In general, when an object containing a cycle is 
reconstructed, its decode operation may not use the value of any other object in 
the cycle. After decode operations have been applied to each object in the cycle, 
all objects are considered to be initialized, and arbitrary operations can then be 
applied. 

The restriction on operations is by no means the only way to define transmission 
for cyclic values. Generally, if the operation decoding an object uses the value of 
another object, the latter must be decoded before the former. Our method 
reconstructs acyclic objects in exactly such a "leaf-to-root" order. Our restriction 
on cyclic objects can be expressed as the requirement that no such dependency 
relations exist among any members of a cycle. In [7] a less restrictive scheme is 
described, in which we permit dependency relations among objects in a cycle but 
require that the closure of those relations be acyclic. Lazy evaluation is used to 
determine the order in which objects are decoded. Although the scheme described 
here is more restrictive, it is simpler both in implementation and description. 
Furthermore, experience suggests that  implementation s that violate our more 
conservative restriction are unlikely to be useful in practice. 

It is possible to implement transmission for an abstract type in such a way that 
message construction or interpretation may fail to terminate. Although we feel 
that  nonterminating transmit operations are unlikely to be a problem in practice, 
for completeness we will review some issues pertaining to termination. We will 
assume that user-defined encode and decode operations always terminate. For an 
abstract type T having external representation type XT, T$ transmit is defined in 
terms of X T $  transmit. The simplest way to guarantee that T$ transmit always 
terminates is to choose an X T  whose transmit operation is already known to 
terminate. The resulting T$ transmit will not be recursively defined. The complex 
number example given above reflects such a choice. For recursively defined types 
it may be convenient to choose an X T  that contains T components. In such a 
case, T$transmi t  and XT$transmi t  are mutually recursive, and demonstrating 
termination is more difficult. Recursive invocations of T$ transmit can stop in 
two ways: the collection of reachable T objects can be exhausted, for example, by 
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reaching the end of a linear list, or an object may be encountered for the second 
time, for example, by closing the cycle of a circular list. 

6. LONG-TERM STORAGE 

The method described above is useful for storing data in long-term storage, such 
as a file system. One module can store an item of type T, while another, using a 
different internal representation for T, can fetch it later. While in the file system, 
the data is stored in its message format as uninterpreted bits. The advantage 
over standard schemes is that  these bits have a system-known meaning: they are 
the message format of the external representation of T. This information can be 
used to prevent user errors in interpreting the bits, for example, interpreting bits 
belonging to one type as if they were of another type, or lack of agreement among 
modules as to what the external representation is for a given type. 

We must extend our method to permit programs to extract uninterpreted data 
from messages, but this is easy to do. We introduce a new built-in type called 
image, and allow values of this type to be communicated in messages {images 
are transmissible). Values of type image are pairs: a bit string containing a value 
of type T in message format, and a bit string representing the type T itself. 
Images have only two operations. The first operation, 

create = proc[T:  type](x : T) r e t u rn s  (image) 

is used to construct an image. It is parameterized by the type of the argument; 
this type must be transmissible (transmissibility can be checked at compile time). 
Create produces the message format both for its actual argument, x {using the 
put operation for T), and for T itself (using the put operation for type type, that 
is, types are transmissible). The second operation, 

extract = proc[ T: type] (x : image} r e t u r n s  (T) s ignals  ( wrong type) 

is parameterized by the expected type, which must be transmissible. Extract 
decodes the type part of its input (using the get operation for types), compares 
the result with T, and signals wrong type 4 if the types do not match. Otherwise, 
it returns the object of type T that  it reconstructs from the message format {using 
the get operation for T). 

We expect that  image objects will be created most frequently when sending a 
request to store data to a module that provides uninterpreted storage. Later the 
stored data would be retrieved by sending a read request to that same module; 
the response to the read request would provide the image stored earlier. The 
stored value could then be extracted from the image, provided the reading module 
knows the type of the stored data. Within the module providing storage, the 
actual type of the data is not of concern, since that module deals only with 
uninterpreted images. A practical consequence of this lack of concern is that the 
code of that  module can be written, compiled, and loaded without knowledge of 
the types of data it will store. 

