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ABSTRACT OF THE DISSERTATION

Local Planning for

Continuous Markov Decision Processes

by Ari Weinstein

Dissertation Director: Michael L. Littman

In this dissertation, algorithms that create plans to maximize a numeric reward

over time are discussed. A general formulation of this problem is in terms of

reinforcement learning (RL), which has traditionally been restricted to small

discrete domains. Here, we are concerned instead with domains that violate

this assumption, as we assume domains are both continuous and high dimen-

sional. Problems of swimming, riding a bicycle, and walking are concrete

examples of domains satisfying these assumptions, and simulations of these

problems are tackled here. To perform planning in continuous domains, it has

become common practice to use discrete planners after uniformly discretizing

dimensions of the problem, leading to an exponential growth in problem size

as dimension increases. Furthermore, traditional methods develop a policy for

the entire domain simultaneously, but have at best polynomial planning costs

in the size of the problem, which (as mentioned) grows exponentially with
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respect to dimension when uniform discretization is performed. To sidestep

this problem, I propose a twofold approach of: using algorithms designed to

function natively in continuous domains, and performing planning locally. By

developing planners that function natively in continuous domains, difficult

decisions related to how coarsely to discretize the problem are avoided, which

allows for more flexible and efficient algorithms that more efficiently allocate

and use samples of transitions and rewards. By focusing on local planning

algorithms, it is possible to somewhat sidestep the curse of dimensionality,

as planning costs are dependent on planning horizon as opposed to domain

size. The properties of some local continuous planners are discussed from a

theoretical perspective. Empirically, the superiority of continuous planners is

demonstrated with respect to their discrete counterparts. Both theoretically

and empirically, it is shown that algorithms designed to operate natively in

continuous domains are simpler to use while providing higher quality results,

more efficiently.
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Chapter 1

Introduction

The new ant put down the cadaver vaguely and began dragging the other

two in various directions. It did not seem to know where to put them. Or

rather, it knew that a certain arrangement had to be made, but it could not

figure out how to make it. It was like a man with a tea-cup in one hand

and a sandwich in the other, who wants to light a cigarette with a match.

But, where the man would invent the idea of putting down the cup and

sandwich—before picking up the cigarette and the match—this ant would

have put down the sandwich and picked up the match, then it would have

been down with the match and up with the cigarette, then down with the

cigarette and up with the sandwich, then down with the cup and up with

the cigarette, until finally it had put down the sandwich and picked up the

match. It was inclined to rely on a series of accidents to achieve its object.

- T.H. White, The Once and Future King

While the use of machines to make predictions is now commonplace in many

industries and settings throughout the world, the use of machines to make de-

cisions is less common. Although at first blush there may not seem a great

distinction between the two, but the implications of allowing machines to plan

and make decisions for us are far reaching. For example, consider the task of

designing a fast walking gait for a legged robot (which will later be discussed
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at length). When using machines to make predictions, an engineer would pro-

pose a design (how high to lift the leg, how much to bend the knee, and so on)

and then request the machine produce a prediction of how well that design

functions in a simulation. In turn, the engineer would use this information to

propose a revised gait intended to be more effective than the previous design.

As such, only using machines to make predictions requires one to labor in in-

direct ways to find a solution that produces the desired outcome; to design

an effective walking gait, the engineer must have some level of expertise in

terms of what impact various decisions will have when attempting to further

improve the design. On the other hand, allowing machines to make decisions

for us allows us to specify exactly what we desire (a fast walking gait) instead

of manually providing proposals for, and then checking properties of, designs

of a system that may or may not meet that criteria.

One reason the use of machines for predictions is more common than for

decision making is that decision making is a more difficult problem. Deci-

sion making by its nature requires prediction making, and uses those results

to revise the plan, replacing the repetitive task performed by the human just

described.

The methods of planning considered here are of a class that perform de-

cision making locally, by which it is meant that they only come up for a deci-

sion for a particular query configuration of the domain. The other option is

to perform planning globally, by attempting to find proper choices to make in

all possible configurations at the same time. Although this distinction will be

discussed at greater length later, local decision making is more robust as risks

of divergence, as well as potential inabilities to represent “’good” policies or

plans do not exist, and planning costs can be more easily controlled.
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In this document, a number of different decision making methods will be

explored, making minimal assumptions about characteristics of the environ-

ment they operate within. Assumptions made with regard to the setting are:

1. Domains have (potentially high dimensional) continuous valued states

and actions.

2. Domains exhibit some form of smoothness (in terms of rewards, dynam-

ics, or value).

3. There may be many local optima with regards to solutions and solution

quality, but solutions must be close in value to the globally optimal solu-

tion.

4. Expert knowledge of the domain is minimal, and is restricted to a gen-

erative model (equivalent to a simulator), that can reset to a given query

state.

5. Domains may exhibit stochasticity.

The walking example can be related to these assumptions. One way to

define the state would be in terms of the position and velocity of some fixed

part of the skeleton, with the remainder of the state being composed of angle

and angular velocities of other parts of the body relative to that point. Actions

would consist of torques applied at each joint. Even with a highly simplified

body structure, the number of dimensions in the state and action spaces are

fairly large. Given these state and action spaces, access to a simulator is as-

sumed. This simulator accurately models dynamics of the robot body, which

may include stochasticity resulting from noise in the motors, variations in fric-

tion of the ground surface, and other possible external forces, such as wind
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buffeting. On the other hand, due to the desire for applications with broad

applicability (as we will later want to apply the same algorithm to other do-

mains such as swimming and bicycle riding), we eschew planning methods

that leverage properties isolated to walking from consideration.

The focus on 1 and 2 differentiates the work here from the vast majority of

the RL literature. Continuous domains arise naturally in settings where a phys-

ical process is modelled. Among other simulated physical environments, this

document will explore planning to swim, ride a bicycle, and walk effectively.

By their nature, all of these problems are large both in terms of the number of

degrees of freedom in the domain, as well as the number of controls that must

be manipulated.

In contrast, the most common assumption made by RL algorithms is that

the domain (in terms of the number of discrete states and actions) is of small,

finite size. While these algorithms are appropriate for domains that actually do

have this property, it has become accepted practice to apply these algorithms

to domains that are continuous, by enforcing a coarse discretization of the do-

main a priori and then planning in that discrete space. In high dimensional

domains, this form of planning suffers severely from what is called the “curse

of dimensionality,” meaning that as the number of dimensions in a problem

increases, the complexity of the solution grows exponentially in the number of

dimensions (Bellman, 1957).

The fact that even canonical domains for testing RL algorithms satisfy as-

sumptions 1 and 2 (violating assumptions of classical RL algorithms) can be

taken as evidence that these assumptions, while commonly ignored, are rea-

sonable and important. The most common discrete domains such as grid world



5

(Sutton and Barto, 1998) and race track (Barto et al., 1995) are discrete approxi-

mations of domains that are truly continuous. Furthermore, domains such as

mountain car, acrobot, and inverted pendulum are continuous in terms of states,

actions, and dynamics (Sutton and Barto, 1998). Other domains, such as inven-

tory control (Mannor et al., 2003), are of discrete size, but still have meaningful

similarity metrics over states and actions that should be leveraged by planning

algorithms for optimal efficiency.

An immediate problem is that algorithms using a coarse discretization suf-

fers from poor generalization. That is, it is unable to efficiently apply informa-

tion that has already been acquired to efficiently plan in the domain in ques-

tion. The impact of this poor generalization becomes increasingly problematic

by increasing costs in two main ways. Firstly, as the smoothness of the do-

main decreases, discretized resolution must increase linearly throughout the

entire domain (whereas more sophisticated algorithms may be able to focus

samples only on regions of low smoothness). Secondly, as the size of the do-

main increases, the number of discrete cells explodes exponentially, resulting

in corresponding increases in memory and computational requiements. In the

worst case, continuous methods suffer from these factors in the same manner

as methods that discretize, but in practice, the impact of increasing problem

complexity is less severe.

1.1 Thesis statement

When compared to algorithms that require discretization of continuous state-

action Markov Decision Processes, algorithms designed to function natively

in continuous spaces have: lower sample complexity, higher quality solu-

tions, and are more robust.
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1.2 A Simple Optimization Example

To grant an intuition into the differences between algorithms that function on

discretizations of continuous domains, and algorithms that function natively

in continuous domains, consider a simple optimization problem. While the

exact methods discussed here are not used later in the work, they do reflect

fundamental differences of the approaches.

In particular, consider the task of performing optimization over a function

R(a), a ∈ [0, 5]. The maximum change of the function within any range (es-

sentially a bound on the derivative), is called the Lipschitz constant, K. In our

example, R(a) = Ka, and K = 2. This simple function illustrates the differ-

ence between discrete and continuous methods. The final piece of necessary

information is the the tolerated error, ε, which will be set to 0.5 in this example.

First, let us consider ε-optimal optimization by discretization. With this ap-

proach, cells must be placed such that there is no point that is further than ε/K

units away from the center of any cell (assuming sampling is done from cell

centers). As a result, the first cell should be centered at ε/K, and subsequent

centers should be 2ε/K units apart. Because information is not generalized

outside cells, each cell must be sampled to produce ε-accurate predictions of

the function. Additionally, the method is not adaptive to the data found during

optimization, so, regardless of R, sample placement will always be identical.

In our example, 10 cells are needed.

In contrast to optimization through discretization, another approach can

follow from the branch-and-bound family of algorithms (Land and Doig, 1960).

Samples taken by Lipschitz optimization (sometimes called Shubert’s algo-

rithm) vary depending on information obtained from R (Shubert, 1972). To
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guarantee ε-accuracy with Lipschitz optimization, initial samples should be

taken ε/K units from the minimum and maximum points in the domain. From

there, computation is performed adaptively. If R(4.75) = K(4.75 − 0.25) +

R(0.25), as is the case in our example, then the maxima of the function must

be somewhere between 4.75 and 5.0, and R(4.75) will be ε-optimal, so exe-

cution terminates after only 2 (instead of 10) samples. Furthermore, as ε/K

decreases, the number of cells required for naive discretization increases lin-

early. Lipschitz optimization, however, still completes optimization as long as

R
(
5− ε

K
)
= K(5 − ε/K − ε/K) + R(ε/K) is satisfied. A comparison of the

policy used according to discretization and Lipschitz policies are displayed in

Figures 1.1(b), and 1.1(a), respectively.

In contrast to the linear growth in sample complexity (the number of sam-

ples taken from R) required by discretization with decreasing ε/K, the im-

pact of increasing problem size is much more severe. When performing dis-

crete optimization, increasing the dimension of the domain of R causes super-

exponential growth in sample complexity. Consider the extension of the above

problem to optimization over two dimensions, such that R(a), a ∈ ([0, 5], [0, 5]).

