
A Value Transmission Method
for Abstract Data Types

M. HERLIHY and B. LISKOV

Massachusetts Institute of Technology

Abstract data types have proved to be a useful technique for structuring systems. In large systems it
is sometimes useful to have different regions of the system use different representations for the
abstract data values. A technique is described for communicating abstract values between such
regions. The method was developed for use in constructing distributed systems, where the regions
exist at different computers and the values are communicated over a network. The method defines a
call-by-value semantics; it is also useful in nondistributed systems wherever call by value is the desired
semantics. An important example of such a use is a repository, such as a file system, for storing long-
lived data.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed
Systems; D.3.3 [Programming Languages]: Language Constructs--abstract data types, input/
output; D.4.4 [Operating Systems]: Communications Management--message sending; H.2.5 [Data-
base Management]: Heterogeneous Databases--data translation

General Terms: Design, Languages

Additional Key Words and Phrases: Message communications, call by value, long-term storage

1. INTRODUCTION

A b s t r a c t da t a types have p roved to be a useful t e c h n i q u e for s t r u c t u r i n g systems.
T h e y p e r m i t the p r o g r a m m e r to encapsu l a t e deta i ls of the r e p r e s e n t a t i o n of da t a
so t h a t these deta i ls can be changed wi th m i n i m a l i m p a c t on the p r o g r a m as a
whole. I t is s o m e t i m e s useful, especial ly in large programs, to use d i f fe rent
i m p l e m e n t a t i o n s of a da t a a b s t r a c t i o n in d i f ferent regions of the p rogram. C u r r e n t

l anguages t h a t s u p p o r t da t a abs t rac t ion , however , l imi t a p r o g r a m to a single
i m p l e m e n t a t i o n [11, 17]. T h e r eason for this l i m i t a t i o n is the diff icul ty of com-
m u n i c a t i n g b e t w e e n the regions us ing di f ferent i m p l e m e n t a t i o n s .

T h i s pape r descr ibes a t e c h n i q u e for c o m m u n i c a t i n g abs t r ac t va lues b e t w e e n
such regions. T h e m e t h o d def ines a ca l l -by-va lue semant ics . T h e m e t h o d was
deve loped for use in d i s t r i bu t ed sys tems, where the regions exist a t d i f ferent
c o m p u t e r s a n d the va lues are c o m m u n i c a t e d over the ne twork . I t is also useful in

This work was supported by the Defense Advanced Research Projects Agency of the Department of
Defense and monitored by the Office of Naval Research under contract N00914-75-C-0661.
Authors' address: Laboratory for Computer Science, Massachusetts Institute of Technology, 545
Technology Square, Cambridge, MA 02139.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1982 ACM 0164-0925/82/1000-0527 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982, Pages 527-551.

528 M. Herlihy and B. Liskov

nondist r ibuted systems wherever call-by-value is the desired semantics. An
impor tan t example of such a use is a repository, such as a file system, for storing
long-lived data.

We assume a hardware base consisting of a set of computers, or nodes,
connected by a network; the only (physically} shared memory between the nodes
is the network itself. A distr ibuted program consists of a collection of program
modules tha t reside at different nodes and share no memory. A module 's address
space is a collection of strongly typed objects, which are containers for values.
T h e modules communicate by means of a primitive, provided by the language,
tha t causes messages to be t ransferred over the network.

For purposes of discussion let us assume tha t messages are sent by executing

s e n d C(al an) t o M

Here M is a module, C is the name of a request or operat ion tha t M is being
asked to perform, and al , an are the actual arguments of operat ion C. The
effect of executing such a s e n d s ta tement is tha t a message containing the name
C and the values of a~ a , is constructed and sent to M. We assume tha t in
M there is an operat ion definition for each request M is prepared to handle. Thus
M contains an operat ion definition,

C = r e q u e s t h a n d l e r (f 1 : T1, . . . , fn : Tn)
% body of C
e n d C

When a message containing the request named C is received at M, this request
handler is executed, ~ with the formals fl fn initialized to contain the values
extracted from the message.

In the remainder of this paper we will assume tha t all arguments of the s e n d
are t ransmit ted by value. Therefore , when one of these arguments is of abstract
type, it will be necessary to somehow "copy" the value of tha t argument to the
receiving module. This paper addresses the quest ion of how tha t copy is to be
made. (Some kind of call by reference for s e n d arguments, in which a reference
to the argument is sent to the receiving module, is also possible, al though we
believe call by reference is not very useful in a distr ibuted program. Such a
semantics leads to a completely different set of problems, for example, storage
management , local versus remote pointers [19], than those discussed in this
paper.)

How can the value of an argument of abstract type be communicated in a
message? Recall tha t an abstract type provides a set of abstract objects or values
and a set of primitive operations: the primitive operations are the only means of
manipulat ing the values [15]. An implementat ion of an abstract data type must
define how to represent the values and define implementat ions for the operations
in terms of the chosen representat ion. One possibility for communicat ing abstract
values is to communicate their representations; tha t is, the system transmits the

We are ignoring issues such as the reliability propert ies of the primitive, how M schedules the
process ing of incoming messages , and whe the r type checking of message and a r g u m e n t types is done
a t compile t ime or at run t ime.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

Value Transmission Method 529

representation in the message and automatically reconstructs the abstract value
at the receiving module. Although such a representation may be defined in terms
of other abstract data types, ultimately it is expressed in terms of the built-in
types of the language. Thus the representation can be transmitted assuming (as
we do) that the built-in types can be transmitted.

Nevertheless, transmitting abstract values by transmitting their representa-
tions is unsatisfactory for several reasons:

(1) Different modules may use different representations for values of common
user-defined types. Security concerns, differing patterns of use, and differing
hardware characteristics may all encourage the use of customized implementa-
tions of abstract types in modules. The direct transmission of underlying repre-
sentations provides poor support for constructing customized representations for
abstract types.

(2} The underlying representation of a value may be transmissible, while the
value itself may not be. For example, it may not make sense to send a value of
type "I/O stream" to another node, even if the representation of the stream is
transmissible (e.g., an array of integers).

(3) Conversely, a value may be transmissible, while its representation may be
unsuited for transmission. For example, a representation used by one implemen-
tation may contain information, such as an index into a private table, that would
be meaningless to another implementation.

We conclude that what is needed is user control over transmission of abstract
values. In the remainder of this paper we discuss a method that supports user
control. This method satisfies the following design goals:

Modularity. Transmission of the values of a data abstraction is defined locally
as part of the implementation of that data abstraction. This principle is necessary
to ensure that knowledge of the representation is local to the implementation.

Usability. The definition of transmission can be given in terms of any conven-
ient data types. The programmer does not need to translate into strings of bits.
Furthermore, the programmer need not know about the underlying network and
its protocols.

Linearity. The work needed to implement value transmission is linear in the
number of different implementations for the data abstraction.

The transmission method is described in terms of the CLU programming language
[11, 14] but is applicable to any language that supports data abstraction. We do
assume a single language system: all communication is between modules written
in the same language.

The method we propose is to define a canonical representation for each type
that can be used in messages; each implementation of the type must define how
to translate between its internal representation for the values and the canonical
representation. Such a method is an obvious approach, but there are many details
to be worked out. Our main contribution is that we have worked out these details,
including the user interface, specification of transmission and verification of the
translation functions, and implementation.