Since the module that retrieves data may not be the module that stored it, the 

4 H e r e  we  a re  m a k i n g  use  of  excep t ions .  Ex t rac t  can  t e r m i n a t e  in  two  ways :  e i t h e r  n o r m a l l y  ( r e t u r n i n g  

a T va lue)  or  e x c e p t i o n a l l y  by  s i g n a l i n g  wrong  type. See  [13] for m o r e  i n fo rma t ion .  
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type information in images must be meaningful at all modules. Support for this 
property requires a universal name space for types. If the file system and its users 
are distributed, the name space must be distributed. The issues involved in 
implementing such a name space are similar to those that arise in distributed 
name servers in general and will not be discussed here. 

7. DISCUSSION 

This paper is based on the premise that in a large program it is desirable to 
permit different regions to use different internal representations for abstract data. 
We further argued that communication of abstract data between such regions 
must be user controlled. We then presented a method that gives users the needed 
control, but provides system support to simplify the user's job. 

In the introduction we identified some goals that such a method must satisfy, 
and our method does satisfy these goals. Our method is modular: each abstract 
data type implementation can be developed and verified independently of any 
other implementations, including other implementations of its data type and 
implementations of used abstractions (e.g., the external representation). Our 
method satisfies the linearity property, since for each new implementation only 
the encode and decode operations for that implementation need be written. 
Finally, our method is easy to use. Ease of use comes partly because the external 
representation is just another (possibly abstract) data type, so the user need not 
worry about translation into low level types (e.g., bit strings). Ease of use is 
enhanced by the system support for transmission of shared and cyclic data 
structures. 

In the remainder of this section we discuss some issues related to our work. 
First, we discuss the relationship of our work to other research. Next, we discuss 
some ways of improving the efficiency of transmission. Finally, we conclude with 
a discussion of some areas for further research. 

7.1 Related Work 

Our scheme for value transmission is the first to provide a complete treatment of 
the many related issues including user-defined transmission of abstract values, 
specification and correctness criteria for transmission, and system support for 
shared and cyclic data objects. Our scheme is based on the straightforward idea 
of a standard intermediate representation for each type. A canonical representa- 
tion has been used for transmission of built-in types in various protocols [3, 18]. 
It has been proposed for abstract types by Habermann [6], but the details were 
not worked out. 

Several protocols have been developed for transmission of typed information 
across the ARPANET. In each of these, only values from a predefined set of 
types are transmissible. The Procedure Call Protocol developed for the National 
Software Works [18] is the most ambitious, being capable of transmitting such 
values as character strings, integers, and lists. The T E L N E T  protocol is used for 
transferring character information, and the File Transfer Protocol is used to 
transfer files [3]. In these protocols the sender converts the information to be 
sent into a standard representation that is either statically determined or agreed 
upon by negotiation. Upon receipt the receiver converts the standard represen- 
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tation into whatever local representation it uses. Our scheme builds on the results 
of these efforts, since we assume that the underlying language implementation 
can faithfully transmit such language-defined values as strings, or arrays of 
integers, independently of their machine-level representations. 

An alternative to standard intermediate representations is direct translation 
between representations. Fabry [2] develops a scheme for replacing implemen- 
tations of abstract data types while the ambient system continues to run. During 
the transition period between implementations it is possible that different rep- 
resentations for objects of the same type may coexist. In Fabry's scheme each 
object is tagged with an implementation number, and each data type implemen- 
tation includes a translation operation from the representation used by the 
previous version to its own representation. Whenever an object using an old 
representation is encountered, a chain of translation operations is invoked to 
convert the object into the current representation for that type. 

Like our scheme, Fabry's scheme has the property that the amount of work 
needed to install a new implementation is independent of the number of previ- 
ously existing implementations. Nevertheless, it has a major defect: the lack of 
modularity inherent in the idea that each implementation must be known by the 
programmer of its successor. Note that there may be no natural order among 
implementations, making it difficult to assign version numbers. For example, two 
implementations with different efficiency characteristics may be developed in 
parallel. 

7.2 Eff ic iency 

Message transmission has three distinct steps: first, constructing a message 
stream in memory at the sender's node; second, transmitting the message to 
obtain a message stream in memory at the receiver's node; and third, reconstruct- 
ing the objects from the receiver's message stream. 