Here, R = K(a0 + a1) (K and ε remain the same). In this setting, although ε/K

remains the same, the density of discretized cells must increase, because it it is

necessary to consider the case where points lie in the corners of a cell, which

are more distant than the sides. The unavoidable explosion in sample com-

plexity makes the method impractical for use in domains with more than a

few dimensions. Whereas in 1 dimension, 10 samples were needed when dis-

cretizing, in 2 dimensions, the sample complexity explodes to 225. A rendering

of this dense sampling is in Figure 1.1(d). This growth continues exponentially

as the number of dimensions in the domain increases.
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Lipschitz optimization, on the other hand, can still guarantee ε-optimal op-

timization with only 2 samples, even in 2 dimensions. Essentially, samples

are taken near the minimal and maximal corners of the domain. As long as the

slope between those two points is equal to K, there can be no other place where

the function is more than ε-larger than the greatest sampled point.
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(a) True function, and points sampled by
Lipshitz optimization in 1D.
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(b) Discretized optimization in 1D.
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Figure 1.1: Comparison of optimization by discretization and Lipschitz bounds
in one and two dimensions.
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Generally, however, R has a more complex landscape, and Lipschitz opti-

mization must sample more than a pair of points. Even in the worst case, how-

ever, Lipschitz optimization has the same sample complexity as uniform dis-

cretization, so there is essentially no reason to prefer naive discretization. This

can be verified by considering the case where there is only one point a∗ ∈ A

such that R(A∗) > ε and ∀a ∈ A− a∗, R(a) < ε. In this case, Lipschitz opti-

mization will be forced to sample as heavily as naive discretization until a∗ is

found, and then must also verify that no other point is greater than R(a∗).

In practice, K is unknown, and therefore an estimate of it becomes a param-

eter the the algorithm that must be specified a priori. (Optimization when K is

unknown is discussed further in Section 6.1.) In the more sophisticated contin-

uous methods discussed here, the algorithm adapts to data, and does not need

K to be specified. In discrete methods, selection of K is critical. The system

designer must avoid both overdiscretizing (improving the resulting policy, but

increasing the computational and data requirements) as well as underdiscretiz-

ing (decreasing computational and data requirements at the cost of solution

quality). These properties make continuous methods both more sample effi-

cient, as well as more robust. The continuous algorithms proposed here do not

require the system designer to attempt this tradeoff, as the approaches either

perform an adaptive discretization over the space as the data dictates, while

still allowing for near optimal solutions.

1.3 Survey of Planning Approaches

Continuous planning methods have been investigated in a number of fields,

each differing based on the assumptions made, with major fields being control
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theory, motion planning, and reinforcement learning (although the reinforce-

ment learning algorithms here are actually underpinned by methods from the

field of operations research). The most relevant assumptions made are in terms

of what domain knowledge exists, characteristics of the dynamics, the exis-

tence of noise, and finally the form of rewards or existence of a terminal goal

state. As stated in Assumption 4, we consider the case where domain knowl-

edge is minimal, and that in the most relaxed case, smoothness only exists in

terms of the value, or quality of actions.

1.3.1 Control Theory

Control theory (Sontag, 1998) makes perhaps the strongest assumptions about

knowledge of the domain and the domain itself. Most commonly, dynamics

and rewards must be known and in a particular form, violating Assumption

4. One example is the linear quadratic regulator (LQR), which is optimal and

can be found in closed form if the domain has linear dynamics with quadratic

rewards. These approaches generally tolerate well-behaved noise. The goal is

to “stabilize” the domain by performing actions to move the state to the region

with the smallest penalty. Model predictive control (MPC) is a field within

control theory that is more general than LQRs, but most MPC algorithms still

make stronger assumptions than we allow here, and are therefore inapplicable

in the setting we consider. In general, significant domain expertise is required

so that problems can be formulated in a manner that is solvable by a particular

algorithm.
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1.3.2 Motion Planning

Motion planning (LaValle, 2006) is concerned with finding a path from a given

start state to a goal state. A common assumption is that inverse dynamics are

known, so that if a sequence of “nearby” states can found from the start to end

states, an appropriate sequence of actions can be discovered to produce that

trajectory. Additionally, domains are assumed to be noiseless, and divergence

from a plan generally is not tolerated, violating Assumption 5. The subfield of

kinodynamic planning introduces constraints on velocities and accelerations

in the system, and is most similar to the setting considered here. On the other

hand, the assumption of known inverse dynamics and determinism is stronger

than the assumptions of this work.

1.3.3 Reinforcement Learning

Reinforcement learning (Kaelbling et al., 1996) problems are the most general

of the three discussed in this section. Unlike control theory and motion plan-

ning, it has traditionally been concerned with discrete domains, which have

arbitrary but non-adversarial noise, rewards, and dynamics. The primary goal

of this work is to develop algorithms that satisfy all assumptions by developing

RL algorithms that function natively in continuous domains, and outperform

algorithms requiring a coarse discretization. While domains with continuous

states have been considered in the literature for some time, only a handful of

algorithms (Sutton et al., 1999, Kappen, 2005, Lazaric et al., 2007, Van Hasselt

and Wiering, 2007, Martı́n H. and De Lope, 2009, Pazis and Lagoudakis, 2009)

function natively with continuous actions, as it introduces a complex optimiza-

tion step to planning. Most commonly RL algorithms for continuous domains
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assume smoothness in transitions and rewards. Here, however, algorithms for

new classes of domains are presented that require only weak smoothness in

terms of the quality of nearby actions, or even no smoothness at all.

1.4 An Overview of Reinforcement Learning

Because it is the only approach that satisfies assumptions made, this work con-

siders problems from the perspective of RL. In particular, the setting focused

on here violates the assumptions made by most algorithms from the fields of

control theory and motion planning. Perhaps the earliest significant success of

such an approach was in the game of Backgammon, where the algorithm TD-

Gammon achieved a level of play competitive with the best human backgam-

mon players of the time, and was so effective that it introduced new techniques

in the top-tier of human play (Tesauro, 1995). Another significant success was

in the game of Go, which is significantly more complex than chess and was

once considered so challenging that computers would never be able to play

competitively (Gelly and Silver, 2008). On the other hand, the general reliance

on coarse discretization has prevented the use of such approaches on large

domains that are naturally continuous. The goal of this work is to introduce

algorithms that allow for highly complex problems to be solved, which we ar-

gue and demonstrate is not possible with classical RL methods based on coarse

discretization.
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Chapter 2

Planning in Discrete Domains

In this chapter, reinforcement learning algorithms that assume discrete do-

mains are discussed. The two most commonly discussed discrete settings dis-

cussed in the RL literature are the k-armed bandit, and the Markov decision

process (MDP). In the k-armed bandit, the agent is repeatedly presented with

a choice between a small set of k arms (actions), each of which has an associ-

ated reward distribution. The goal of the agent is to maximize expected reward

over time through interaction with the domain. Although the problem is quite

simple, advances in this area have lended themselves to the development of

algorithms for a more complex problem, planning in Markov decision pro-

cesses (MDPs). Like bandits, MDPs require action selection, but also involve

transitions between state depending on action selection. This additional factor

requires algorithms to plan explicitly for what may occur in the future.

2.1 Discrete Bandits

As is true with the origin of the study of probability by Pascal and Fermat,

gambling can be a good motivator for important mathematical development.

The k-armed bandit (Robbins, 1952) models the setting of a gambler who must

choose between k slot machines, and must earn as much money as possible (or,

more realistically, to lose it as slowly as possible).
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Formally, the agent is presented with a set of arms A, |A| = k. At each time

step n, the agent is required to select an arm an ∈ A. After selecting arm an, the

agent receives a stochastic reward rn ∼ R(an). The goal is to select arms such

that rn is close to the optimal reward r∗ = arg maxa E[R(a)], although how this

is measured exactly depends on the formalism used.

The two most common formalisms are Probably Approximately Correct

(PAC) (Fedorov, 1972, Valiant, 1984), and regret. PAC is concerned with guar-

antees in the form of: with probability at least 1− δ, the final result will be ε

close to correct. When applied to bandits, this property means that after some

precomputed amount of time N, a PAC algorithm must return an arm â∗, such

that E[R(â∗)] ≥ E[R(a∗)] − ε, and the arm selected must satisfy that bound

with probability 1 − δ. An algorithm is called efficiently PAC if it can do so

in time, samples, and memory polynomial in the size of the domain, 1
ε , and

1
δ . While finding PAC algorithms for many hypothesis classes is interesting,

in bandits PAC solutions are fairly trivial. For example, simply pulling each

arm O(K/ε2log(1/δ)) times and then choosing one with the highest mean is

efficiently PAC (Even-dar et al., 2002).

In bandits, a more frequently considered goal is to find an algorithm that

minimizes cumulative regret, which at time N is defined as ∑N
n=0 (rn − R(a∗)).

If regret is sublinear in N, it means the algorithm converges to the optimal arm.

It has been shown that for most interesting reward distributions R (Gaussian,

Bernoulli, Poisson), regret can be no better than Ω(log(N)) (Lai and Robbins,

1985). Shortly, a simple, but optimal, regret algorithm for bandits will be dis-

cussed. Another possible performance metric is simple regret, which analyzes

the suboptimality of the final decision after planning, as opposed to the sub-

optimality of all decisions made during planning (Bubeck et al., 2011a).
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A central problem in RL is balancing exploration and exploitation. In non-

trivial cases, the agent must learn about the domain through exploration, which

involves decisions that, in hindsight, are poor. Once exploration has been car-

ried out, the agent can exploit learned behavior to optimize its performance.

The fundamental difference between PAC and regret-based algorithms can be

framed in terms of the way they conduct exploration and exploitation.

In PAC algorithms, all exploration is done initially in an exact finite amount

of time, N, and then an arm that is probably near-optimal is selected and ex-

ploited forever. Regret algorithms, on the other hand, interleave exploration

and exploitation continuously. As a result, regret algorithms must continu-

ously sample all arms (although the rate changes over time) to ensure that

sample estimates are not the result of an unlikely set of samples from R. While

regret algorithms sample all arms infinitely often in the limit, the optimal arm

must be sampled at an increasing rate as N increases to guarantee sublinear

regret. This behavior has the benefit of allowing regret-based algorithms to be

“anytime” methods, meaning that execution can be terminated at any time, but

the longer the algorithm runs the better its solution becomes. PAC algorithms,

on the other hand, cannot be interrupted and only produce a result after N

samples have been taken.

2.1.1 Upper Confidence Bounds

The problem of developing an algorithm with optimal regret uniformly over

time (as opposed to asymptotically) in the k-armed bandit setting was solved

with the introduction of the family of upper confidence bound (UCB) algo-

rithms (Auer et al., 2002). We discuss the simplest UCB method, called UCB1,

which has regret Θ(log(N)). Aside from very small factors, UCB1 has regret
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equal to theoretically optimal performance. Other UCB algorithms slightly im-

prove regret at the cost of algorithmic complexity. We present UCB1 for a num-

ber of reasons: it is simple, theoretically nearly optimal, and has come to play

a key roll in the field of Monte-Carlo tree search, which will be discussed later

in this chapter.

