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Fig. 13. Memory-to-memory swap: n-process consensus.

decide(input: value) returns(value)

prefer[P j := input

swap(a[P],r)

for Qinl.. ndo

if a[Q] = 1

then return prefer[Q]

end if

end for
end decide

PROOF. The protocol uses m “single-writer” registers rl, . . . . r~, where P,
writes to registerr,,and m (m — 1)/2 “rnultiwriter” registers r,,, where i > ,j, where

Pl and P, both write to register r,,. All registers are initialized to 1. Each process

atomically assigns its input value to m registers: its single-writer register and its

m – 1 multiwriter registers. The decision value of the protocol is the first value

to be assigned.

After assigning to its registers, a process determines the relative ordering of

the assignments for two processes P, and P, as follows:

(1) Read r,,. If the value is 1, then neither assignment has occurred.

(2) Otherwise, read r, and r,. If r’s value is 1, then P, precedes P,, and similarly

for r,.

(3) If neither r, nor r, is 1, reread r,,. If its value is equal to the value read from

r,, then P] precedes P,, else vice-versa.

By repeating this procedure, a process can determine the value written by the

earliest assignment. ❑

This result can be improved.

THEOREM 12. Atomic m-register assignment has consensus number at least

2m – 2.

PROOF. Consider the following two-phase protocol. Each process has two

single-writer registers, one for each phase, and each pair of processes share a
register. Divide the processes into two predef’ined groups of m – 1.In the first

phase, each group achieves consensus within itself using the protocol from

Theorem 11. In the second phase, each process atomically assigns its group’s

value to its phase-two single-writer register and the m – 1 multiwriter registers

shared with processes in the other group. Using the ordering procedures described

above, the process constructs a directed graph G with the property that there is
an edge from PI to F’h if PI and Pk are in different groups and the former’s

assignment precedes the latter’s. It then locates a source process having at least

one outgoing edge but no incoming edges, and returns that process’s value. At

least one process have performed an assignment; thus G has edges. Let Q be the

process whose assignment is first in the linearization order. Q is a source, and it

has an outgoing edge to every process in the other group; thus no process in the

other group is also a source. Therefore, all source processes belong to the same

group. ❑

This algorithm is optimal with respect to the number of processes,
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THEOREM 13. Atomic m-register assignment has consensus number exactly

2m – 2.

PROOF. We show that atomic m-register assignment cannot solve 2m – 1

process consensus for m >1. By the usual construction, we can maneuver the

protocol into a bivalent state s in which any subsequent operation executed by

any process is a decision step. We refer to the decision value forced by each

process as its default.

We first show that each process must have a “single-writer” register that it

alone writes to. Suppose not. Let P and Q be processes with distinct defaults x

and y. Lets’ be the state reached froms if P performs its assignment, Q performs

its assignment, and the other processes perform theirs. Because P went first, s‘

is x-valent. By hypothesis, every register written by P has been overwritten by

another process. Let s” be the state reached from s if P halts without writing,

but all other processes execute in the same order. Because Q wrote first, s” is

y-valent. There exists a history fragment from s‘, consisting entirely of opera-

tions of Q, with decision value x. Because the values of the registers are identical

ins’ ands”, the protocol has the same history fragment froms”, a contradiction

because s“ is y-valent.

We next show that if P and Q have distinct default values, then there must be

some register written only by those two processes. Suppose not. Let s‘ be the

state reached froms if P performs its assignment and Q performs its assignment,

followed by all other processes’ assignments. Let s” be the state reached by the

same sequence of operations, except that P and Q execute their assignments in

the reverse order. Because s‘ is x-valent, there exists a history fragment from s‘

consisting of operations of P with decision value x. But because every register

written by both P and Q has been overwritten by some other process, the register

values are the same in both s and s‘; hence the protocol has the same history

fragment from s”, a contradiction.