A simple measure of efficiency is the number of passes required to perform 
these steps. To perform step 1, our implementation requires a single recursive 
traversal of the object by the sender: a similar single traversal is required for step 
3. At each level a user-defined translation operation is applied, a certain amount 
of bookkeeping is done to detect sharing, and some tokens are entered in or 
removed from the message stream. 

This section describes a few simple optimizations that serve to improve the 
performance of the implementation. The result of these optimizations is that the 
efficiency of transmission is related to the generality required of transmission. 
We begin by discussing optimizations for steps 1 and 3, and then we discuss some 
for step 2. 

Sharing preservation represents a cost in steps 1 and 3, since objects must be 
entered into and retrieved from maps. In the current CLU implementation, object 
identities are compared by a simple pointer comparison, and standard hashing 
and retrieval techniques are used to make the map types efficient. The cost of 
sharing preservation can be further reduced by observing that it is not necessary 
to preserve sharing of immutable objects. The value of an immutable object can 
never change. If two immutable objects have the same value, then they are 
indistinguishable from one another, and it is not possible to observe whether they 
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are actually the same object. CLU provides a number of immutable types, both 
unstructured {e.g., int, bool) and structured {e.g., sequence, struct). The put and 
get operations of these types do not need to preserve sharing and therefore need 
not enter or retrieve information in the map. The decision whether to preserve 
sharing of immutable objects is based on a time-space trade-off. By not preserving 
sharing, put and get execute more efficiently. By preserving sharing, we may save 
storage and reduce message size. For small immutable objects, for example, int, 
bool, both space and time can be saved by not preserving sharing. 

A simple compile-time optimization can further reduce the cost of sharing 
preservation, as well as the number of procedure invocations. We anticipate that 
many data abstractions will be implemented having identical internal and external 
representations, and having encode and decode operations that  only perform 
type conversions between the abstract and representation types. We call such 
operations trivial translation operations. Trivial operations can easily be detected 
at compile time. We can eliminate the expense of sharing preservation for types 
having trivial encode and decode operations. The put and get operations of such 
a type need not check for sharing, as any sharing will eventually be detected at 
a lower level. 

The number of procedure calls in steps 1 and 3 can be reduced by observing 
that  it is not necessary to call trivial translation operations at run time. In the 
CLU run-time system, objects contain no abstract type information, since type 
correctness is enforced statically by the compiler. 5 Since trivial translation oper- 
ations just return their arguments unchanged, their invocations have no effect, 
and put and get need not call them. {Calls of nontrivial operations can be 
eliminated by in-line substitution, i.e., replacing the call with the body of the 
called routine.) 

The following optimization for trivial operations depends on the use of a 
different message stream format from that described in Section 4. In our running 
implementation the message format does not use header tokens for abstract 
objects; the algorithms in use are slight variations of those described in Section 
4. With the revised format, put and get for abstract types only do sharing 
detection and calling of encode or decode. Since for trivial operations neither of 
these need be done, put and get can be replaced by trivial operations that  just 
invoke the put and get of the external representation type. As a further optimi- 
zation, when separately compiled modules are bound together, or if the modules 
are compiled together, invocations of trivial put and get operations can be 
replaced by direct invocations of the external representation's put and get, 
eliminating levels of procedure linkage. 

In summary, the only types whose put and get operations need to incur the 
cost of sharing preservation are the mutable built-in types and abstract types 
having nontrivial encode and decode operations. Furthermore, put and get need 
not be called at all for abstract types with trivial encode and decode. 

It is important to realize that  the above optimizations are performed separately 
for sender and receiver. For example, suppose the sender used only trivial 

r, The  conversion between abstract  and representation types indicated by the use of cv t  does not 
cause any code to be executed at run time; it simply changes how the compiler does type checking. 
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operations so that only put  operations for built-in types actually need to be 
invoked during transmission. These optimizations would be discovered either at 
compile time of the code for the sender (if all this code were compiled at once) or 
at load time for the sender. Similarly, the receiver's optimizations are done at 
compile or load time for the receiver's code. But no matter how many optimiza- 
tions are done at either end, the message format produced at run time by the 
sender will be readable by the receiver. 