ACM Transact ions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

530 M. Herlihy and B. Liskov

Section 2 describes the basic method in the absence of shared and cyclic data
structures, while Section 3 extends the method to include sharing. Section 4
discusses the implementation of message transmission. Section 5 extends the
method to handle cyclic objects, while Section 6 extends the method to support
storage of long-lived data. Finally, Section 7 contains a summary and discussion
of what we have accomplished; it also discusses the relationship of our work to
other research, some ways of increasing the efficiency of our method, and areas
for further research.

2. THE BASIC METHOD

In this section we describe our basic method of transmitting abstract values. We
discuss the meaning of transmission and how to define transmission for an
abstract type. We then give examples of the programs that users write to support
transmission. Finally, we discuss how to reason about the correctness of the
transmission programs. To simplify the discussion, we ignore the problems that
arise in transmitting data structures containing shared components and cycles;
solutions to these problems are given in later sections.

2.1 The Meaning of Transmission

Transmissibility is a property of a data abstraction and must be stated in the
specification of that abstraction. A transmissible data type T can be thought of
as having an additional operation,

t r a n s m i t : T --, T,

which is implicitly called during message transmission. Given an input data
object, t r a n s m i t produces a different data object, which even resides at a different
node from the original, whose relationship to the input object is defined by the
specification for t r a n s m i t .

Although the exact specification of t r a n s m i t is type dependent, most often
what is wanted is that the values of the two objects be equal. (The equivalence
relation for values of a data type is defined by the type's specification; see [5,
9].) A t r a n s m i t operation with this property satisfies the relation

x = t r a n s m i t (x)

and is said to p r e s e r v e v a l u e equa l i t y .

For the built-in types, the language defines whether they are transmissible and
the meaning of transmissibility. Almost all the built-in CLU types are transmis-
sible. In CLU, as in other languages, there are two classes of built-in types:
s t r u c t u r e d and u n s t r u c t u r e d . Objects of structured types contain collections of
other objects; arrays and records are examples of structured types. Objects of
unstructured types contain no other objects; integers, characters, and real num-
bers are examples of unstructured types.

T r a n s m i t for almost all built-in, unstructured types in CLU does preserve value
equality. The one exception is t r a n s m i t for real numbers, which, because of
round-off errors, does not preserve value equality but guarantees only that the
two values differ by very little. Built-in structured types are transmissible if and
only if the component types are transmissible. Transmission for structured types

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

Value Transmission Method 531

involves transmission of components using transmit for the component types. For
example, if an object x is an array containing elements of type T, then transmit
for x creates a new array object y with the same bounds as the original, and with
elements

y[i] = T$transmit(x[i]).

{Here we are using the notation T$transmit to indicate that the transmit
operation for type T is being used.) Thus transmit for built-in structured types
will preserve value equality if and only if transmit for the component types does.

For abstract types the specification of transmit is user defined. As with the
built-in types, it is not always possible to require preservation of value equality.
In a later section we present some examples of abstract types whose transmit
operations do not preserve equality.

2.2 Implementing Transmission

The transmit operation is neither called directly in programs nor implemented
directly. Instead, the system causes it to be executed whenever a successful
message communication occurs. Suppose that an invocation of

C = r e q u e s t h a n d l e r (fl : T1 fn : Tn)

is run in response to
send C(al a,) to M

Then in this invocation of C, we have

fi = Ti $ transmit (ai)

f o r i = 1 n.
Transmission for an abstract type is implemented by users in the following

way. As was mentioned in the introduction, a canonical representation is defined
for each transmissible type. This canonical representation is given by defining an
external representation type. For every abstract type that is transmissible we
require that an external representation type be defined. The external represen-
tation type of an abstract type T is any convenient transmissible type XT. This
type can be another abstract type if desired; there is no requirement that X T be
a built-in type. Intuitively, the meaning of the external representation is that
values of type X T will be used in messages to represent values of type T. The
choice of external representation type is made for the abstract type as a whole
and is independent of any implementation of the abstract type.

Each implementation of the abstract data type T must provide two operations
to map between (its internal representation of) values of abstract type, T, and
external representation type, XT. There is an operation

encode = proc(t : T) r e t u r n s (XT)

to map from T values to X T values (for sending messages) and an operation

decode = proe(x :XT) r e t u r n s (T)

to map from X T values to T values (for receiving messages). Intuitively, the

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

532 M. Herlihy and B. Liskov

Fig. 1. Meaning of T$ transmit.

Module A Module B

~ncode ~~ecode
XT $ transmit =

correctness requirement for encode and decode is that they preserve the abstract
T values: encode maps a value of type T into the X T value that represents it,
while decode performs the reverse mapping. More precisely, encode, decode, and
transmit are related by the following identity. For x E T,

T$transmit(x) = decode(XT$transmit (encode(x))).

This identity is illustrated in Figure 1.
Encode and decode are not called explicitly by user programs; instead, the

language implementation makes these calls in the course of sending and receiving
messages. Each actual argument in a send statement must be of a transmissible
type. If this type is one of the nonstructured, built-in types like integers or
characters, then the system knows how to place its value in a message and how
to extract its value from a message. For built-in structured types, like arrays, the
system will transmit the components, using encode and decode for the component
type, as part of transmitting the structured object. For abstract types the system
calls encode to obtain an X T object. I f X T is an abstract type, then encode for X T
is called, and this process is repeated until the argument has been translated to
a value of built-in type. This value is then transmitted in the message. When a
message is received, the reverse happens: a value of built-in type is extracted
from the message, and then decode operations are called until a T value is
obtained. (The language implementation is discussed in Section 4.)

2.3 Examples

As a first example of a typical user-defined type, we consider complex numbers.
This type provides operations to create new complex numbers; add, subtract,
multiply, and divide complex numbers; compare complex numbers; and obtain
the real and imaginary coordinates of a complex number. Both rectangular and
polar coordinates are useful representations for complex numbers. The choice of
representation depends on the relative frequency of addition versus multiplica-
tion.

A good external representation for complex numbers might allow either coor-
dinate system to be used. In CLU this would be expressed by giving type
definitions, for example,

xrep = variant[xy : xycoords, polar : polarcoords]
xycoords = record[x, y: real]
polarcoords = record[rho, theta : real]

Here xrep is a reserved word that identifies the external representation type XT;
it also stands (as do xycoords and polarcoords) as an abbreviation for the type
ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

Value Transmission Method 533

complex = t ransmiss ib l e c lus ter is create, real, imag, add, sub, mul, divide,
equal

xycoords = record[x, y : real]
polarcoords = record[rho, theta : real]
rep = xycoords
xrep = variant[xy : xycoords, polar : polarcoords]

encode = p r o c (c : c v t) r e t u r n s (xrep)
r e t u r n (x r e p $ m a k e xy(c)) % Make an xy variant.
end encode

decode = p roc (xc : x r ep) r e t u r n s (evt)
t a g c a s e xc

t ag xy(x : xycoords): return(x)
t ag po lar (p : polarcoords): r" real := p.rho * cos(p.theta)

i : real := p.rho * s in(p. theta)
% Use computed values to create a record.
r e t u r n (r e p $ {x : r, y: i})

end
end decode

% Definitions of procedures implementing the operations listed in the header appear
% here.

end complex

Fig. 2. Complex number example.

appearing to the right of the equal sign. A variant is a built-in CLU type similar
to a variant record; an object of this type can be either of type xycoords, in which
case it is tagged by the identifier xy, or of type polarcoords, tagged by the
identifier polar.