It follows that if P has default value x, and there are k processes with different

default values, then P must assign to k + 1 registers. If there are 2m – 1 processes

which do not all have the same default, then some process must disagree with at

least m other processes, and that process must assign to m + 1 registers. ❑

The last theorem shows that consensus is irreducible in the following sense: it

is impossible to achieve consensus among 2n processes by combining protocols

that achieve consensus among at most 2m < 2n processes. If it were possible,

one could implement each individual 2m-process protocol using m – l-register

assignment, yielding a 2n-process consensus protocol, contradicting Theorem 13.

3.7 Remarks

Fischer et al. [9] have shown that there exists no two-process consensus protocol

using message channels that permit messages to be delayed and reordered. That

result does not imply Theorem 2, however, because atomic read/write registers

lack certain commutativity properties of asynchronous message buffers. (In
particular, [9, Lemma 1] does not hold.)

Dolev et al. [7] give a thorough analysis of the circumstances under which

consensus can be achieved by message-passing. They consider the effects of
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32 combinations of parameters: synchronous versus asynchronous processors,

synchronous versus asynchronous communication, FIFO versus non-FIFO mes-

sage delivery, broadcast versus point-to-point transmission, and whether send

and receiue are distinct primitives. Expressed in their terminology, our model

has asynchronous processes, synchronous communication, and distinct send and

receiue primitives. We model send and receiue as operations on a shared message

channel object; whether delivery is FIFO and whether broadcast is supported

depends on the type of the channel. Some of their results translate directly into

our model: it is impossible to achieve two-process consensus by communicating

through a shared channel that supports either broadcast with unordered delivery,

or point-to-point transmission with FIFO delivery. Broadcast with ordered deliv-

ery, however, does solve n-process consensus.

A safe read/write register [18] is one that behaves like an atomic read/write

register as long as operations do not overlap. If a read overlaps a write, however,

no guarantees are made about the value read. Since atomic registers implement

safe registers, safe registers cannot solve two-process consensus, and hence the

impossibility results we derive for atomic registers apply equally to safe registers.

Similar remarks apply to atomic registers that restrict the number of readers or

writers.

Loui and Abu-Amara [21] give a number of constructions and impossibility

results for consensus protocols using shared read-modify-write registers, which

they call “test&set” registers. Among other results, they show that n-process

consensus for n > 2 cannot be solved by read-modify-write operations on

single-bit registers.

Lamport [19] gives a queue implementation that permits one enqueuing process

to execute concurrently with one dequeueing process. With minor changes, this

implementation can be transformed into a wait-free implementation using atomic

read/write registers. Theorem 2 implies that Lamport’s queue cannot be extended

to permit concurrent deq operations without augmenting the read and write

operations with more powerful primitives.

A concurrent object implementation is nonblocking if it guarantees that some

process will complete an operation in a finite number of steps, regardless of the
relative execution speeds of the processes. The nonblocking condition guarantees

that the system as a whole will make progress despite individual halting failures

or delays. A wait-free implementation is necessarily nonblocking, but not vice-

versa, since a nonblocking implementation may permit individual processes to

starve. The impossibility and universality results presented in this paper hold

for nonblocking implementations as well as wait-free implementations.
Elsewhere [14], we give a nonblocking implementation of a FIFO queue, using

read, fetch&add, and swap operations, which permits an arbitrary number of

concurrent enq and deq operations. Corollary 5 implies that this queue imple-

mentation cannot be extended to support a nonblocking peek operation without

introducing more powerful primitives.

4. UNIVERSALITY RESULTS

An object is universal if it implements any other object. In this section, we show

that any object with consensus number n is universal in a system of n (or fewer)
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processes. The basic idea is the following: we represent the object as a linked list,

where the sequence of cells represents the sequence of operations applied to the

object (and hence the object’s sequence of states). A process executes an operation

by threading a new cell on to the end of the list. When the cell becomes sufficiently

old, it is reclaimed and reused. Our construction requires O (n3) memory cells to

represent the object, and O (nq) worst case time to execute each operation. We

assume cells can hold integers of unbounded size. Our presentation is intended

to emphasize simplicity, and omits many obvious optimizations.