Our implementation models messages as streams to permit flexible storage 
management by the communication substrate. Since messages are constructed in 
a single pass, the amount of storage used in step 2 can be controlled by 
incremental transmission. When sending the value of a large object, the system 
may begin transmitting the message before it is fully constructed and may begin 
reconstructing the value before the message is fully received. 

Further optimizations are possible when the sender and receiver reside at the 
same node {i.e., share memory}. First of all, step 2 can be eliminated in this case; 
the message stream produced by the sender can be built directly in the receiver's 
address space. In addition, if the sender and receiver use the same implementation 
for the built-in types, the message stream can be eliminated. Rather than placing 
a token in a stream to denote an integer value, the sender can just copy the 
integer into the receiver's address space. Values of built-in type can be commu- 
nicated by direct copying of underlying representations, rather than by translation 
into tokens. This technique conserves storage at the sender's end, since the 
message is constructed in the receiver's address space, and it saves work at the 
receiver's end, since tokens do not have to be interpreted. 

One can imagine doing more optimizations when the sending and receiving 
modules use the same implementations of the abstract types being communicated 
in a send. We expect that  such optimizations will not be practical in our system 
[12]. We permit modules to be created dynamically, so we can detect a module's 
nodes of residence only at run time. Furthermore, we do not require that all 
modules at a node have the same implementations of abstract types. Therefore 
we expect that the effort saved by this final optimization will not justify the effort 
needed to determine that the optimization can be applied. 

7.3 Further Research 

In this section we discuss some areas in which further research is needed. 
Our method limits each module to a single implementation for each type of 

abstract data it uses. Suppose that we eliminated this restriction, so that a single 
module might use objects of the same type but with different representations. 
Note that such generality requires a way of determining the version of an object 
at run time, so that it can be operated on by operations that understand its 
representation or translated to the representation needed by the operation. 
Although our method could be used to do translations, such an approach is 
probably too inefficient. Alternative methods, not related to the work described 
in this paper, must be explored if this problem is felt to be important. 

Another limitation of our method is that we make no provision for a change in 
the external representation. What happens if a change in the external represen- 
tation is needed? One possibility is to use Fabry's method. This requires that 
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each X T  object  be tagged with a version number;  whether  this is acceptable  
requires  fur ther  study. Another  possibility is to per form a sys tem change tha t  
replaces  all existing implementa t ions  of the type in question with new ones using 
the new external  representa t ion  and converts  all existing X T  objects  to the new 
format.  Such a change mus t  be done atomical ly :  it mus t  e i ther  be comple ted  
ent i rely or have  no effect. P robab ly  it is pract ical  to use this approach  only in an 
env i ronment  tha t  suppor ts  a tomic  actions. Our current  research concerns defining 
and implement ing  such an env i ronment  [10, 12]. 

Our work has  assumed a single language system. An impor tan t  pract ical  
p rob lem concerns communica t ion  be tween programs  wri t ten in different lan- 
guages. At  present  such communica t ion  is usually accomplished th rough  files of  
un in te rpre ted  bit  strings. Pe rhaps  our  me thod  could be extended to handle  
inter language communicat ion .  Such an extension would be an i m p r o v e m e n t  over  
cur rent  techniques,  par t ly  because it would offer a s tandard  me thod  for doing 
such communica t ion ,  and par t ly  because communica t ion  could be carried out  a t  
a higher  level than  bit strings. 

Finally, the  way in which the work of t ransmiss ion is divided be tween the 
sys t em and the  user  is of  interest  in its own right. We view the  sys tem-provided  
p u t  and ge t  operat ions  as templates :  the  user-defined encode  and decode  opera-  
tions fit into a sys tem-def ined pat tern .  Th is  kind of pa t t e rn  is useful for more  
t han  transmission.  Fair ly obvious examples  of  the util i ty of  t empla te -dr iven  
opera t ion calls are suppor t  for user -defmed copying of abs t rac t  objects,  or for 
test ing two abs t rac t  objects  for equality.  Another  possible use is for control  of 
human- readab le  display of abs t rac t  data.  T h e  use of  t empla tes  as a general  
control  mechan i sm is wor th  fur ther  study. 
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