UCB1 has a policy defined as taking the action(
argmax

a∈A
R̂(a) +

√
2 ln(n)/na

)
,

where R̂(a) is the sample mean of R(a) and na is the number of times a has been

selected. The two terms in UCB1 explicitly tradeoff between exploration and

exploitation, which is interleaved over time. The R̂(a) term causes exploitation

by giving a higher value to arms with high sample means. The other term,√
2 ln(n)/na, is an upper bound based on the Chernoff-Hoeffding bound. It is

sometimes called the bias term, as it biases exploration to arms that have been

sampled less frequently by inflating the arm’s upper bound. In particular, the

expectation for the number of samples for each arm is E[na] ≤
(
8/∆2

a
)

ln n,

where ∆a = E[R(a∗)− R(a)].

A depiction of the policy produced by UCB1 in a two-armed bandit prob-

lem is shown in Figure 2.1. In this particular domain, both arms have rewards

that are Bernoulli distributions; the arm represented in green (referred to as g)

has a payoff probability of 0.9, while the arm represented in blue (referred to

as b) has a payoff probability of 0.3. The figure is separated into three subfig-

ures, with the top figure showing U(a), the middle figure showing R̂(a), and

the bottom figure showing the actual sequence of action selection, for the first

100 steps of execution.

A few items are worth noting to intuitively understand the functioning of
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Figure 2.1: Values tracked by UCB in a 2-armed bandit.

the algorithm. In almost every time step, g is selected due to the higher esti-

mate of reward. On the other hand, every time g is selected, U(g) decreases

and U(b) increases, due to the way the bounds are computed. Eventually,

U(b) > U(g), resulting in b being selected, and a “resetting” of the upper

bounds. The rate of change of U in this manner slows with time, however,

resulting in less frequent selection of b.

The behavior of UCB1 is discussed at length because the fundamental re-

quirements of trading exploration and expoloitation also applies to other set-

tings, including sequential decision making (discussed later in this chapter)

and continuous bandits (discussed in Chapter 3). Although UCB1 is limited
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to discrete domains, fundamental aspects of UCB1, such as: anytime behav-

ior, continuous exploration that occurs decreasingly often, and maintenance of

mean and bias terms, will be revisited in Chapter 3.

2.2 Discrete Markov Decision Processes

In bandit domains, the agent is required to select from a set of actions, and is

only concerned with finding the arm with highest expected reward. In Markov

decision processes, there is an additional component involved in decision mak-

ing, which is called state. At any point in time, the agent is situated in some

particular state, and must choose between actions that both give a high reward

now, and lead to future states that also produces high reward—exactly how

this problem is defined will be discussed shortly. In this chapter, we consider

discrete MDPs, meaning that the size of the state and action spaces are finite,

and it is assumed there is no meaningful similarity metric over states or ac-

tions.

As an example, consider the task of selecting a route to take from home

to work during rush hour, with the goal of finding the fastest route. In this

domain, the state is the current block the car is travelling on, the reward is

−1 unit for every minute on a block, and actions determine what choice of

direction to take at intersections. The problem involves stochasticity, because

the congestion on each road varies naturally from day to day. Additionally,

entire routes may be closed due to accidents or road construction, and detours

may force the driver onto unexpected paths.

MDPs are a very general formalism for defining a task that requires deci-

sion making (a bandit can be described as an MDP with 1 state). The basic
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requirement of MDPs is that state transitions and rewards satisfy the Markov

property. Informally, this constraint means the state fully describes all features

of the domain necessary for optimal decision making. Aside from navigation,

some other domains that can be modelled as discrete MDPs are board or card

games against a fixed (although potentially stochastic) opponent, or selecting

a set of courses to satisfy degree requirements in university (Guerin and Gold-

smith, 2011).

2.2.1 Model

An MDP M is a 5-tuple 〈S, A, R, T, γ〉 where:

• S is the set of states.

• A is the set of actions.

• R(s, a)→ R is the reward function for taking a ∈ A from s ∈ S.

• T(s′|s, a)→ [0, 1] is the distribution over next states s′ ∈ S when taking a

from s.

• γ is the discount factor, which controls prioritization of immediate versus

future rewards.

Additionally, some algorithms require knowledge of minimum and maximum

reward, Rmin and Rmax, from which bounds on the value funciton can be de-

rived, with Vmin = Rmin/(1− γ) and Vmax = Rmax/(1− γ).

Formally, the Markov property means that for any trajectory through states

∀s1, ..., st ∈ S achieved by applying actions a1, ..., at ∈ A, the probability of any
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transition and reward occurring is conditioned only on the current state and ac-

tion, or T(st, at) = T(s1, ..., st, a1, ..., at) and R(st, at) = R(s1, ..., st, a1, ..., at). Re-

inforcement learning in MDPs is concerned with finding a good policy π(s)→
a for M. Because of the Markov property, the policy only needs to be condi-

tioned on s, and does not require any information as to what occurred earlier

(often called the history). Given M and π, the value function is defined recur-

sively as:

Vπ(s) = R(s, π(s)) + γ ∑
s′

T(s′|s, π(s))Vπ(s′).

Equivalently, Vπ is equal to the expected sum of discounted rewards from s0

under π: E
[
∑∞

h=0 γhR(sh, π(sh))
]
, where h denotes the number of steps in the

future where state sh is encountered during the trajectory through the MDP.

Another value of interest is the action-value function

Qπ(s, a) = R(s, a) + γ ∑
s′

T(s′|s, a)Vπ(s′).

Qπ(s, a) is equivalent to Vπ(s), except a is executed instead of π(s) as the first

decision. After the initial application of a, π is followed for the remainder of

time. An additional relationship is that Vπ(s) = Qπ(s, π(s)). Together, V and

Q are called the Bellman equations (Bellman, 1957).

For every M, there exists some optimal policy π∗ that produces the optimal

action-value function, Q∗, such that ∀π, s, a, Q∗(s, a) ≥ Qπ(s, a). Alternately,

given Q∗, π∗(s) = argmaxa Q∗(s, a).

In this work, most algorithms attempt to optimize the finite-horizon return,

E
[
∑H

h=0 γnR(sh, π(sh))
]
, instead of the infinite-horizon value function. Due

to discounting, however, the differences in value of optimal finite and infinite

horizon policies can be very small, and it is possible to bound the difference

between the two. To develop a finite-horizon value function that is less than
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ε different from the infinite-horizon value, it is sufficient that H = logγ ε(1−
γ)/Rmax (Kearns et al., 1999).

2.2.2 Global Planning

In global planning, the objective is to find a policy that covers the entire state

space of the MDP π : S → A. The easiest setting for planning is when M is al-

ready known. In this case, π∗ can be found by a number of methods (Bellman,

1957). In general, finding optimal policies for both finite and infinite-horizon

problems have polynomial cost in S× A and H. Furthermore, the problem is P-

complete, meaning that an efficient parallel solution of finding global policies

is unlikely (Papadimitriou and Tsitsiklis, 1987, Littman et al., 1995, Boutilier

et al., 1999). One example of an algorithm that has such computational costs

is value iteration (VI), presented in Algorithm 1, which is simply the Bellman

equation turned into an update rule (Bellman, 1957).

Algorithm 1 Value Iteration

1: function VALUE ITERATION(M, ε)
2: ∀s∈S,a∈A Q̂(s, a)← 0
3: repeat
4: e← −∞
5: for s, a ∈ S× A do
6: q← Q̂(s, a)
7: Q̂(s, a)← R(s, a) + γ ∑s′ T(s′|s, a)maxa Q̂(s′, a)
8: e← max{e, |q− Q̂(s, a)|}
9: until e < ε

Although the terminating condition of VI can be defined in a number of

ways, a common method is based on the size of the largest change of any

Q̂(s, a) between the last and current iteration, occurring in the pseudocode on

Line 9. Once this change e drops below a predefined ε, it is possible to bound
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the difference in value between the Q-function produced by VI, Q̂∗ and opti-

mal: ∀s,a|Q̂∗(s, a)−Q∗(s, a)| < 2εγ/(1− γ) (Williams and Baird, 1994). When

using this stopping method, the number of iterations grows polynomially in

1/(1− γ) (Littman et al., 1995). Aside from VI, many other algorithms may

be used for planning. Linear programming, for example, produces an exact

optimal policy, and therefore does not have a cost dependent on ε. In practice,

however, linear programming is more computationally expensive than finding

a near-optimal policy through value iteration, and is therefore rarely used.

If M is completely unknown, reinforcement learning algorithms can be

used. These algorithms operate by processing samples of 〈s, a, r, s′〉 from direct

interaction with the environment, and are divided into model-based, model-

free, and policy search methods (Sutton and Barto, 1998, Kaelbling et al., 1996).

Roughly, model-based algorithms attempt to build an estimate of M, M̂, and

then produce a policy for M̂ (VI can be used for such a purpose) that is then

used to behave in M. Model-free algorithms build an approximation of the op-

timal action-value function Q̂∗ directly without estimating M̂. Finally, policy

search methods directly search over policies, without construction of M̂ or Q̂∗.

Algorithms discussed later in Sections 2.5 and 3.6 perform a particular form of

policy search called open-loop planning, where sequences of actions (to some

horizon H) are searched over to produce a policy each time an action must be

selected.

We consider a case in between 1: requiring full knowledge of M (as is re-

quired by VI), and 2: learning from only direct from interaction with M (as

is assumed in “on-line” or model-based, value-based and policy search ap-

proaches). Here, access to an episodic generative model (EGM), G is assumed,

which is used for planning. Access to G is distinct from knowing M because G
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only allows sampling from R, and T, but does not provide any further descrip-

tion of the functions. This setup allows the agent to plan based on samples

from G, occurring effectively in simulation, as opposed to learning from real

domain samples from M.

An EGM G begins initialized at some start state s0, and maintains a cur-

rent state s throughout use; initially s ← s0. When interacting with an EGM,

trajectories always begin at s0 (either because of its initialization, or because a

reset occurred), and then proceed naturally based on the provided sequence

of actions. These types of trajectories are also referred to as rollouts (Tesauro

and Galperin, 1996), and are performed until the agent terminates interaction

for that period. The agent is allowed three options when interacting with an

EGM. The most important option is making a query based on action a. In this

case, the EGM informs the agent of r = R(s, a), and s′ ∼ T(s, a), and sets

s← s′ in G, effectively adding another step in the trajectory through the EGM.

The second option is to reset s← s0, starting a new trajectory. The final option

is to terminate querying.

The requirement of such a generative model is weaker than a complete de-

scription of the MDP needed by some planning approaches like linear pro-

gramming, but stronger than the assumption used in on-line RL where in-

formation is only obtained by direct interaction with the MDP, as generative

models must return samples for any possible reachable 〈s, a〉 during planning.

In some cases, we will discuss algorithms that assume access to what is

called simply a generative model (GM). The distinction is that with such a

model, the agent can at any time query for any 〈s, a〉. That means a reset to

s0 is unnecessary as querying from that state (and all other states) is always

permitted. As such, a GM is more powerful than an EGM. Additionally, a
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full model (completely describing R and T which we do not assume) is more

powerful than a GM and can be used to simulate one.