Let INVOC be the object’s domain of invocations, RESULT its domain of results,

and STATE its domain of states. An object’s behavior may be specified by the

following relation:

apply C INVOC X STATE X STATE X RESULT.

This specification means that applying operation p in state s leaves the object in

a state s‘ and returns result value r, where (p, s, s‘, r ) ~ apply. Apply is a

relation (rather than a function) because the operation may be nondeterministic.

For brevity, we use the notation apply (p, s) to denote an arbitrary pair (s’, r)

such that (p, s, s‘, r’) E apply.

4.1 The Algorithm

An object is represented by a doubly linked list of cells having the following

fields:

(1) Seq is the cell’s sequence number in the list. This field is zero if the cell is

initialized but not yet threaded onto the list, and otherwise it is positive.

Sequence numbers for successive cells in the list increase by one.

(2) Inu is the invocation (operation name and argument values).

(3) New is a consensus object whose value is the pair ( new.state, new.result ).

The first component is the object’s state following the operation, and the

second is the operation’s result value, if any.

(4) Before is a pointer to the previous cell in the list. This field is used only for

free storage management.

(5) After is a consensus object whose value is a pointer to the next cell in the

list.

If c and d are cells, the function max(c, d) returns the cell with the higher

sequence number.

Initially, the object is represented by a unique anchor cell with sequence

number 1, holding a creation operation and an initial state.

The processes share the following data structures:

(1) Announce is an n-element array whose Pth element is a pointer to the cell P

is currently trying to thread onto the list. Initially all elements point to the

anchor cell.

(2) Head is an n-element array whose Pth element is a pointer to the last cell in
the list that P has observed. Initially all elements point to the anchor cell.
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Let max(l-zead) be max(head[l].seq, . . . . head[rz].seq), arzd let “c=heczd’’denote

the assertion that a pointer to cell c has been assigned to head [Q], for some Q.

We use the following auxiliary variables:

(1) corLcur(P) is the set of cells whose addresses have been stored in the head

array since P’s last announcement;

(2) start(P) is the the value of max(head ) at P’s last announcement. Notice that

I corzcur(P) I + start(P) = max(head). (1)

Auxiliary variables do not affect the protocol’s control flow; they are present

only to facilitate proofs.

The protocol for process P is shown in Fia~re 14. In this figure, “v: T := e“

declares and initializes variable u of type T to a value e, and the type “*cell”

means “pointer to cell. ” Sequences of statements enclosed in angle brackets are

executed atomically. In each of these compound statements, only the first affects

shared data or control flow; the remainder are “bookkeeping operations” that

update auxiliary variables. For readability, auxiliary variables are shown in italics.

Informally, the protocol works as follows. P allocates and initializes a cell

to represent the operation (statement 1). It stores a pointer to the cell in

announce [P] (statement 2), ensuring that if P itself does not succeed in threading

its cell onto the list, some other process wall. To locate a cell near the end of the

list, P scans the head array, setting head [P] to the cell with the maximal sequence

number (statement 3). P then enters the main loop of the protocol (statement

4), which it executes until its own cell has been threaded onto the list (detected

when its sequence number becomes nonzero). P chooses a process to “help”

(statement 6), and checks whether that process has an unthreaded cell (statement

7). If so, then P will try to thread it; otherwise it tries to thread its own cell. (If

this helping step were omitted, the protocol would be nonblocking rather than

wait -free. ) P tries to set head [P].after to point to the cell it is trying to thread

(statement 8). The after field must be a consensus cell to ensure that only one
process succeeds in setting it. Whether or not P succeeds, it then initializes the

remaining fields of the next cell in the list. Because the operation may be

nondeterministic, different processes may try to set the new field to different

values, so this field must be a consensus object (statement 9). The values of the

other fields are computed deterministically, so they can simply be written as

atomic registers (statements 10 and 11). For brevity, we say that a process threads

a cell in statement 7 if the decide operation alters the value of the after field, and

it announces a cell at statement 2 when it stores the cell’s address in announce.