In CLU an abstract type is implemented by a special kind of module called a
cluster. Figure 2 shows part of a cluster that implements complex numbers using
rectangular coordinates as the internal representation (rep). Here encode obtains
the internal representation of a complex number (via cvt) 2 and builds the external
representation for this number, using the xy variant. Decode must check the tag
of the external representation value it receives (using the t agcase statement)
and do a conversion to rectangular coordinates if it receives the polar form. The
internal representation it constructs turns into a complex number when it is
returned (via cvt).

Transmission for the complex number type cannot preserve strict value equality
because of round-off errors, although it is important to define the acceptable
margin of error.

As a second example, we introduce a key-item table that stores pairs of values,
where one value (the key) is used to retrieve the other (the item). The key-item
table type has operations for creating empty tables, inserting pairs, retrieving the
item paired with a given key, deleting pairs, and iterating through all key-item

2 Cv t indicates a conversion between abstract and internal representation type. Cvt may appear only
in a cluster; it maps between the r e p of that cluster and the abstract type implemented by that
cluster. When cv t appears as the type of an argument, the mapping is from abstract type to r e p type;
when it appears as a result type, the mapping is the other way.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

534 M. Herlihy and B. Liskov

d a t a t y p e table]key, item : type] i s create, isin, enter, lookup, delete, allpairs

r e q u i r e s Key and item are transmissible.
KeyS transmit preserves value equali ty.
Key is totally ordered by operations equal and It {less than) .

table is transmissible
e f f ec t If t is a table and k is a key, then:

isin(t, k) = isin(transmit(t) , k)
isin(t, k) implies lookup(transmit(t) , k) = i tem$transmi t (lookup(t , k))

create = p roc () r e t u r n s (table)
e f f ec t r e tu rns a new, empty table.

isin = p r o c (t : table, k : key) r e t u r n s (bool)
e f f e c t r e tu rns true if there is an entry for k in t, else returns false.

enter = proc (t : table, k : key, i : item)
m o d i f i e s t
e f f ec t inserts the pair (k, i) in t, t hus modifying t.

If k is already in t, changes its associated item to i.

lookup = p r o c (t : table, k :key) r e t u r n s (item) s i g n a l s (no__entry)
e f f ec t if k is entered in t returns the associated item, else signals no_entry .

delete = p r o e (t : table, k : key)
m o d i f i e s t
e f f ec t removes the entry for k (if any) from t, t hu s modifying t.

allpairs = i t e r (t : table) y i e l d s (record[k : key, i : item])
e f f ec t yields all entries in t, each exactly once, in some arbitrary order.

e n d table

Fig. 3. Informal specification of table.

pairs. An informal specification of key- i tem table is shown in Figure 3. This type
is parameterized by the types of both keys and items. As stated in the r e q u i r e s
clause of the specification, certain restrictions are placed on these types, namely,
both must be transmissible, and keys must be totally ordered. The operation
allpairs is an iterator [11]; this is a limited kind of coroutine that can be called
only by a for loop to provide results (in this case, key- i tem pairs) to its caller one
at a time.

Tables can be implemented in many different ways, depending on local re-
sources, or patterns of use. A straightforward choice of external representation of
a key- i tem table is an array of key- i tem pairs, expressed in CLU by

x r e p = array[pair]

pa i r = record[k : key, i: item]

In CLU, array[T] indicates an array whose elements are of type T. The size of
CLU arrays can vary dynamically. When a new array is created it is empty, and
new elements can be appended at either the high or the low end.

A partial implementat ion for table using a sorted binary tree representation is
shown in Figure 4. Here encode and decode work on table objects (not on their
representations) and make use of other table operations to do the translations.
This representation makes use of the fact that pointers are implicit in CLU; in
many other languages nodes would contain explicit pointers to tables.
ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

Value Transmission Method 535

table = t ransmiss ib le cluster [key, item : type] is create, enter, seen, lookup , a l lpa i r s ,
delete

w h e r e key is transmiss ible ,
item is transmiss ible ,
key has lt : proctype(key, key) returns (bool) ,

equal : p r o c t y p e (k e y , key) returns (bool)
p a i r = record[k : key, i : item]
node = record[k : key, i : i tem, left, r i g h t : tab le[key , i tem]]
rep = v a r i a n t [e m p t y : nul l , s o m e : node]
x r e p = a r r a y [p a i r]

% The internal representation is a sorted binary tree.
% All pairs in the table to the left (right) of a node
% have keys less than (greater than) the key in that node.

encode = proe(t : tab le[key , item] returns (xrep)
x r : x r e p := x r e p $ n e w () % Create an empty array.
% Use allpairs to extract the pairs from the tree.
f o r p : p a i r in allpairs(t) do

x r e p $ a d d h (x r , p) % Add the pair to the high end of the array.
end

re turn(xr)
end encode

decode = proc(xr: xrep) returns (table[key, i tem])
t : table[key, item] := create() % Create empty table.
for p : p a i r in xrep$elements(xr) do

% x r e p $ elements yields all elements of array xr.
enter(t, p . key , p . i t e m) % Enter pair in table.
end

return(t)
end decode

% Implementations of table operations appear here.
end table

Fig. 4. Partial implementation of table.

The implementor of the key-item table type does not need to encode or decode
the values of keys or items. In fact, our scheme permits the key-item table to be
implemented without advance knowledge of the key or item type; we only require
that key and item values are themselves transmissible and that key values are
ordered, as discussed above.

It is a little more difficult to define whether transmission of key-item tables
preserves value equality, because here we are not defining a single type, but a
collection of types; each type in this collection corresponds to a particular choice
of key type and item type. Tables may be useful even if the key type or item type
does not preserve value equality; it is up to the definer of table to decide what
requirements to place on the parameter types. Whatever the requirements are,
they should be stated in the specification.

For example, for tables we might require that keys, but not items, preserve
value equality. (Thus complex numbers could be used as items but not as keys.)
With this requirement, transmit for tables does not preserve value equality.
Instead, the specification of table$transmit would be similar to that for arrays:
table$transmit produces a new table containing the same key values as the

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

536 M. Herlihy and B. Liskov

original, and each key is associated with the t r ansmi t t ed verson of its original

i tem.

2.4 Reasoning about Transmission

Recall that

T$ t ransmi t (x) = decode(XT$t ransmi t (encode(x)))

for x E T. I t is not sufficient to prove this ident i ty for a par t icular cluster, because
t ha t would only show tha t the t ranslat ions done by encode and decode in tha t
cluster are compatible . Instead, we need a more general me thod tha t works when
encode and decode come f rom different implementa t ions of the type.

In defining the external represen ta t ion we have in mind a relat ionship be tween
the values of X T objects and the values of the abs t rac t type T; tha t is, the values
of the X T objects are in tended to represen t the abs t rac t values. This relat ionship
can be expressed by means of a function tha t maps X T values into the abs t rac t
values they are in tended to represen t [8]. First, there m a y be an external
represen ta t ion invariant t ha t defines the subset of X T values tha t are legal
external representat ions . T h e n we define an abstraction function t ha t m a p s the
legal X T values to abs t rac t T values: 3

AxT : XT---> T.