Assuming access to a GM is stronger than assuming access to an EGM, as

there are simulators that do not permit queries from arbitrary states, but do

permit queries from a fixed start state. As an example, consider prior research

on planning in the video game Pitfall! (Goschin, Weinstein, Littman, and Chas-

tain, 2012). In that setting, planning is performed by using an emulator, which

functions as G. In this setting, it is impossible to specify arbitrary states from

which to plan, because such an operation would require unreasonable knowl-

edge of the internals of the simulator for that particular game. Therefore, the

only states that can be planned from are those that are reached directly in a

trajectory starting at s0 during rollouts.

Although the assumption of G may sound strong, there are many cases

where it is applicable. Firstly, methods that require generative models can be

used whenever a model of the environment is known a priori, as is the case in

the previous example of Pitfall! Indeed, some of the most notable successes

of local planning have occurred in the context of board games, where it is

assumed both players know the rules before playing. Secondly, it is appli-

cable when G can be built from samples of M (which occurs in model-based

RL)(Weinstein and Littman, 2012), which is the approach taken with the appli-

cation of RL to helicopters (Abbeel et al., 2007). Based on data collected from

an actual helicopter, a model of the dynamics is built that allows for planning.
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2.3 Local Planning in Discrete Markov Decision Processes

A major distinction exists between two approaches to planning, which we refer

to as global and local planning. In global planning such as carried out by VI, the

objective is to find a closed-loop policy that covers the entire state space of the

MDP. Global planners with optimality guarantees have planning costs that are

polynomial in S×A. When this quantity is large (which we assume is the case),

even polynomial costs become prohibitively expensive. In these situations,

which is assumed here, local planning methods are preferable. Whereas global

planners develop a policy π : S → A, local planners develop a policy only for

a neighborhood around s0, called S′, so π : S′ ⊆ S→ A.

By doing so, the cost of local planning becomes exponential in the planning

horizon H, instead of polynomial in the complete state-action space, somewhat

sidestepping the curse of dimensionality in M (Kearns et al., 1999). Although

it is generally undesirable to trade polynomial for exponential costs, there are

two reasons why local planning is advantageous when working in large do-

mains. Firstly, H can be controlled by the practitioner, setting it to a value

that acceptably trades off optimality with a computational and sample budget,

which cannot be done with global planning algorithms in terms of the size of

the state-action space. Furthermore, in practice, local search algorithms are ca-

pable of producing high-quality plans with relatively small amounts of data,

so exponential costs in H are only necessary in the worst-case. Secondly, in

the setting we consider, M is high dimensional (Assumption 1) meaning that

there is already an incurred exponential cost in the dimension of M. These two

factors combined mean that by using local planning, it is possible to trade an

uncontrollable exponential cost with a controllable one.
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To put costs related to M and H in perspective, consider the game of check-

ers. The total number of reachable positions is approximately 1021, which is

exponential in the number of positions on the board, and is roughly the num-

ber of cups of water in the Pacific ocean. Completely solving this domain was

a task that took 18 years, with an enormous amount of human effort to min-

imize computation time (Schaeffer et al., 2005, Schaeffer, 2009). Although the

number of possible positions in checkers is staggering, in comparison to chess,

checkers is very small, as chess is estimated to have approximately 1049 reach-

able states. This number, in turn, is tiny compared to the game of Go, which is

estimated to have 10170 reachable states (Tromp and Farnebäck, 2006).

Clearly, in complex domains such as these, to do anything at all, it is neces-

sary to aggressively restrict the set of states considered while planning, as even

a simple enumeration of all states becomes prohibitively expensive. The issue

of enormous state spaces is actually common (although commonly ignored by

traditional RL methods), as it arises in any domain that has a factored state rep-

resentation over a number of features (Walsh et al., 2010). For these reasons,

local search methods are state of the art for planning in very complex domains.

2.3.1 History of Local Planning

As this work is focused on local planning, it is worthwhile to discuss the his-

tory and major successes of the approach. Due to the ability of local planning

to plan in domains with huge state spaces, some of the greatest successes of the

approach have been in board games, which have this characteristic. Contribu-

tions in this area come from some of the most important computer scientists

and mathematicians of the twentieth century.
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Two Player Domains

John von Neumann is often credited as the founder of game theory. One of

his contributions is perhaps the first local planner, called minimax search. This

algorithm exhaustively searches all possible sequences of actions possible by

all players from a given state in a zero-sum game. Based on this search, the op-

timal action and score are computed. Because of this exhaustive search, plan-

ning costs are always exponential in the search depth, as the entire search tree

is examined without pruning. Although computationally infeasible in games

large enough to be of interest, it has formed the core of some of the most im-

portant local search algorithms.

Claude Shannon later speculated what aspects would be important in a

chess playing program (Shannon, 1950). The work begins “Although perhaps

of no practical importance, the question is of theoretical interest, and it is hoped

that a satisfactory solution of this problem will act as a wedge in attacking other

problems of a similar nature and of greater significance.” Indeed, this work

introduces and discusses many fundamental aspects of local planning, most of

which are motivated by correcting limitations of minimax search. In particular,

it discusses the importance of heuristic evaluation functions, which allow an

approximate value to be assigned to a particular game state, so that exhaustive

search to the end of the game is not required, as each level of search causes costs

to grow exponentially. The importance of pruning is stressed, as it is the only

way to mitigate the costs exponential in the planning horizon (which is the idea

underpinning alpha-beta search, discussed next). Additionally, he discusses

the possibility of using learning methods to adjust evaluation functions and

learn new policies during play (this component is behind the success of TD-

Gammon, discussed later). Finally, he discusses the merit of introducing some
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stochasticity in decision making, which is a theme that is revisited in the recent

success in computer Go algorithms.

As discussed by Shannon, pruning is a necessity when attempting to per-

form search even a small number of steps into the future. This basic idea un-

derpins alpha-beta search, which is arguably the most influential algorithm for

solving zero-sum games. While the history of the alpha-beta search is unclear,

its foundations were laid in the 1950s (Newell and Simon, 1976). Alpha-beta

search performs von Neumann’s minimax search, but maintains bounds on

the value of possible solutions. Because of these bounds, pruning can be con-

ducted, resulting in exponential savings. In best-case settings, this pruning is

optimal, and results in costs O(|A|H/2), as opposed to O(|A|H) (Pearl, 1982).

With the use of heuristic functions, this cost can be reduced even further (at

the risk of sacrificing optimality). Alpha-beta search with heuristics and other

modifications was the key in what is probably the most famous success story of

local search: IBM’s Deep Blue (Hsu, 1999), which defeated the reigning world

chess champion, Gary Kasparov.

At the same time research was being conducted on Chess with Deep Blue,

major advances in playing the stochastic game of backgammon occurred, albeit

with a very different approach. This algorithm, TD-Gammon (Tesauro, 1995)

uses Shannon’s proposal of learning an evaluation functions, as opposed to

using static programmed rules for estimating the quality of different board po-

sitions. TD-Gammon operates by a combination of local search and evaluation

functions, examining all possible actions by the agent, and all possible oppo-

nent responses, and chooses the action that has the highest expected minimax

value according to the evaluation function. The term “rollout” was was popu-

larized in this work, as training and evaluation required rolling dice until the
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end of the game was reached in enormous amounts of self-play. This approach

created an algorithm that was competitive with the best human backgammon

players in the world. Additionally, it developed strategies previously unknown,

which subsequently were adopted by the backgammon community (Tesauro,

1995).

A similar approach was taken with IBM’s Watson, the Jeopardy! game show

agent (Ferrucci et al., 2010). Just as in backgammon, the evaluation function

learned the probability of success from state. The difference being that in Jeop-

ardy! the game state is much more complex and consists (among other things)

of how much each player has won so far, and how far the game has progressed.

Based on these estimates, and confidence in correctly answering the current

question, a wager is decided that is believed to yield the highest probability

of winning. Although only part of an extremely complex system, this betting

strategy was an important piece of what allowed Watson to defeat the strongest

human Jeopardy! players in the world.

Single Player Domains

We will now turn focus to single player stochastic domains. Some of the ear-

liest successes of local search in this setting were achieved by model predic-

tive control (MPC), from the field of control theory, which has been in use in

industry since the late 1970s (Richalet, 1978). As is the case with other local

planners, MPC has been found to be particularly well suited to high dimen-

sional, complex domains. Differential dynamic programming (DDP), a form

of MPC, has recently seen a number of notable successes. When coupled with

system identification, DDP was used to successfully perform difficult acrobatic

helicopter maneuvers continuously and without loss of control, in real-time
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(Abbeel et al., 2007, 2010). Another significant application of DDP has been

to the task of humanoid locomotion (Tassa and Todorov, 2010, Erez, 2011, Erez

et al., 2011), where DDP (along with other methods), was used to control a sim-

ulated humanoid with 22 degrees of freedom, almost at real-time in a number

of challenging tasks (Tassa et al., 2012).

Following MPC by roughly two decades, local search began to be explored

in the RL literature starting in the 1990s. A significant example of progress

made at this point is, real-time dynamic programming (RTDP) (Barto et al.,

1995), and is one of the earliest approaches that planned based on simulated

trajectories (Bertsekas, 2005). RTDP, however, is specially designed for stochas-

tic shortest-path problems, as opposed to MDPs with general reward func-

tions. The method performs local planning, but maintains the results of local

planning for improved performance later in execution. Although not a new

method, a variant of RTDP has recently seen a resurgence in use and can be

considered state of the art (Kolobov et al., 2012).

In a similar manner to the way minimax search uses brute force search

to compute the optimal strategy in two player deterministic domains, sparse

sampling (Kearns et al., 1999) is a local planner that produces provably near-

optimal policies in single player stochastic settings. Like minimax search, the

approach is not practical in most real world settings, as it uses nonadaptive

depth-first search (with some additions to account for stochasticity). This depth-

first search is performed over a tree that is built based on samples from the

generative model consisting of all likely reachable states within the planning

horizon (how to construct and search over such a tree is a theme that is revis-

ited in other local planners). Essentially, from the start state s0, the algorithm

samples each action repeatedly, and records the rewards and corresponding
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resulting states. This process is repeated from all resulting states until a hori-

zon H is reached. After the tree is built exhaustively in this manner, starting

from the leaves, average returns for each action, from each state and depth,

are computed, and the best estimated return over all actions is returned up the

tree. At the end of planning, these values are passed to the root at s0, and the

action is selected that is estimated to produce the largest return.

The significance of the method is that it was the first to produce finite-time

guarantees of performance independent of the size of the state space (although

the costs are exponential in the horizon). In most interesting problems, how-

ever, this exponential cost is prohibitive for even small values of H, leading to

poor myopic behavior. This behavior is due to what is essentially a brute force

approach, as there is no pruning of the search tree. Although some mention

of how to do so does exist in the original publication, it is not a matter that is

considered thoroughly, and was left to future work.

Indeed, in the same manner that the practical limitations of minimax search

lead to useful optimized algorithms based on the same concept, the funda-

mental ideas that make up sparse sampling served as the nucleus of later local

planners. The class of local planners discussed at length next are motivated by

keeping the strengths of sparse sampling (planning costs independent of |S|),
while improving performance in real world settings.