LEMMA 1. The following assertion is invariant:

I concur(P) I > n - announce (P) E head.

PROOF. If I concur(P) I > n, then concur(P) includes successive cells q

and r with respective sequence numbers equal to P – 1 mod n and P mod n,

threaded by processes Q and R. Because q is in concur(P), Q threads q after

P’s announcement. Because R cannot modify an unthreaded cell, R reads
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Universal(what: lNVOC)retUrnS(RESULT)
mine: cell := [seq: 0,

inv: what,
new: create(con9ensus_0bject),
before: create(consensus.object)
after: null]

(announce[P] := mine; dart(P) := max(head))
for each processQ do

head[P] := max(head[P], head[Q])
end for

while announce[P].seq = Odo
c: *cell := head[P]
help: “cell := announce[(c.seqmod n) + I]
if help ,seq= O

then prefer := help
eke prefer := armounce[P]

end if

d := decide(c.after, prefer)

decide(d.new, apply (d.inv, c.new.state))

d. before := c

d.seq := c.seq + 1

(head[P] := d; (VQ) corIcur(Q) := concur(Q) U {d})

end while
(head[P] := announce[P]; (VQ) mncur(Q) := concur(Q) U {d})

return (annormce[P].new.re9ult)
end universal

Fig. 14. A universal construction.

announce [P] (statement 5) after Q threads q. It follows

2

3

4

5

6

7

8

9

10
11
12

13

14

that R reads

announce [P] after P’s announcement, and therefore either announce [P] is al-

ready threaded, or r is p. ❑

Lemma 1 places a bound on the number of cells that can be threaded while an

operation is in progress. We now give a sequence of lemmas showing that when

P finishes scanning the head array, either announce [P] is threaded, or head [P]

lies within n + 1 cells of the end of the list.

LEMMA 2. The following assertion is invariant:

max(head ) = start(P).

PROOF. The sequence number for each head[Q ] is nondecreasing. ❑

LEMMA 3. The following is a loop invariant for statement 3:

max(head[P], head[Q], . . . . head[n]) > start(P).

where Q is the loop index.

PROOF. When Q is 1, the assertion is implied by Lemma 2. The truth
of the assertion is preserved at each iteration, when head [E’] is replaced by

max(head[P], head[Q]). El
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LEMMA~. The folloluing assertion holds just before staternent4:

head [P].seg > start(P).

PROOF. After theloop atstatement 3,max(head[P], head[Q], . . ..head[n])

is just head [P].seq, and the result follows from Lemma 3. ❑

LEMMA 5. The follotoing is invariant:

I concur(P) I z head[P].seq – start(P) ~ O.

PROOF. The lower bound follows from Lemma 4, and the upper bound follows

from (l). ❑

THEOREM 14. The protocol in Figure 14 is correct and bounded wait-free.

PROOF. Linearizability is immediate, since the order in which cells are

threaded is clearly compatible with the natural partial order of the corresponding

operations.

The protocol is bounded wait-free because P can execute the main loop no

more than n + 1 times. At each iteration, head [F’].seq increases by one. After

n + 1 iterations, Lemma 5 implies that

I concur(P) I ~ head[P].seq – start(P) s n.

Lemma 1 implies that announce [P] must be threaded. ❑

4.2 Memory Management

In this section we discuss how cells are allocated and reclaimed. To reclaim

a cell, we assume each consensus object provides a reset operation that restores

the object to a state where it can be reused for a new round of consensus.

Our construction resets a consensus object only when there are no concurrent

operations in progress.

The basic idea is the following: a process executing an operation will traverse

no more than n + 1 cells before its cell is threaded (Theorem 14). Conversely,

each cell will be traversed no more than n + 1 times. When a process is finished

threading its cell, it releases each of the n + 1 preceding cells by setting a bit.