For example, for tables we have

x r e p = array[pair]

pa i r = record[k : key, i : item]

T h e external represen ta t ion invar iant is (informally) t ha t all e lements of the
a r ray contain different keys, and we can write the abs t rac t ion function as

AxT(xr) = (xr[i] I i between low and high bound of xr}

Here we have chosen to model values of tables as sets of k e y - i t e m pairs.
We can use the external represen ta t ion and its associated invar iant and

abs t rac t ion function to define the specification of encode and decode and thus
de te rmine the correctness of encode and decode implementa t ions . Associated
with the internal represen ta t ion of a cluster are a represen ta t ion invar iant and
abs t rac t ion function,

ART : R T - * T,

where R T is the internal represen ta t ion type of T. At this point we have three
types {abstract, RT , X T) , two invariants, two abs t rac t ion functions (AxT and
ART), and encode and decode. These are re la ted to each o ther by establishing
two identities, one for encode and one for decode. These two identit ies are wha t
mus t be shown to establish the correctness of encode and decode. For types t ha t

3 The method to be described can easily be generalized to use two abstraction functions, one on the
sending side and one on the receiving side. Two functions are useful when XT$transmit does
something strange, and encode and decode compensate for this strangeness. It is not clear that such
a generalization is of practical interest.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

Value Transmission Method 537

preserve value equality, these identities are likely to be

A R T (r) = AxT(encode(r)), (1)

AxT(xr) = ART(decode(xr)), (2)

where xr and r are respectively of type X T and RT, satisfying the external and
internal representation invariants. (Note that in these identities the types of
encode and decode differ slightly from those given above. In identity (1), r is the
concrete rep object that represents the abstract object passed to encode; in
identity (2), decode returns the concrete rep of the abstract object it constructs.)
Intuitively, identity (1) says that the values of both r and encode(r) represent the
same abstract value. Identity (2) says that the values of both xr and decode(xr)
represent the same abstract value. In addition, encode and decode must preserve
invariants; that is, the result of encode must satisfy the external representation
invariant, and the result of decode must satisfy the internal representation
invariant.

The identities above are inadequate for transmitting types, like complex
numbers, that do not preserve value equality. For such types we require
"closeness" instead of exact equality. Whatever the requirements on encode and
decode, they must be stated as part of defining the external representation. For
complex numbers, then, we might retain identity (1), thus requiring that encode
not introduce any round-off error, but replace identity (2) by

]AxT(Xr) -- ART(decode(xr)) I < e. (2*)

In addition, for complex numbers another inexactness results from transmission
of reals,

[AxT(xr) -- AxT(XT$transmit(xr))] < 8.

It must be proved as part of defining the external representation that the error e
+ 8 is small enough to satisfy the specification of complexStransmit.

The identities and transmit are related by the following theorem.

THEOREM. Given the specification of XT$transmit, and assuming that
encode satisfies identity (1) and that decode satisfies identity (2), then
encode (XT$transmit(decode(x))) satisfies the specification of TStransmit for all
x E T .

This theorem is proved just once for a type; this proof should be given at the
time the external representation is chosen and the identities are stated. The later
proofs of the individual implementations of encode and decode justify the
assumptions of the theorem.

2.5 Conclusion

A major advantage of our transmission method is modularity: transmission can
be implemented, and then proved or understood, one module at a time. First note
that the choice of external representation must be made independently of any
implementations. Then, given the information about the external representation,
including the invariant and abstraction function, and identities (1) and (2), the
correctness of encode and decode can be shown locally for each cluster.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

538 M. Herlihy and B. Liskov

Note that transmissibility constrains the possible implementations of a type as
follows. All values produced by a particular implementation must be transmissi-
ble, and all transmissible values must be represented. That is, for each RT value
there must exist a corresponding XT value, and vice versa. We believe this
constraint should apply to the built-in types as well as the abstract ones. Of
course, the built-in types may have different implementations at different nodes.
For example, suppose the external representation for integers were 32 bits. Then
on a 16-bit machine, two words could be used to represent an integer, while on a
36-bit machine, only 32 of the 36 bits could be used to represent integers. It is
worth noting that the constraints imposed by transmissibility are similar to those
imposed by transportability.

3. SHARING

In the previous sections objects of a given type were viewed merely as containers
for values of that type, and the identities of the objects themselves were ignored.
This model is insufficient for many interesting data types, such as graphs, in
which sharing of subcomponents is of interest. In this section we extend our
scheme to provide the user with a simple means to control the effect of transmis-
sion on the internal sharing structure of values. The scheme is general enough to
support transmission of cyclic structures, but we defer discussion of cycles to
Section 5.

To model sharing, we must extend the definition of type to include the notion
of an object name; each object of a type has a name as well as a value. Intuitively,
if x and y have the same name, then they are exactly the same object. Changing
the value of one will change the value of the other. We use the notation

X ~ - m - y

to indicate name equality of objects x and y. (The distinction between name
equality and value equality is the same as the distinction between EQ and
EQUAL in LISP [16].)

If the value of x contains the name of y, then y is said to be a component of x.
When an object is named more than once, we say the object is shared. Sharing
comes in two varieties: intraobject sharing and interobject sharing. Intraobject
sharing occurs when components are shared within a single object, as in Figure
5a. Interobject sharing occurs when components are shared between distinct
objects. An example is given in Figure 5b. Here a record has two components: a
table containing cells as items, and an individual cell that happens to be one of
the cells in the table.

Shared structures cause the following question to be raised about transmission:
Should transmission preserve the internal sharing structure of the transmitted
object? For example, suppose that a table contains integer cells as items, and
that two (or more) keys share the same cell (see Figure 6a). In the transmitted
table, should the two keys share the same cell (as in Figure 6a), or should they be
associated with different cells (as in Figure 6b)? Note that different behavior will
result in the two cases: if the keys share a cell, then a change to that cell looked
up using one key will be observed if the cell is looked up using the other key,
while if the keys do not share the cell, the change will not be observed.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

Value Transmission Method 539

record

cel l

(a)

record

table

(b)

Fig. 5. Illustrations of sharing:
(a) intraobject sharing; (b) inter-

object sharing.

table

(a)

table

kk2~ cell kl ~r"ff"l

cell

(b)

Fig. 6. Effects of transmission on
sharing structure: (a) two keys
sharing a cell containing the value
0; (b) two keys referring to two
different cells, each containing the

value 0.

Probably for the key-item table, and for types in general, sharing should be
preserved. In general, preservation of intraobject sharing is a necessary part of
preserving value equality, while preservation of interobject sharing may be
needed to preserve value equality of a containing object. Nevertheless, only the
definer of the type can decide about sharing preservation, since the decision
affects the behavior of the transmitted data. Whatever the decision, it should be
stated in the specification of transmit.

What support should we give for communicating sharing structure? While it is
not necessary to provide any support, we believe that users will usually want
sharing to be preserved, and that a language definition should make the most
common and useful functionality easy to implement. Furthermore, explicit pres-
ervation of sharing by the language user in the absence of such support is difficult.
For example, by choosing a more complicated external representation type, users
implementing key-item tables could explicitly encode the intraobject sharing
structure within individual tables; nevertheless, a user wishing to preserve inter-
object sharing as in Figure 5b would find it difficult to do so.

Therefore, we extend our scheme to preserve sharing structure automatically.
First, we redefine the transmit operation discussed earlier to take a second
argument: an environment that identifies the objects whose sharing matters. The
environment allows us to delimit the context within which sharing should be
preserved. For example, it appears useful to have the transmit operations preserve
sharing when transmitting a single argument, or perhaps an entire message, but
it does not appear useful to preserve sharing between objects sent in distinct

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

540 M. Herlihy and B. Liskov

messages. Secondly, we define t r a n s m i t for all built-in types to preserve both
intra- and interobject sharing.