2.4 Rollout Algorithms

Due to unpruned breadth-first search, sparse sampling has costs that make

the algorithm impractical. The approach taken by rollout methods is likewise

analogous to a depth-first search according to a policy dictated by the agent’s
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history. As compared to sparse sampling, rollout planners tend to conduct a

less thorough exploration of the search tree, while planing to longer horizons.

Rollout planners therefore outperform sparse sampling when it is not critical

to consider all possible outcomes, and important to observe events that may

occur far in the future. One advantage of rollout algorithms is their generality;

they only assume episodic generative models, as opposed to the full genera-

tive models required by other local planners. Rollout algorithms are state of

the art in many of the largest and most challenging domains. Their success

in the game of Go will be discussed in the next section, and they have also

seen success in planning in the extremely complex computer strategy game

Civilization (Branavan et al., 2012), which only provides an EGM.

With some exceptions, rollout planners follow the same structure, which

is described in Algorithm 7. As outlined, the primary iterative loop occurs in

the main function PLAN (Line 1), which calls SEARCH during each iteration. In

turn, the majority of the work occurs inside SEARCH (Line 6). The first step in

SEARCH is determining whether the search horizon has been reached, and if so,

the rollout is terminated. In this case, EVALUATE is called to return an estimate

of the value of the current state. Bounds on correctness in local planners gen-

erally assume all states evaluate to 0, which is the approach taken in this work;

proofs still go through with minor modifications as long as EVALUATE returns

any value that is boundably incorrect. The most important component of a

rollout planner occurs on Line 9, which is the call to SELECTACTION. Based

on the current state and depth in the rollout, in SELECTACTION, the planner

chooses the next action to execute, which dictates the policy executed during

planning. This process repeats as the rollout is recursively executed, so that a
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return is produced (Line 12). After the return of the rollout is acquired, the re-

cursion returns and the relevant data is recorded so the policy can be updated

during the next rollout (Line 13). Finally, once PLAN terminates planning, the

planner returns its estimated best action (Line 5). Whereas in Sections 2.1 and

3.1, N refers to the number of pulls from individual arms, in the sections on

rollout planners, N refers to the number of complete rollouts conducted.

Algorithm 2 Generic Rollout Planning

1: function PLAN(G, s0, H)
2: repeat
3: SEARCH(G, s0, H)
4: until Terminating Condition
5: return GREEDY(s0)
6: function SEARCH(G, s, h)
7: if h = 0 then
8: return EVALUATE(s)
9: a← SELECTACTION(s, h)

10: s′ ← GT(s, a)
11: r ← GR(s, a)
12: q̂← r + Gγ SEARCH(G, s′, h− 1)
13: UPDATE(s, h, a, q̂)
14: return q̂

2.4.1 Upper Confidence Bounds Applied to Trees

The motivation behind upper confidence bounds applied to trees (UCT) (Koc-

sis and Szepesvári, 2006) is to plan in a manner similar to sparse sampling

while pruning the search tree heavily. Arguably the most empirically effective

rollout algorithm, it casts rollout planning as a sequential bandit problem, bas-

ing its policy off that of UCB1 (Section 2.1.1), with the reward from the bandit

setting being replaced with the return of the rollout. Originally designed for

single player domains, it was later extended to operate in game trees, and a
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variant of the algorithm is currently the state of the art approach in computer

Go, having achieved master level play in the smaller, but still enormous, 9× 9

variant (Gelly and Silver, 2008). Likewise, in recent general planning compe-

titions, algorithms based on UCT have been dominant. The impact of the ap-

proach has been so strong that in the 2011 International Probabilistic Planning

Competition, all algorithms aside from one were variants of UCT, including

the top performer (Kolobov et al., 2012, Coles et al., 2012). The method is pre-

sented concretely in Algorithm 3.

Algorithm 3 Upper Confidence Bounds Applied to Trees

1: function GREEDY(s)
2: return argmaxa Q̂(s, H, a)
3: function SELECTACTION(s, h)
4: return argmaxa

(
Q̂(s, h, a) +

√
ln n(s,h)
n(s,h,a)

)
5: function UPDATE(s, h, a, q̂)
6: n(s, h)← n(s, h) + 1
7: n(s, h, a)← n(s, h, a) + 1

8: Q̂(s, a, h)← Q̂(s, h, a) + q̂−Q̂(s,h,a)
n(s,h,a)

Because of its algorithmic underpinnings in UCB1, UCT is an anytime algo-

rithm, and is designed to have performance that improves continuously over

time. This property is in contrast with the behavior of sparse sampling and

other PAC planning algorithms, which compute the number of samples nec-

essary to satisfy conditions provided, but cannot terminate until all computed

requirements have been satisfied, and also may be incapable of improving per-

formance after this point is reached.

Extensive pruning performed by UCT is one of the reasons it been practi-

cally successful. While this pruning tends to be effective in practice, theoretical

results show that UCT can take a super-exponential number of samples (in H)

to find an optimal solution due to premature pruning, as it may only explore
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optimal regions of search space after super-exponential time. Case studies on

fairly simple MDPs, that have the property of having the optimal solution em-

bedded in a region that is otherwise poor in value illustrate concretely when

UCT fails in this manner (Coquelin and Munos, 2007, Walsh et al., 2010). These

situations are not simply some pathological worst-case construct, as some nat-

ural domains with these characteristics have been identified concretely. The

failure of UCT to perform well in chess (where alpha-beta variants are still

state of the art) is attributed to the existence of such “search traps” in that

game (Ramanujan and Selman, 2011). It is worth mentioning that these super-

exponential costs are worse than what would occur in sparse sampling or even

naive uniform search (effectively the search performed by sparse sampling).

Another issue from a theoretical perspective is that general analysis of the

algorithm is very difficult, as estimates of action quality in UCT are nonstation-

ary. This property arises from the use of a bandit algorithm to perform sequen-

tial planning, as bounds for each 〈s, a, h〉 do not account for policy changes that

occur outside that node as rollouts occur. While the bounds used in UCB1 are

correct in the pure bandit setting, the way upper bounds and policies are com-

puted means the bounds no longer hold. In terms of general analysis, there

are claims made in the orignial publication (Kocsis and Szepesvári, 2006), but

in light of the aforementioned case studies, the only real conclusion that can

be drawn with confidence is that the algorithm converges to optimal behavior

in the limit, as general performance guarantees do not exist and case studies

demonstrate doubly-exponential time in H for convergence to optimal results

in the worst case.
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2.4.2 Forward Search Sparse Sampling

In response to the limitations of sparse sampling and UCT, forward-search

sparse sampling algorithm (FSSS) (Walsh et al., 2010) was proposed. Unlike

sparse sampling, FSSS performs best-first, as opposed to breadth-first, search.

This modification allows for exponential savings in computation when prun-

ing is performed. Planning is executed in this manner until a PAC solution

is obtained. Unlike UCT, the bounds maintained by FSSS are ε-accurate with

probability 1− δ, so it will not prune optimal subtrees. Also, unlike UCT, it is

guaranteed to visit each leaf at most once, so it can take at most an exponential

number of samples in H to produce optimal policies. A generalization of FSSS

has also been produced that extends the algorithm to two zero sum games,

and is guaranteed to explore a subtree of the game tree as compared to what

alpha-beta expands (Weinstein et al., 2012).

The version of FSSS presented in Algorithm 4 is modified from the original

presentation, and this updated algorithm will be referred to as FSSS-EGM, as

it has been updated to function with episodic generative models. In a slight

modification of the standard rollout structure (Algorithm 7), the update func-

tion on Line 4 takes an additional argument r = R(s, a), and s′ ∼ T(s, a).

A number of variables must be described. L and U hold the lower and

upper bounds on Q(s, h, a), respectively. Initially, values in L are Vmin and U

are Vmax. Rollouts begin from the root and proceed until a leaf is reached. As

originally presented, these rollouts are conducted until L and U meet at the

root, but in practice rollouts are performed until a budget of samples or time is

reached and then the best action according to L is taken.

From a theoretical perspective, C should be computed as a function of ε

and δ, but in practice this is simply treated as a parameter set to some small
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Algorithm 4 Forward-Search Sparse Sampling for Episodic Generative Models

1: function GREEDY(s)
2: return argmaxa L(s, H, a)
3: function SELECTACTION(s, h)
4: return argmaxa U(s, h, a)
5: function UPDATE(s, h, a, r, s′, q̂)
6: T̂(s, a) ∪ s′

7: U(s, h, a)← r + γ BOUND(s, h, a, U, Vmax)
8: U(s, h)← argmaxa U(s, h, a)
9: L(s, h, a)← r + γ BOUND(s, h, a, L, Vmin)

10: L(s, h)← argmaxa Q(s, h, a)
11: function BOUND(s, h, a, B, V)
12: µ1 ← Es′∈T̂(s,a) [B(s

′, h− 1)]
13: if |T̂(s, a)| ≥ C then
14: return µ1
15: else
16: µ2 ← V
17: return

(
|T̂(s, a)|µ1 + (C− |T̂(s, a)|)µ2

)
/C

constant value to speed planning. After each rollout, information from the

expanded leaf is propagated up in the following manner: when a leaf is ex-

panded, its upper and lower bounds are set to its reward. From there, L(s, a, h)

and U(s, a, h) are updated based on the weighted averages of corresponding

estimates over all observed children. Then, L(s, h) and U(s, h) are set to the

maximal corresponding values over all actions for that 〈s, h〉. This process con-

tinues up the tree until the bounds at the root have been updated, at which

point a new rollout begins.

In the original formulation, FSSS takes C samples from ∀a ∈ A, T(s#, a)

at any point that a new state s# is encountered, making it unusable with an

EGM. FSSS-EGM computes bounds in a manner such that this resampling is

unnecessary, allowing it to be used in an EGM. Another difference is that in

FSSS-EGM T̂ is a multiset as opposed to the standard set of next states used
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in FSSS. The distinction is important, because a multiset allows for value esti-

mations to be preformed based on weighted averages (Line 12), which cannot

be done in FSSS. Additionally, the version presented here is potentially much

more sample efficient due to the fact that estimates of T (unlike that of U, and

L) are independent of search depth, and can therefore be done globally (Line 6),

and may not have to be taken C times due to the modifications to make the al-

gorithm compatible with an EGM.

2.4.3 Limitations of Closed-Loop Planning

Although closed-loop local planning methods produce state of the art results

in a number of challenging domains, there are a number of limitations of the

approach that are worth discussing. Closed-loop methods build statistics (and

commonly data structures) based around samples of 〈s, h, a, q̂〉, which can incur

large costs, especially if new states are encountered frequently. Although in

some cases (especially small deterministic domains), 〈s, h〉 are revisited often

enough such that such effort can be put to good use, in stochastic domains with

large state spaces, states may be revisited infrequently given a limited number

of trajectories, meaning that statistics maintained do not help decision making.