When a cell has been released n + 1 times, it is safe to recycle it. Each cell holds

an additional field, an array released of n + 1 bits, initially all false. When a

process completes an operation, it scans the n -t 1 earlier cells, setting released[i]

to true in the cell at distance i.

Each process maintains a private pool of cells. When a process needs to allocate

a new cell, it scans its pool, and reinitializes the first cell whose released bits are
all true. We assume here that each object has its own pool; in particular, the

cell’s new sequence number exceeds its old sequence number. While a process P

is allocating a new cell, the list representing an object includes at most n – 1

incomplete operations, and each such cell can inhibit the reclamation of at most

n + 1 cells. To ensure that P will find a free cell, it needs a pool of at least nz

cells. Note that locating a free cell requires at worst O (n’) read operations, since

the process may have to scan ng cells, and each cell requires reading n + 1 bits.

If an atomic fetch&add operation is available, then a counter can be used instead

of the released bits, and a free cell can be located in O (nz) read operations.
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The proof of Lemma 1 remains unchanged. For Lemma 2, we observe that a

cell can be reclaimed only if it is followed in the list by at least n + 1 other cells;

hence reclaiming a cell cannot affect the value of max(heczd). The statement of

Lemma 4 needs to be strengthened

LEMMA 6. The following assertion holds just before statement 4:

announce [P] E head V head [P].seq z start(P).

PROOF. When P announces its cell, there is some process Q such that

head [Q] has sequence number greater than or equal to start(P). This cell can

be reclaimed only if n + 1 other cells are threaded in front of it, implying that

I concur(P) I 2 n + 1,and hence that announce [P] G head (Lemma 1). •l

The proof of Theorem 14 proceeds as before. There is one last detail to check:

whether P’s cell has not been threaded by the time it finishes scanning head;

then we claim that none of the cells it traverses will be reclaimed while the

operation is in progress. Lemma 1 states that the list cannot have grown by more

than n cells since P’s announcement; thus every cell reachable from head [P] lies

within n + 1 cells of the end of the list, or of announce [P] if it is threaded. In

either case, those cells cannot be reclaimed while P’s operation is in progress,

since they must have at least one released bit unset.

4.3 Remarks

The first universal construction [13] used unbounded memory. Plotkin [27]

describes a universal construction employing “sticky-byte” registers, a kind of

write-once memory. In Plotkin’s construction, cells are allocated from a common

pool and reclaimed in a way similar to ours. The author [12] describes a universal

construction using compare&swap that is currently being implemented on a

multiprocessor.

A randomized wait-free implementation of a concurrent object is one that

guarantees that any process can complete any operation in a finite expected

number of steps. Elsewhere [2], we give a randomized consensus protocol using

atomic registers whose expected running time is polynomial in the number of

processes. This protocol has several important implications. If the wait-free

guarantee is allowed to be probabilistic in nature, then the hierarchy shown in

Figure 1 collapses because atomic registers become universal. Moreover, combin-

ing the randomized consensus protocol with our universal construction yields a

polynomial-time randomized universal construction. Bar-Noy and Dolev [3] have

adapted our randomized consensus protocol to a message-passing model; that

protocol can be used to manage randomized wait-free replicated data objects.

5. CONCLUSIONS

Wait-free synchronization represents a qualitative break with the traditional

locking-based techniques for implementing concurrent objects. We have tried to

suggest here that the resulting theory has a rich structure, yielding a number of
unexpected results with consequences for algorithm design, multiprocessor ar-

chitectures, and real-time systems. Nevertheless, many interesting problems
remain unsolved. Little is known about lower bounds for universal constructions,
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both in terms of time (rounds of consensus) and space (number of cells). The

implements relation may have additional structure not shown in the impossibility

hierarchy of Figure 1. For example, can atomic registers implement any object

with consensus number 1 in a system of two or more processes? Can fetch&add

implement any object with consensus number 2 in a system of three or more

processes? Does the implements relation have a different structure for bounded

wait-free, wait-free, or nonblocking synchronization? Finally, little is known

about practical implementation techniques.
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