As an example, we state the sharing properties for CLU arrays. Languages
provide different methods for allowing objects to name other objects. In many
languages this is done by using explicitly introduced pointer objects. In CLU,
however, the concept of an object name is fundamental: all CLU data objects
have names as well as values, and objects may refer to other objects by containing
their names. For example, CLU arrays contain the names of their elements; thus
the CLU type a r r a y [T] would correspond to "array of pointer to T" in other
languages. Similarly, tables contain the names of key and item objects.

In the following, a and a' are arrays, i, i ' , j , j ' are integers, t and t ' are of type
T (the element type of the array), and E is an environment. We have

(1) I n t r a o b j e c t s h a r i n g . Let a' = = t r a n s m i t (a , E) , i ' = = t r a n s m i t (i , E), and
j ' = = t r a n s m i t (j , E) . Then

a[i] = = a [j] ~ a ' [i '] = = a ' [j '] .

(2) I n t e r o b j e e t s h a r i n g . Let a' - -= t r a n s m i t (a , E) , i ' = = t r a n s m i t (i , E) , and
t ' = = t r a n s m i t (t , E) . Then

t = = a[i] ~ t ' = = a '[i '] .

As mentioned above, the user must define what transmission means for abstract
types, but probably both inter- and intraobject sharing should be preserved. For
example, in transmitting tables we want to preserve intratable sharing for items
(any particular key appears in a table at most once, so intratable sharing for keys
is not an issue) and interobject sharing for both keys and items. The specification
of the sharing properties of transmission for tables is similar to that shown for
arrays.

When implementing transmission for abstract types in which sharing preser-
vation is desired, a good strategy is to choose an external representation type for
which t r a n s m i t preserves sharing as well as value equality. Such a choice will
simplify the job of writing e n c o d e and decode . To preserve sharing, e n c o d e and
d e c o d e merely move the component objects into the external or internal repre-
sentation, respectively (e.g., e n c o d e stores in the external representation the
names of the component objects contained in the internal representation.) The
e n c o d e and d e c o d e operations for tables shown in Figure 4 preserve sharing in
this way.

4. IMPLEMENTATION

Although the meaning of value transmission is controlled by the user, much of
the actual work is performed by the run-time system that underlies the language
implementation. As was mentioned earlier, each transmissible type can be
thought of as having a t r a n s m i t operation, but t r a n s m i t is actually implemented
by the system, using the e n c o d e and d e c o d e operations provided by the user. In
implementing t r a n s m i t the system performs a number of tasks, including sharing
detection, message formatting, and interaction with the communication medium.
ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

Value Transmission Method 541

In this section we describe an implementation of transmit. This implementation
differs from our actual running implementation in some minor details; it is simpler
to describe but less efficient.

Message transmission involves translating an arbitrary graph structure (the
object) into linear form (the message), and vice versa. A number of algorithms
have been developed for efficient linearization of graphs [1, 4]. Our algorithm
differs from these because of the necessity of applying user-defined translation
operations (encode and decode) during object traversal.

Modules exchange information through a communication substrate, which is
the language implementation's interface to the communication medium. The
communication substrate encapsulates such functions as routing and addressing
of messages, the observation of transmission protocols, and the detection and
correction of transmission errors. We do not describe the communication sub-
strate in detail, because its structure will be highly dependent on specific char-
acteristics of the communication medium and the nodes.

A message stream data type is provided by the communication substrate to
implement message construction and interpretation. Information enters and
leaves a message stream in discrete units called tokens. The message stream type
has operations to insert and extract various kinds of tokens. When a module
executes a send statement, the system constructs an output message stream. For
each actual argument object in the message the system traverses the object,
placing tokens in the stream. The communication substrate then delivers the
message stream to the receiving module's node, where the tokens are removed
from the stream, and the transmitted objects are reconstructed.

A map data type i sused to detect sharing; it implements the environment
discussed previously. A different map is used for each argument, since we choose
to preserve sharing only within the individual arguments (rather than within the
message as a whole). Each token in a message stream has an associated stream
address. A map is a table that associates (names of} objects and stream addresses.
When the system begins to transmit an argument object's value, an empty map
is created to keep track of component identities. As the object is traversed, (the
name of) the object itself, and each of its components, is recorded in the map,
along with the stream address of the start of the corresponding sequence of
tokens. Similarly, when a message is interpreted, each reconstructed component
is entered in the map, along with its associated stream address; again a different
map is used for each argument.

There are three kinds of tokens: data tokens, header tokens, and back reference
tokens. Data tokens are used to transmit the values of unstructured language-
defined types such as integers, booleans, or strings.

For both abstract types and language-defined structured types, the first token
of an encoded abstract value or structured value is always either a header token
or a back reference token. A header token marks the start of an encoded value of
structured or abstract type. Header tokens may contain type-dependent infor-
mation; for example, a variant header token contains the value of the tag. An
array header token contains the low bound of the array, and the number of
elements in the array; the low bound is needed to reconstruct tbe value of the
array, and the size is needed both to reconstruct the array and to interpret the

ACM Transact ions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

542 M. Herlihy a,~.d B. Liskov

subsequent tokens in the s t r eam (i.e., to de termine how m a n y of the subsequent
tokens correspond to a r ray elements).

Back reference tokens denote shared components . A back reference token
contains the s t r eam address of the encoded value of an object. At the sending
module, when an objec t ' s value is reduced to tokens, the (name of the) object and
the s t r e am address of its header token are entered in the map. I f the object is
encountered again, this s t r eam address is extracted f rom the m a p and placed in
the s t r e am in a back reference token. At the receiving module, each recons t ruc ted
componen t is entered in the m a p with its s t r eam address. When a back reference
is encountered, the previously reconst ructed object is ext rac ted f rom the map.

For each t ransmissible type T, the language implementa t ion provides put and
get operations, to t ransla te be tween T values and sequences of tokens. These two
opera t ions are par t of the language implementa t ion; they are not imp lemen ted
by users of the language. The put operat ion for a r rays does the following:

1. If the array object has already been entered in the map, place a back reference token in
the stream, and return.

2. Otherwise, enter the object and the current stream address in the map.
3. Place a header token containing size information in the stream, and invoke put for each

component object.

Here is the get operat ion for arrays:

1. Remove the first token from the stream. If it is a back reference, return the indicated
object from the map.

2. Otherwise, create an empty array, and enter the new object and the current stream
address in the map.

3. Invoke the get operation for each component object, and initialize the array.

Put and get for the o ther s t ruc tured types are similar. T h e put operat ion for an
abs t rac t type uses the following algorithm:

1. If the object has already been entered in the map, place a back reference token in the
stream, and return.

2. Otherwise, enter the object and the current stream address in the map.
3. Place a header token in the stream, use encode to construct an external representation,

and invoke the external representation's put operation.

Finally, get for an abs t rac t type uses the following algorithm:

1. Remove the first token from the stream. If it is a back reference, return the indicated
object from the map.

2. Otherwise, construct the external representation by invoking itsget operation, and then
use decode to create the abstract object.

3. Enter the new abstract object and its stream address in the map, and return the object.

These a lgor i thms suffice to preserve acyclic sharing. (Cyclic sharing is slightly
more compl ica ted and will be addressed in the next section.)

As an example of the message format , in Figures 7 and 8 we show a table
object and its associated message representat ion. In this example the table has
integer keys and cells as i tems, and the external represen ta t ion of cells is
record[val : int].

ACM Transact ions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

table lint, cel I]

Value Transmission Method 543

Fig. 7. Example table object.