Essentially, almost all closed-loop planners must revisit an 〈s, h〉 > |A|
times in order for such effort to actually be useful, as prior to that point al-

gorithms perform action selection by chance (with even more revisiting neces-

sary in the case of stochastic domains). As an illustration, Figure 2.3(a) demon-

strates how increasing problem size leads to increasing rates of chance action

selection as a function of problem size and search depth. In the figure, the

x-axis represents the search depth in a rollout, and the y-axis represents the ob-

served probability of action selection by chance, because a visit to a particular
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〈s, h〉 encountered in the rollout occurred less than |A| times. Curves are ren-

dered in blue, green, and red, corresponding to increasing problem complexity

by controlling 1, 2, or 3 instances of a domain simultaneously (for a complete

description see Section 4.3.2). Particulars of the domains and algorithm for the

purposes of illustration are not important, as the property being displayed oc-

curs with essentially all discrete closed-loop planners as problem size increases

while the number of available trajectories are held constant.

A consequence of this phenomenon is that producing a good policy be-

comes very difficult. Firstly, estimating Q̂(s, h, a) comes to require many sam-

ples, as rollouts devolve into random walks in the domain, producing returns

of high variance. In such a situation, it becomes very difficult to select a good

action, as a difficult signal-to-noise problem arises. In the experimental set-

ting used to create the illustration, random action selections are responsible

for approximately 95% of the return meaning that the initial action (which is

what the planner ultimately cares about) only has a weak influence on returns.

Secondly, Q̂(s, h, a) only comes to estimate the action value according to a ran-

dom policy, which can be very different from Q?(s, h, a), leading to suboptimal

policies being developed.

2.5 Open-Loop Planning

While closed-loop planners perform action selection conditioned on 〈s, h〉, open-

loop planners only do so based on h, planning over sequences of actions ir-

respective of state. Therefore, instead of mapping states to actions with π :

S → A, open-loop planners map a step in a rollout to an action, with π :

h ∈ Z+ < H → A. Although this method is a form of policy search, it is
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Figure 2.2: Rate of chance action selection by closed-loop planners in increas-
ingly complex domains.
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different from the most common approach of searching for a global represen-

tation of the policy that is incrementally improved at the end of each episode
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(Williams, 1992), as here we discuss local planning that is conducted entirely

anew at each time step. An advantage of open-loop methods is that ignor-

ing state reduces the size of the hypothesis space, naturally making planning

costs independent of S. This change helps resolve the problem of chance action

selection (just described) that occurs with closed-loop planners when operat-

ing in large domains. Additionally, because open-loop planners form simpler

plans, they are applicable in more settings. As long as a reset to s0 is possi-

ble, open-loop planners operate identically in discrete, hybrid, and continuous

domains (discussed in Chapter 3), as well as in partially observable Markov

decision processes (Littman, 2009); for a concrete example see Section 5.4.

As a more powerful decision making paradigm, however, closed-loop plan-

ners are capable of planning effectively in some stochastic domains where

open-loop methods are incapable of producing the optimal policy. As an ex-

ample, consider the MDP in Figure 2.3. In this MDP, there are four different

open-loop plans. The solid-solid and solid-dashed sequences have an expected

reward of 1, whereas both sequences beginning with the dashed transition

produce 0 on average. Thus, the best open-loop plan is solid-solid. A better

closed-loop policy exists, however. By first selecting dashed, the agent can ob-

serve whether it is in state s2 or s3 and choose its next action accordingly to get

a reward of 2, regardless.

In spite of this performance gap, open-loop planners considered in this

work have two properties that mitigate this issue. First, these planners attempt

to maximize the expected reward of a given action sequence, so this estimate re-

flects the fact that a particular sequence of actions can lead to a distribution

over returns due to differences in trajectories that arise from the same action

sequence. Therefore stochasticity is accounted for. The second property is that
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Figure 2.3: An MDP with structure that causes suboptimal behavior when
open-loop planning is used.

although planning open-loop, the policy these planners execute is closed-loop;

replanning occurs at every step in time from the current state. Therefore, the

expected return obtained by these planners as a result of execution in the true

domain is guaranteed to be no worse (and can be considerably higher) than

the return predicted originally during planning at each step.

These properties of open-loop planners put them in a middle ground be-

tween algorithms like global closed-loop planners such as linear programming

and FF-Replan (Yoon et al., 2007), which take opposite positions in the way
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stochasticity is handled during planning. Linear programming finds an opti-

mal solution for an MDP by computing a policy for each state while fully con-

sidering stochasticity, but does so in time polynomial in the size of the MDP.

When the MDP is large, however, this method becomes prohibitively expen-

sive, making other planning methods necessary. FF-Replan is a planning algo-

rithm for finite MDPs that removes all stochasticity from an MDP by planning

in a modified MDP where all transitions are deterministically set to be the most

likely next state. The policy computed by FF-Replan in this modified MDP is

followed until the agent encounters a transition that was unexpected, and then

planning is started again. Although this method will fail in MDPs with par-

ticular structures, it has shown a considerable amount of empirical success,

winning a number of planning competitions due to its reduced computation

costs (Younes et al., 2005). These results support the claim that only partially

reasoning about stochasticity in the manner done by open-loop planners is still

capable of producing high-quality results in practice.

2.5.1 Open-Loop Optimistic Planning

The open-loop optimistic planning algorithm (OLOP) (Bubeck and Munos,

2010) constructs a policy by considering sequences of rewards that emerge

from action sequences, without considering states encountered during the tra-

jectory. While it is a regret based algorithm, it is different from standard regret

based algorithms (such as UCB1) because it optimizes for what is called sim-

ple regret, which are bounds on error of a recommended action after training,

as opposed to standard regret, which bounds the suboptimality of all actions



44

selected during training. As a result, while standard regret algorithms are any-

time approaches, simple regret algorithms are not. As such, simple regret al-

gorithms have much in common with PAC methods. The distinction between

simple regret and PAC is that whereas PAC algorithms compute a required

number of samples N as a function of δ and ε, simple regret algorithms are

given a budget of samples N and give an expectation on the quality of the

reward, which is essentially the opposite operation.

The main idea behind the functioning of OLOP is that the differences in

returns of two action sequences can be bounded by the first point along those

two action sequences where they diverge, which is possible because of γ and

Rmax−Rmin. For example, if two action sequences of length H only differ in the

final action, the difference in their expected returns can be at most γH(Rmax −
Rmin). On the other hand, if the action sequences have different initial actions,

the differences in those sequences can be close to (Rmax − Rmin)/(1 − γ), or

Vmax −Vmin.

Somewhat similar to UCB1, OLOP produces policies based on upper bounds,

except in OLOP the bound is on the return of an action sequence a ∈ A, as op-

posed to the reward of a bandit arm a ∈ A. For any action sequence a of length

1 ≤ h ≤ H, the algorithm computes the number of times a has been executed

na, the average observed return of that sequence of actions µ̂a, as well as an

upper bound on that sequence Ua. Formally,

na ←
N

∑
n=1

1{an
1:h = a}

Q̂a ←
1
na

N

∑
n=1

1{an
1:h = a}Rn

h

Ua ←
h

∑
h′=1

(
γh′Q̂a1:h′γ

h′
√

2 log N
na1:h′

)
+

γh′+1

1− γ
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where Rn
h is the reward received on rollout n at depth h, and an

1:h refers to the

first h actions on the nth trajectory sampled. Finally, based on these values, the

B value of each action sequence a of length H is defined as the smallest upper

bound of all subsequences of a, starting at its first element

Ba = min
1≤h≤H

Ua1:h

At each time step, OLOP selects an action sequence a ∈ AH that has the

highest Ba value, with ties broken arbitrarily. As the minimal value of varying

upper bounds, the Ba value encodes a tighter upper bound on the value of

action sequences than U. At the end of execution, the algorithm returns the

most used first action: argmaxa∈A na.

We present the algorithm in this form, as opposed to a manner conforming

to Algorithm 7, as this algorithm in particular is much simpler to understand

when presented in this way. As presented, the algorithm simply specifies what

the behavior must satisfy, as opposed to how to construct an algorithm that

satisfies this behavior, which can be done with a tree structure that encodes

different seqeuences of actions, while recording relevant sample counts, mean

estimates, upper bounds, and B values.

Finding a concrete open-loop planning algorithm with optimal simple re-

gret in all cases is still an open problem, although it is known the best achiev-

able simple regret is (Bubeck and Munos, 2010):


Ω

((
log n

n

) log1/γ
log|A|

)
if γ
√
|A| > 1

Ω
(√

log n
n

)
if γ
√
|A| ≤ 1

OLOP, on the other hand, achieves a simple regret of
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Õ
(

n
− log 1/γ

log κ′
)

if γ
√

κ′ > 1

Õ
(
n−1/2) if γ

√
κ′ ≤ 1

Where κ′ is related to the proportion of near optimal paths. This regret, while

quite good, is not tight with the lower bound, and depending on properties of

the domain may be better or worse than a related algorithm UCB-Air (Wang

et al., 2008). A distinction between the two algorithms, however, is that UCB-

Air is less general as it requires knowledge of κ′, while OLOP does not.

2.6 Discussion

This chapter has dealt with planning in discrete domains. The traditional

method of developing global policies for discrete domains has costs polyno-

mial in the size of the state-action space. In some domains, however, even

polynomial costs (which are generally considered to be efficient) may be pro-

hibitively expensive. Take for example, the complete solution of the game of

checkers, which took almost two decades to complete. (Furthermore, as a de-

terministic domain checkers only requires a linear as opposed to polynomial-

time solution.) In some domains considered in this work, even a very coarse

discretization can result in domains which have size comparable to checkers,

but may contain stochasticity. Because solutions on the order of seconds or

minutes as opposed to years is desired, local planning methods must be used,

which have planning costs that depend on the H and |A|, but not S. While hav-

ing much smaller planning time than global planners, closed-loop local plan-

ners in large domains may still require many trajectories to get sufficient cov-

erage of the local area of the MDP. When the budget of trajectories is severely
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limited relative to the size of the domain, open-loop methods can make more

effective use of available data. In the following chapter, analogous planning

methods for continuous spaces will be discussed, followed by a comparison of

discrete and continuous planning algorithms.
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Chapter 3

Planning in Continuous Domains

In this chapter, we consider planning algorithms that function natively in con-

tinuous domains. Continuous-valued states and actions arise naturally in many

domains, especially in those that involve interactions with a physical system.

Although there is work in the RL literature that considers continuous spaces,

the focus has been on domains with continuous state but discrete action spaces

(Lagoudakis and Parr, 2003, Ernst et al., 2005, Rexakis and Lagoudakis, 2008).

Algorithms that function in continuous action spaces have been examined less

thoroughly, primarily because working in working in continuous action spaces

is significantly more difficult. In both cases, algorithms must generalize infor-

mation from one point in the space elsewhere, but planning in continuous ac-

tion spaces also requires optimization over the action space to plan effectively.

As a result, the planning methods described here are based heavily on algo-

rithms from the field of nonconvex continuous optimization.