Token # Token Type Token Value Explanation

1 Header
2 Header 1,2

3 Header
4 Data
5 Header
6 Header
7 Data
8 Header
9 Data

10 BackRef

0

17
5

Fig. 8. Example

Header for table
Header for array
(Table external representation with low bound 1 and size 2)
Header of first array element (a record)
The first key
Header for the first item
Header for item's external representation (a record)
The item's value
Header for second array element
The second key
The shared item

of message representation for table.

The above implementat ion is based on the assumption tha t message transmis-
sion is type-checked at compile time. Run-t ime type checking would require type
information to be sent in messages (see Section 6).

5. CYCLIC OBJECTS

The naming relation among objects can be modeled as a directed graph. If the
graph corresponding to an object contains a directed cycle, we say the object has
a cyclic value. Simple examples of objects having cyclic values are circular lists
and doubly linked lists, where each e lement names both its predecessor and
successor. The method described so far does not fully define value transmission
for cyclic values. In this section we extend our scheme to encompass cyclic values,
subject to a simple restriction on the decode operations of such types.

The put operat ion described in Section 4 handles both acyclic and cyclic
objects. The first thingput does when it encounters a new object to be t ransmit ted
is to place a header token for the object in the message s t ream and enter the
{name of the) object in the map along with the address of the header token. If a
reference to the object is encountered later, a back reference token is placed in
the message stream. In the case of a cyclic object, the object referred to has not
ye t been fully reduced to tokens, but this causes no difficulty.

A problem does arise when trying to reconstruct a cyclic object. Get does not
enter an object in the map until it has been fully reconstructed. When recon-
structing a cyclic object, get will encounter back reference tokens tha t refer to
objects tha t are not fully reconstructed. Since these objects are not present in the
map, the implementat ion in Section 4 t reats the situation as an error.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

544 M. Herlihy and B. Liskov

Just as it is not necessary for the system to preserve sharing, the system need
not help the programmer in transmitting cyclic values. In this case the program-
mer must encode cyclic values into acyclic external representations. We believe
that programmers would find this awkward in practice.

Therefore, our system provides a certain amount of help in transmitting cyclic
objects. As mentioned above, the occurrence of a cycle during reconstruction is
indicated when the back reference token is extracted from the message stream
but the object referred to has not yet been entered in the map. At this point, get
creates an uninitialized object, that is, an object that has a name, but no value,
and enters it in the map with the stream address contained in the back reference
token. Reconstruction can then continue with this uninitialized object used in
place of the as yet nonexistent object that is needed to close the cycle. The
uninitialized object, however, can be used only in a very restricted way: its name
can be used, but not its value (since it has none). An operation uses the value of
an object of type T if it causes a T operation to be applied to that object. The
only way a T operation can be applied to an uninitialized object is through the
user-defined decode operation. In general, when an object containing a cycle is
reconstructed, its decode operation may not use the value of any other object in
the cycle. After decode operations have been applied to each object in the cycle,
all objects are considered to be initialized, and arbitrary operations can then be
applied.

The restriction on operations is by no means the only way to define transmission
for cyclic values. Generally, if the operation decoding an object uses the value of
another object, the latter must be decoded before the former. Our method
reconstructs acyclic objects in exactly such a "leaf-to-root" order. Our restriction
on cyclic objects can be expressed as the requirement that no such dependency
relations exist among any members of a cycle. In [7] a less restrictive scheme is
described, in which we permit dependency relations among objects in a cycle but
require that the closure of those relations be acyclic. Lazy evaluation is used to
determine the order in which objects are decoded. Although the scheme described
here is more restrictive, it is simpler both in implementation and description.
Furthermore, experience suggests that implementation s that violate our more
conservative restriction are unlikely to be useful in practice.

It is possible to implement transmission for an abstract type in such a way that
message construction or interpretation may fail to terminate. Although we feel
that nonterminating transmit operations are unlikely to be a problem in practice,
for completeness we will review some issues pertaining to termination. We will
assume that user-defined encode and decode operations always terminate. For an
abstract type T having external representation type XT, T$ transmit is defined in
terms of X T $ transmit. The simplest way to guarantee that T$ transmit always
terminates is to choose an X T whose transmit operation is already known to
terminate. The resulting T$ transmit will not be recursively defined. The complex
number example given above reflects such a choice. For recursively defined types
it may be convenient to choose an X T that contains T components. In such a
case, T$transmi t and XT$transmi t are mutually recursive, and demonstrating
termination is more difficult. Recursive invocations of T$ transmit can stop in
two ways: the collection of reachable T objects can be exhausted, for example, by

ACM Transact ions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

Value Transmission Method 545

reaching the end of a linear list, or an object may be encountered for the second
time, for example, by closing the cycle of a circular list.

6. LONG-TERM STORAGE

The method described above is useful for storing data in long-term storage, such
as a file system. One module can store an item of type T, while another, using a
different internal representation for T, can fetch it later. While in the file system,
the data is stored in its message format as uninterpreted bits. The advantage
over standard schemes is that these bits have a system-known meaning: they are
the message format of the external representation of T. This information can be
used to prevent user errors in interpreting the bits, for example, interpreting bits
belonging to one type as if they were of another type, or lack of agreement among
modules as to what the external representation is for a given type.

We must extend our method to permit programs to extract uninterpreted data
from messages, but this is easy to do. We introduce a new built-in type called
image, and allow values of this type to be communicated in messages {images
are transmissible). Values of type image are pairs: a bit string containing a value
of type T in message format, and a bit string representing the type T itself.
Images have only two operations. The first operation,

create = proc[T: type](x : T) r e t u rn s (image)

is used to construct an image. It is parameterized by the type of the argument;
this type must be transmissible (transmissibility can be checked at compile time).
Create produces the message format both for its actual argument, x {using the
put operation for T), and for T itself (using the put operation for type type, that
is, types are transmissible). The second operation,

extract = proc[T: type] (x : image} r e t u r n s (T) s ignals (wrong type)

is parameterized by the expected type, which must be transmissible. Extract
decodes the type part of its input (using the get operation for types), compares
the result with T, and signals wrong type 4 if the types do not match. Otherwise,
it returns the object of type T that it reconstructs from the message format {using
the get operation for T).

We expect that image objects will be created most frequently when sending a
request to store data to a module that provides uninterpreted storage. Later the
stored data would be retrieved by sending a read request to that same module;
the response to the read request would provide the image stored earlier. The
stored value could then be extracted from the image, provided the reading module
knows the type of the stored data. Within the module providing storage, the
actual type of the data is not of concern, since that module deals only with
uninterpreted images. A practical consequence of this lack of concern is that the
code of that module can be written, compiled, and loaded without knowledge of
the types of data it will store.

Since the module that retrieves data may not be the module that stored it, the

4 H e r e we a re m a k i n g use of excep t ions . Ex t rac t can t e r m i n a t e in two ways : e i t h e r n o r m a l l y (r e t u r n i n g

a T va lue) or e x c e p t i o n a l l y by s i g n a l i n g wrong type. See [13] for m o r e i n fo rma t ion .

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

546 M. Herlihy and B. Liskov

type information in images must be meaningful at all modules. Support for this
property requires a universal name space for types. If the file system and its users
are distributed, the name space must be distributed. The issues involved in
implementing such a name space are similar to those that arise in distributed
name servers in general and will not be discussed here.

7. DISCUSSION

This paper is based on the premise that in a large program it is desirable to
permit different regions to use different internal representations for abstract data.
We further argued that communication of abstract data between such regions
must be user controlled. We then presented a method that gives users the needed
control, but provides system support to simplify the user's job.

In the introduction we identified some goals that such a method must satisfy,
and our method does satisfy these goals. Our method is modular: each abstract
data type implementation can be developed and verified independently of any
other implementations, including other implementations of its data type and
implementations of used abstractions (e.g., the external representation). Our
method satisfies the linearity property, since for each new implementation only
the encode and decode operations for that implementation need be written.
Finally, our method is easy to use. Ease of use comes partly because the external
representation is just another (possibly abstract) data type, so the user need not
worry about translation into low level types (e.g., bit strings). Ease of use is
enhanced by the system support for transmission of shared and cyclic data
structures.

In the remainder of this section we discuss some issues related to our work.
First, we discuss the relationship of our work to other research. Next, we discuss
some ways of improving the efficiency of transmission. Finally, we conclude with
a discussion of some areas for further research.

7.1 Related Work

Our scheme for value transmission is the first to provide a complete treatment of
the many related issues including user-defined transmission of abstract values,
specification and correctness criteria for transmission, and system support for
shared and cyclic data objects. Our scheme is based on the straightforward idea
of a standard intermediate representation for each type. A canonical representa-
tion has been used for transmission of built-in types in various protocols [3, 18].
It has been proposed for abstract types by Habermann [6], but the details were
not worked out.

Several protocols have been developed for transmission of typed information
across the ARPANET. In each of these, only values from a predefined set of
types are transmissible. The Procedure Call Protocol developed for the National
Software Works [18] is the most ambitious, being capable of transmitting such
values as character strings, integers, and lists. The T E L N E T protocol is used for
transferring character information, and the File Transfer Protocol is used to
transfer files [3]. In these protocols the sender converts the information to be
sent into a standard representation that is either statically determined or agreed
upon by negotiation. Upon receipt the receiver converts the standard represen-
ACM Transact ions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

Value Transmission Method 547

tation into whatever local representation it uses. Our scheme builds on the results
of these efforts, since we assume that the underlying language implementation
can faithfully transmit such language-defined values as strings, or arrays of
integers, independently of their machine-level representations.

An alternative to standard intermediate representations is direct translation
between representations. Fabry [2] develops a scheme for replacing implemen-
tations of abstract data types while the ambient system continues to run. During
the transition period between implementations it is possible that different rep-
resentations for objects of the same type may coexist. In Fabry's scheme each
object is tagged with an implementation number, and each data type implemen-
tation includes a translation operation from the representation used by the
previous version to its own representation. Whenever an object using an old
representation is encountered, a chain of translation operations is invoked to
convert the object into the current representation for that type.

Like our scheme, Fabry's scheme has the property that the amount of work
needed to install a new implementation is independent of the number of previ-
ously existing implementations. Nevertheless, it has a major defect: the lack of
modularity inherent in the idea that each implementation must be known by the
programmer of its successor. Note that there may be no natural order among
implementations, making it difficult to assign version numbers. For example, two
implementations with different efficiency characteristics may be developed in
parallel.

7.2 Eff ic iency

Message transmission has three distinct steps: first, constructing a message
stream in memory at the sender's node; second, transmitting the message to
obtain a message stream in memory at the receiver's node; and third, reconstruct-
ing the objects from the receiver's message stream.

A simple measure of efficiency is the number of passes required to perform
these steps. To perform step 1, our implementation requires a single recursive
traversal of the object by the sender: a similar single traversal is required for step
3. At each level a user-defined translation operation is applied, a certain amount
of bookkeeping is done to detect sharing, and some tokens are entered in or
removed from the message stream.

This section describes a few simple optimizations that serve to improve the
performance of the implementation. The result of these optimizations is that the
efficiency of transmission is related to the generality required of transmission.
We begin by discussing optimizations for steps 1 and 3, and then we discuss some
for step 2.

Sharing preservation represents a cost in steps 1 and 3, since objects must be
entered into and retrieved from maps. In the current CLU implementation, object
identities are compared by a simple pointer comparison, and standard hashing
and retrieval techniques are used to make the map types efficient. The cost of
sharing preservation can be further reduced by observing that it is not necessary
to preserve sharing of immutable objects. The value of an immutable object can
never change. If two immutable objects have the same value, then they are
indistinguishable from one another, and it is not possible to observe whether they

ACM Transact ions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

548 M. Herlihy and B. Liskov

are actually the same object. CLU provides a number of immutable types, both
unstructured {e.g., int, bool) and structured {e.g., sequence, struct). The put and
get operations of these types do not need to preserve sharing and therefore need
not enter or retrieve information in the map. The decision whether to preserve
sharing of immutable objects is based on a time-space trade-off. By not preserving
sharing, put and get execute more efficiently. By preserving sharing, we may save
storage and reduce message size. For small immutable objects, for example, int,
bool, both space and time can be saved by not preserving sharing.

A simple compile-time optimization can further reduce the cost of sharing
preservation, as well as the number of procedure invocations. We anticipate that
many data abstractions will be implemented having identical internal and external
representations, and having encode and decode operations that only perform
type conversions between the abstract and representation types. We call such
operations trivial translation operations. Trivial operations can easily be detected
at compile time. We can eliminate the expense of sharing preservation for types
having trivial encode and decode operations. The put and get operations of such
a type need not check for sharing, as any sharing will eventually be detected at
a lower level.

The number of procedure calls in steps 1 and 3 can be reduced by observing
that it is not necessary to call trivial translation operations at run time. In the
CLU run-time system, objects contain no abstract type information, since type
correctness is enforced statically by the compiler. 5 Since trivial translation oper-
ations just return their arguments unchanged, their invocations have no effect,
and put and get need not call them. {Calls of nontrivial operations can be
eliminated by in-line substitution, i.e., replacing the call with the body of the
called routine.)

The following optimization for trivial operations depends on the use of a
different message stream format from that described in Section 4. In our running
implementation the message format does not use header tokens for abstract
objects; the algorithms in use are slight variations of those described in Section
4. With the revised format, put and get for abstract types only do sharing
detection and calling of encode or decode. Since for trivial operations neither of
these need be done, put and get can be replaced by trivial operations that just
invoke the put and get of the external representation type. As a further optimi-
zation, when separately compiled modules are bound together, or if the modules
are compiled together, invocations of trivial put and get operations can be
replaced by direct invocations of the external representation's put and get,
eliminating levels of procedure linkage.

In summary, the only types whose put and get operations need to incur the
cost of sharing preservation are the mutable built-in types and abstract types
having nontrivial encode and decode operations. Furthermore, put and get need
not be called at all for abstract types with trivial encode and decode.

It is important to realize that the above optimizations are performed separately
for sender and receiver. For example, suppose the sender used only trivial

r, The conversion between abstract and representation types indicated by the use of cv t does not
cause any code to be executed at run time; it simply changes how the compiler does type checking.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

Value Transmission Method 549

operations so that only put operations for built-in types actually need to be
invoked during transmission. These optimizations would be discovered either at
compile time of the code for the sender (if all this code were compiled at once) or
at load time for the sender. Similarly, the receiver's optimizations are done at
compile or load time for the receiver's code. But no matter how many optimiza-
tions are done at either end, the message format produced at run time by the
sender will be readable by the receiver.

Our implementation models messages as streams to permit flexible storage
management by the communication substrate. Since messages are constructed in
a single pass, the amount of storage used in step 2 can be controlled by
incremental transmission. When sending the value of a large object, the system
may begin transmitting the message before it is fully constructed and may begin
reconstructing the value before the message is fully received.