While the main focus of this chapter is on domains with real-valued states

and actions, most algorithms presented here are not strictly limited to that set-

ting, and may also be used in discrete domains where a meaningful distance

metric exists. One example is the inventory control problem (Mannor et al.,

2003), which has integer-valued states (corresponding to the number of an item

in stock). In such a domain, for example, there is essentially no distinction in



49

between having 99 units of an item as opposed to 100 units. While classical dis-

crete planners would treat both states as completely distinct, continuous state

planners are able to generalize intelligently, saving both samples and compu-

tation.

The few algorithms designed for use in continuous action spaces can be di-

vided between those that attempt to build a value function based on a function

approximator (Lazaric et al., 2007, Van Hasselt and Wiering, 2007, Martı́n H.

and De Lope, 2009), and those that search the policy space directly (Sutton

et al., 1999, Kappen, 2005). Unfortunately, the literature devoted to value-

function approximation, discussed at length in Section 3.3.1, has many neg-

ative results showing divergence, documented from both empirical and theo-

retical standpoints. Classical policy search methods, discussed in Section 3.3.2,

likewise have their own set of limitations. While “safer” than value-function

approximation, such methods generally require significant domain expertise

to produce high-quality results. The methods espoused here perform policy

search, but do so in a manner different from classical methods, and are unique

in that they safely yield high quality results without the need for domain ex-

pertise or the risk of divergence. When dealing with continuous spaces, we

will abuse the notation |S| and |A| to refer to the dimensionality of the state

and action spaces, respectively.

3.1 Continuous Bandits

The continuous bandit problem is an adaptation of the K-armed bandit to the

setting where arms exist in a continuous space (Agrawal, 1995, Moore and

Schneider, 1995). Although algorithms designed to operate in this setting make
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differing assumptions, almost all assume some form of smoothness with re-

spect to the reward. A rare exception to this rule is discussed in Section 5.4.

Most commonly, the constraint is related to Lipschitz continuity and is some-

thing of the form K|R(a1)− R(a2)| < D(a1, a2), for some constant K and dis-

tance metric D.

As discussed in Chapter 1, a common method of planning in continuous

spaces is to discretize the space and then use an algorithm intended for dis-

crete spaces on the resulting problem. To demonstrate why this paradigm is

misguided, consider the regret this approach produces when applying a dis-

crete bandit algorithm to a continuous bandit problem. In this case, there is

some truly optimal arm a∗ ∈ A, and then there is some optimal arm among the

discretization A′, with E[R(a∗)]−maxa′∈A′ E[R(a′)] = ε1 > 0. In this setting,

the best possible regret the discrete bandit algorithm could produce over N tri-

als by always pulling argmaxA′ would result in regret of Nε1, which is O(N).

In contrast, consider the regret that would be produced by the poorest arm,

E[R(a∗)]−mina′∈A′ E[R(a′)] = ε2 ≥ ε1. In this case, the regret is Nε2 which

is also O(N). Therefore, from the perspective of regret, acting optimally ac-

cording to a discretization is indistinguishable asymptotically from the worst

behavior possible. As is the case in discrete bandit problems, the goal is to

develop algorithms that have regret sublinear in N, which is impossible when

interacting according to a discretization.

3.1.1 Hierarchical Optimistic Optimization

The Hierarchical Optimistic Optimization or HOO strategy is a bandit algo-

rithm that assumes the set of arms forms a general topological space with an

expected reward that is locally Holder, meaning |R(a1)− R(a2)| < KD(a1, a2)
α
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(Bubeck et al., 2008). An important property of HOO is that it is one of the few

available algorithms designed to perform global optimization in noisy settings,

a property we build on to perform sequential planning in stochastic MDPs.

HOO operates by developing a piecewise decomposition of the action space,

which is represented as a tree (Figure 3.1). The decomposition is essentially

equivalent to a k-d tree (Bentley, 1975) although the purposes of the decompo-

sition are different. When queried for an action to take, the algorithm starts

at the root and continues to a leaf by taking a path according to the maximal

score between the two children at each step, called the B-value (to be discussed

shortly). At a leaf node, an action is sampled from any part of action space that

the node represents. The node is then bisected at any location, creating two

children. The process is repeated each time HOO is queried for an action se-

lection. A depiction of the tree constructed by HOO in response to a simple

continuous bandit problem is rendered in Figure 3.1.

A description of HOO is shown in Algorithm 5, with some functions de-

fined below. A node ν is defined as having a number of related pieces of data,

with the root of the tree decomposing the action space denoted by ν0. Un-

less ν is a leaf, it has two children C(ν) = {C1(ν), C2(ν)}. All nodes cover

a region of the arm space A(ν), with A(ν0) = A. For any non-leaf node ν,

A(ν) = A(C1(ν)) + A(C2(ν)), and A(C1(ν)) ∩ A(C2(ν)) = ∅. The total num-

ber of times a path from root to leaf passes through ν during action selection is

n(ν), and the average reward obtained as a result of those paths is R̂(ν). The

upper bound on the reward is U(ν) = R̂(ν) +
√

2 ln n
n(ν) + v1ρh for v1 > 0 and

0 < ρ < 1, where v1 and ρ are parameters to the algorithm. If the dissimilarity

metric between arms a1 and a2 of dimension |A| is defined as ||a1 − a2||α, set-

ting v1 = (
√
|A|/2)α, ρ = 2−α/|A| will yield minimum possible regret. Finally,
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Figure 3.1: Illustration of the the tree built by HOO (red) in response to a par-
ticular continuous bandit (mean in blue). Thickness of edges indicates the es-
timated mean reward for the region each node covers. Note that samples are
most dense (indicated by a deeper tree) near the maximum.

n, R̂, and U are combined to compute the B-value, defined as

B(ν) = min {U(ν), max {B(C1(ν)), B(C2(ν))}},

which is a tighter estimate of the upper bound than U because it is the minimal

value of the upper bound on the node itself, and the maximal B-values of its

children. Taking the minimum of these two upper bounds produces a tighter

bound that is still correct but less overoptimistic. Nodes with n(ν) = 0 must

be leaves and have U(ν) = B(ν) = ∞.

Given the assumption that the domain is locally Holder around the maxi-

mum, HOO has regret O(
√

N), which is independent of the dimension of the
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Algorithm 5 Hierarchical Optimistic Optimization

1: function PULL()
2: loop
3: UPDATE(ν0)
4: a←NEXTACTION()
5: r ∼ R(a)
6: INSERT(a, r)
7: function UPDATE(ν)
8: U(ν)← R̂(ν) +

√
2 ln n(ν0)

n(ν) + v1ρh

9: B1 ← UPDATE(C1(ν))
10: B2 ← UPDATE(C2(ν))
11: B(ν)← min {U(ν), max {B1, B2}}
12: return B(ν)
13: function NEXTACTION()
14: ν← ν0
15: while ν is not a leaf do
16: ν← argmaxc∈C(ν) B(c)

17: return a ∈ A(ν)

18: function INSERT(a, r)
19: ν← ν0
20: while ν is not a leaf do
21: Update R̂(ν), n(ν)
22: ν← c ∈ C(ν) such that a ∈ A(c)
23: Update R(ν), n(ν)
24: Create children C(ν) = {C1(ν), C2(ν)}

arms and is tight with the lower bound of regret possible. Therefore, based on

that performance metric there is no reason to consider any other optimization

algorithm as long as assumptions are maintained.

One of the major limitations of the original presentation of the algorithm is

that it has planning costs that are O(N2), as the entire tree must be reevaluated

at each point in time to recompute the B-values. Later work presents a number

of extensions to the algorithm, one of which reduces the amortized computa-

tional complexity to O(N log N) with only minor changes (Bubeck et al., 2010).
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3.1.2 Alternate Continuous Bandit Algorithms

Aside from HOO, there are numerous other continuous bandit algorithms. Per-

haps most similar to HOO is the work (Kleinberg, 2004) that performs compu-

tation based on what is called the zooming dimension. This method, however,

is more complex than HOO and also has poorer theoretical regret.

The Gaussian Process-UCB algorithm (Srinivas et al., 2010) leverages the

variance in the Gaussian process function approximator to decide what arm

to sample. The goal is to sample from the point where the upper bound on

reward is greatest as estimated by the Gaussian process as that point is where

the highest reward may lie. The main drawback of this approach is that the

algorithm is unable to calculate where these points of interest may be, and

another optimization algorithm must be used to find the potentially optimal

points, trading one optimization problem for another.

While given different names, regret minimization on continuous bandits

and continuous optimization (of stochastic functions) are the same problem

cast differently, and perhaps with different metrics. Although we will not dis-

cuss such algorithms in detail in this chapter, the field of non-convex optimiza-

tion is concerned with the essentially the same problem. The main difference,

however, is that many algorithms such as cross-entropy optimization, genetic

algorithms, and others have very poor or no theoretical guarantees, whereas

the bandit literature is primarily interested with providing guarantees on re-

gret bounds. In this chapter, we will build new algorithms from HOO because

of its simplicity and near-optimal regret, which can also be used to produce

regret bounds for planning algorithms.
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3.1.3 Continuous Associative Bandits

In the associative bandit setting (Kaelbling, 1994), state is added to the bandit

problem. That is, instead of R(a) defining the reward distribution, R(s, a) does.

As with continuous bandits, the common assumption made when working

with continuous associative bandits is smoothness of the reward function R,

although here smoothness is assumed not only over A, but also S. At each

point in time, the algorithm is informed of a state s (the selection of which is

outside of the control of the bandit algorithm).

Weighted Upper Confidence Bounds

The simplest associative bandit algorithm we will discuss is designed for dis-

crete action, continuous state domains. Because UCB1 (not designed for asso-

ciative bandits) only uses sample counts and averages to operate, it is possi-

ble to adapt the algorithm by using weighted counts and averages, based on a

provided distance metric D(s1, s2), s1s2 ∈ S. The extension requires samples

to record the state of each sample, sn. Whereas the original rule for UCB1 is

argmaxa∈A

(
R̂(a) +

√
2 ln(n)/na

)
, the weighted UCB algorithm (WUCB) is:

R̂(s, a) = ∑n 1an=arnD(s, sn)

∑n 1an=aD(s, sn)

U(s, a) =

√
log (∑n 1an=aD(s, sn))

∑n 1an=aD(s, sn)

π(s) = argmax
a∈A

(
R̂(s, a) + U(s, a)

)
.

At a high level, WUCT extends UCT to the associative bandits setting by

using an instance-based approach (Atkeson et al., 1997) for generalizing across

state. A consequence of this approach is that whereas UCB1 only needs to
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maintain 2 numbers for each action during operation (the sample mean and

sample count), WUCB needs to record every piece of data encountered during

operation, and must perform linear-time calculations based on all samples at

each time step. Therefore, the computational complexity of WUCB is O(N2),

which can in some cases be prohibitively expensive, especially in comparison

to the O(N) cost of UCB1.