Further optimizations are possible when the sender and receiver reside at the
same node {i.e., share memory}. First of all, step 2 can be eliminated in this case;
the message stream produced by the sender can be built directly in the receiver's
address space. In addition, if the sender and receiver use the same implementation
for the built-in types, the message stream can be eliminated. Rather than placing
a token in a stream to denote an integer value, the sender can just copy the
integer into the receiver's address space. Values of built-in type can be commu-
nicated by direct copying of underlying representations, rather than by translation
into tokens. This technique conserves storage at the sender's end, since the
message is constructed in the receiver's address space, and it saves work at the
receiver's end, since tokens do not have to be interpreted.

One can imagine doing more optimizations when the sending and receiving
modules use the same implementations of the abstract types being communicated
in a send. We expect that such optimizations will not be practical in our system
[12]. We permit modules to be created dynamically, so we can detect a module's
nodes of residence only at run time. Furthermore, we do not require that all
modules at a node have the same implementations of abstract types. Therefore
we expect that the effort saved by this final optimization will not justify the effort
needed to determine that the optimization can be applied.

7.3 Further Research

In this section we discuss some areas in which further research is needed.
Our method limits each module to a single implementation for each type of

abstract data it uses. Suppose that we eliminated this restriction, so that a single
module might use objects of the same type but with different representations.
Note that such generality requires a way of determining the version of an object
at run time, so that it can be operated on by operations that understand its
representation or translated to the representation needed by the operation.
Although our method could be used to do translations, such an approach is
probably too inefficient. Alternative methods, not related to the work described
in this paper, must be explored if this problem is felt to be important.

Another limitation of our method is that we make no provision for a change in
the external representation. What happens if a change in the external represen-
tation is needed? One possibility is to use Fabry's method. This requires that

ACM Transact ions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

550 M. Herlihy and B. Liskov

each X T object be tagged with a version number; whether this is acceptable
requires fur ther study. Another possibility is to per form a sys tem change tha t
replaces all existing implementa t ions of the type in question with new ones using
the new external representa t ion and converts all existing X T objects to the new
format. Such a change mus t be done atomical ly : it mus t e i ther be comple ted
ent i rely or have no effect. P robab ly it is pract ical to use this approach only in an
env i ronment tha t suppor ts a tomic actions. Our current research concerns defining
and implement ing such an env i ronment [10, 12].

Our work has assumed a single language system. An impor tan t pract ical
p rob lem concerns communica t ion be tween programs wri t ten in different lan-
guages. At present such communica t ion is usually accomplished th rough files of
un in te rpre ted bit strings. Pe rhaps our me thod could be extended to handle
inter language communicat ion . Such an extension would be an i m p r o v e m e n t over
cur rent techniques, par t ly because it would offer a s tandard me thod for doing
such communica t ion , and par t ly because communica t ion could be carried out a t
a higher level than bit strings.

Finally, the way in which the work of t ransmiss ion is divided be tween the
sys t em and the user is of interest in its own right. We view the sys tem-provided
p u t and ge t operat ions as templates : the user-defined encode and decode opera-
tions fit into a sys tem-def ined pat tern . Th is kind of pa t t e rn is useful for more
t han transmission. Fair ly obvious examples of the util i ty of t empla te -dr iven
opera t ion calls are suppor t for user -defmed copying of abs t rac t objects, or for
test ing two abs t rac t objects for equality. Another possible use is for control of
human- readab le display of abs t rac t data. T h e use of t empla tes as a general
control mechan i sm is wor th fur ther study.

ACKNOWLEDGMENTS

Special thanks are owing to Russ Atkinson, who helped in the original formulat ion
of the t ransmiss ion method, and Craig Schaffert , who helped formulate the
verification criteria. Sheng Yang Chiu, Julie Lancaster , Br ian Oki, Gene Stark,
Bob Scheifler, Bill Weihl, and the referees gave helpful crit icisms of earlier drafts
of this paper.

REFERENCES

I. CLARK, D.W. Copying list structures without auxiliary storage. Tech. Rep., Carnegie-Mellon
Univ., Pittsburgh, Pa., Oct. 1975.

2. FABRY, R.S. How to design a system in which modules can be changed on the fly. Proc. 2nd Int.
Conf. on Software Engineering, San Francisco, Calif., Oct. 1976, pp. 470-477.

3. FEINLER, E., AND POSTEL, J. Arpanet Protocol Handbook. Network Information Center, SRI
International, Menlo Park, Calif., Jan. 1978.

4. FISHER, D.A. Copying cyclic structures in linear time using bounded workspace. Commun. ACM
18, 5 (May 1975), 251-253.

5. GUTTAG, J.V., AND HORNING, J.J. The algebraic specification of abstract data types. Acta Inf.
10 (1978), 27-52.

6. HABERMANN, N. Dynamically modifiable distributed systems. Proc. Distributed Sensor Net
Workshop, Pittsburgh, Pa., Dec. 1978, pp. 111-114.

7. HERLIHY, U. Transmitting abstract values in messages. Tech. Rep. MIT/LCS/TR-234, Labo-
ratory for Computer Science, M.I.T., Cambridge, Mass., May 1980.

8. HOARE, C.A.R. Proof of correctness of data representation. Acta Inf. 1 (1972), 271-281.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

Value Transmission Method 551

9. KAPUR, D. Towards a theory for abstract data types. Tech. Rep. MIT/LCS/TR-237, Laboratory
for Computer Science, M.I.T., Cambridge, Mass., May 1980.

t0. LISKOV, B.H. On linguistic support for distributed programs. Proc. Syrup. on Reliability in
Distributed Software and Data Base Systems, Pittsburgh, Pa., July 1981, pp. 53-60.

11. LISKOV, B.H., ATKINSON, R.A., BLOOM, T., Moss, J.E., SCHAFFERT, J.C., SCHEIFLER, R.W., At'O
SNYDER, A. CL U Reference Manual, Lecture Notes in Computer Science 114. Springer-Verlag,
New York, 1981.

12. Llssov, B.H., AND SCHEIFLER, R.W. Guardians and actions: Linguistic support for robust,
distributed programs. Proc. 9th Ann. ACM Syrup. on Principles of Programming Languages,
Albuquerque, N.M., Jan. 1982, pp. 7-19.

13. LmKov, B.H., AND SNYDER, A. Exception handling in CLU. IEEE Trans. Softw. Eng. SE-5, 6
(Nov. 1979), 546-558.

14. LISKOV, B.H., SNYDER, A., ATKINSON, R.R., AND SCHAFFERT, J.C. Abstraction mechanisms in
CLU. Commun. ACM 20, 8 (Aug. 1977), 564-576.

15. LISKOV, B.H., AND ZILLES, S.N. Programming with abstract data types. Proc. ACM-SIGPLAN
Conf. on Very High Level Languages, SIGPLAN Notices (ACM) 9, 4 (Apr. 1974), 50-59.

16. MOON, D.A. MacLISP Reference Manual, Revision 0. Project MAC, M.I.T., Cambridge, Mass.,
Apr. 1974.

17. PRELIMINARY ADA REFERENCE MANUAL. SIGPLAN Notices (ACM) 14, 6 (June 1979).
18. SCHANTZ, R.E., AND MILLSTEIN, R.E. The foreman: Providing the program execution environ-

ment for the national software works. Tech. Rep. No. 3442, BBN, Jan. 1977.
19. SOLLINS, K. Copying complex structures in a distributed system. Tech. Rep. MIT/LCS/TR-

219, Laboratory for Computer Science, M.I.T., Cambridge, Mass., May 1979.

Received December 1980; revised August 1981 and April 1982; accepted April 1982

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982.