Weighted Hierarchical Optimistic Optimization

While WUCB extends UCB1 to the continuous state, discrete action associa-

tive bandit setting by the use of weighted averages and sample counts, in this

dissertation, the interest is ultimately in algorithms that function natively in

fully continuous state and action spaces. Similar to UCB1, HOO also uses sam-

ple averages and sample counts, but is designed for use in continuous action

spaces. Therefore, it is possible to apply the same transformation to UCB1 that

creates WUCB to HOO, creating the Weighted Hierarchical Optimistic Opti-

mization algorithm (WHOO). Because HOO functions natively in continuous

action spaces and operates on a distance metric D that functions in continuous

state spaces, WHOO is an associative bandit algorithm designed for fully con-

tinuous state and action spaces (Mansley, Weinstein, and Littman, 2011). It is

detailed fully in Algorithm 6.

While most of the properties of WHOO extend from the most similar algo-

rithms discussed, HOO and WUCB, the algorithm itself is significantly more

complex in terms of algorithmic details. As is the case in WUCB, all samples

must be analyzed at each step, leading to computational costs of O(N2), as

opposed to the O(N log N) cost of standard HOO with optimizations.
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Algorithm 6 Weighted Hierarchical Optimistic Optimization

1: function PULL(s)
2: loop
3: UPDATE(s, ν0)
4: a←NEXTACTION(s)
5: r ∼ R(s, a)
6: INSERT(s, a, r)
7: function UPDATE(s, ν)
8: Nν(s)← ∑N

n=1 D(s, sn)
9: R̂ν(n, s)← 1

Nν0 (s)
∑N

n=1 1an∈A(ν)D(s, sn)rn

10: Uν(n, s)← R̂ν(n, s) +
√

2 ln Nν0 (n,s)
Nν(n,s) + v1ρh

11: B1 ← UPDATE(C1(ν))
12: B2 ← UPDATE(C2(ν))
13: B(ν)← min {Uν(n, s), max {B1, B2}}
14: return B(ν)
15: function NEXTACTION(s)
16: ν← ν0
17: while ν is not a leaf do
18: ν← argmaxc∈C(ν) B(c)

19: return a ∈ A(ν)

20: function INSERT(s, a, r)
21: ν← ν0
22: while ν is not a leaf do
23: Store s, a, r as sN, aN, rN
24: ν← c ∈ C(ν) such that a ∈ A(c)
25: Create children C(ν) = {C1(ν), C2(ν)}

3.2 Continuous Markov Decision Processes

We will now discuss planning in MDPs that have continuous state and action

spaces. Planning in this class of domains raises distinct problems as compared

to classes of domains previously discussed. In contrast to planning in continu-

ous associative bandits, planning in continuous MDPs requires additional tem-

poral consideration of value as opposed to simply immediate reward. As com-

pared to planning in discrete MDPs, planning in continuous MDPs requires
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both generalization and optimization to construct a policy.

The addition of all these factors introduces significant challenges to the con-

struction of effective planning algorithms for continuous MDPs. Whereas in

discrete MDPs, the equation defining the value of a policy is called the Bell-

man equation, in continuous MDPs there is the Hamilton Jacobi Bellman (HJB)

equation. Although there are some cases where the HJB equation is simple to

solve such as domains with piecewise quadratic dynamics (Zamani et al., 2012)

in the common case, solving the HJB equation is not feasible. As a result, un-

like the simple transformation that allows value iteration (or other algorithms)

to be derived from the Bellman equation, it is generally not possible to move

from the HJB equation to an algorithm that produces a near-optimal policy.

Because of these difficulties, it has become common practice to simply dis-

cretize continuous dimensions, which allows algorithms designed for discrete

MDPs to be used. As mentioned, this method is not practical in the setting we

consider as domains may be high dimensional (Assumption 1), and the num-

ber of cells resulting from this form of discretization is super-exponential in the

dimension of the problem. Chapter 4 includes further arguments against this

approach.

3.3 Global Planning in Discrete Markov Decision Processes

In this section, we will discuss the two main forms of global planning, which

are based on value-function approximation and policy search. The two meth-

ods differ in how they develop policies. Value-based methods attempt to find

the optimal value function for a domain and then derive a policy from this

value function. Policy search methods, on the other hand, forego estimating
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the value function and instead search the policy space directly.

3.3.1 Value-Function Approximation

When performing global planning in high dimensional domains, more sophis-

ticated forms of function approximation may be used in place of coarse dis-

cretization (which itself is simply a primitive form of function approximator)

to estimate the value function. Although the literature on algorithms that per-

form VFA and function in continuous state and action spaces is very limited,

there have recently been a number of algorithms proposed for this setting.

Some examples are Ex〈a〉 (Martı́n H. and De Lope, 2009), the continuous actor-

critic learning algorithm (Van Hasselt and Wiering, 2007), and fitted-Q iteration

(Weinstein and Littman, 2012). Unfortunately, all forms of function approxi-

mation introduce the risk of failing to produce a near-optimal value function,

and therefore, policy. Fundamental risks stemming from the use of function

approximators (FAs) can be separated into two categories.

The first category includes issues that arise whenever supervised learning

is performed; these problems are not unique to RL. Issues of the bias-variance

tradeoff (underfitting and overfitting), overtraining, lack of convergence, and

the need to tune parameters depending on the particular problems are funda-

mental supervised learning issues that naturally also apply when used in RL

(Tesauro, 1992).

The other category of risk stems from using an FA as a value function ap-

proximator (VFA), and is unique to RL applications. In particular, problems

stem from the way errors are compounded during bootstrapping when esti-

mating the value function. To obtain reliable results and worst-case guaran-

tees, one class of algorithms that can safely be used as VFAs is the class of
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algorithms called averagers (Gordon, 1995). Examples of averagers are the

k-nearest neighbor or decision tree algorithms. Non-averagers, such as ar-

tificial neural networks and linear regression, offer no such guarantees, and

commonly diverge in practice when used as VFAs (Boyan and Moore, 1995).

The difficulty in using averagers as VFAs is that they generally underfit (over-

smooth) the value function, leading to very poor policies, and are particularly

problematic in domains with many local optima in the value function, as we

assume is the case here (Assumption 3).

Even averagers, however, are not entirely safe to use, as VFAs may fail

based on many other factors. For example, noise can lead to a systematic over-

estimation of the value function, causing a degenerate policy to be computed

(Thrun and Schwartz, 1993, Ormoneit and Sen, 1999). Even in the case when

the resulting policy produced by the VFA is effective, the actual value estimates

may be unrelated to the true value function (Boyan and Moore, 1995). Addi-

tionally, the representation used in the VFA is another source of difficulty; the

wrong set of features can cause failure due to either inexpressiveness (with too

few features), or overfitting (too many features) (Kolter and Ng, 2009), which

again introduces the requirement for domain expertise to find an appropriate

representation of the value function. Yet another complication is that the func-

tion approximator must be able to fit many different value functions on the

way to fitting Q∗, which requires a great deal of flexibility in the FA.

3.3.2 Policy Search

Policy search algorithms do not build a policy derived from a value function

but instead search the policy space directly. These algorithms are safer from

those that require VFAs as they do not estimate a value function and do not
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risk divergence, but have their own set of limitations.

Policy search methods function by searching for parameters Φ to a function

approximator π such that the policy π(s, Φ) → a maximizes the return, start-

ing from state s0. An example of this definition may be used in practice is to

have Φ encode weights in an artificial neural network, with s being the values

at the input layer.

Because policy search algorithms maximize for return from s0, their use is

restricted to domains that are episodic, meaning trajectories always start from

s0, and only proceed for a finite number of steps. The limitation to episodic

domains is one reason why policy search methods are not suitable to the setting

considered in this work, although it is a problem that can be addressed, given

an episodic generative model.

More significantly, a near-optimal policy must be representable by π—if

it is not the case it is impossible for the algorithm to produce effective poli-

cies. Finding a good hypothesis class is is generally a difficult task as domains

may have sharp boundaries in the state space where policies change and pol-

icy representations must be able to fit these boundaries closely (Rexakis and

Lagoudakis, 2008). Practically, another requirement is that the complexity of

π must be low to allow the search over Φ to be completed in a reasonable

amount of time. These two requirements are fundamentally in opposition, be-

cause (all other factors held the same) increasing representational richness of a

FA requires a more complex function with more parameters. As such, the only

way both can be accomplished simultaneously is by levering domain expertise

and constructing π carefully (Erez, 2011). Aside from limiting generality, this

requirement violates Assumption 4, that domain knowledge is restricted only

to access to a black-box generative model.
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Another issue that arises when performing policy search is the difficulty in

determining how the modification of Φ ultimately alters π. Relatively small

changes in Φ may cause large changes in the policy, and as a result action

selection may change drastically and even fall outside of the range allowed

in the domain. As a result, most approaches only make slight changes to Φ

during each iteration of the algorithm. Most commonly, these small changes

are made according to an estimate of the gradient of the return with respect to

Φ. Such algorithms are appropriately named policy gradient algorithms.

Aside from the fact that gradient estimations are unreliable in the presence

of noise (Heidrich-Meisner and Igel, 2008, Sehnke et al., 2008), which is present

because of the transition distribution, policy gradient methods have more sig-

nificant limitations. Because they perform gradient ascent, policy gradient al-

gorithms only converge to local optima (Williams, 1992, Sutton et al., 1999).

Additionally, when there are large plateaus in Φ-space with regard to return,

gradient methods perform a random walk in policy space, leading to a failure

to improve the policy (Heidrich-Meisner and Igel, 2008). Both of these limita-

tions mean that when using policy gradient algorithms (or gradient algorithms

in general) initializing search in the basin of attraction of the global optimum

is critical (Deisenroth and Rasmussen, 2011, Kalakrishnan et al., 2011, Kober

and Peters, 2011). The requirement of search initialization near the global opti-

mum is another example of necessary domain expertise that we do not assume

is available (Assumption 3), making such algorithms unusable in the setting

considered.
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3.4 Local Planning in Continuous Markov Decision Processes

Fundamentally, the differences between local and global planning that exist in

discrete MDPs (discussed in Section 2.3) also hold in continuous MDPs (with

the addition of difficulties involved in performing VFA or policy search). In

both discrete and continuous MDPs, global planners must consider all of S

when producing a policy. Therefore, in high dimensional continuous domains,

the cost of global planning becomes prohibitive, just as it does in high dimen-

sional discrete domains. Instead, producing local policies for regions in the

MDP allows for planning problems of tractable size. Additionally, while global

planners (ultimately based on VFA or policy search) for continuous MDPs are

unusable in the setting we consider due to risks of failure (Assumption 3) or re-

quired domain expertise (Assumption 4), the local planners as presented here

do not suffer from such issues. The price paid for this flexibility is a replanning

cost at each time step. Just as is the case with discrete planners, local planning

algorithms can be divided between closed-loop and open-loop policies.

3.5 Closed-Loop Local Planners

In this section, a number of closed-loop planners are presented for a number

of different classes of MDPs. These planners are constructed for domains with

continuous state, discrete action; discrete state, continuous action; and finally

continuous state, continuous action spaces (planners for fully discrete MDPs

were described in Chapter 2). These algorithms are all rollout planners, and

are based on the structure described in Algorithm 7, which is reprinted here

for ease of reading.
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Algorithm 7 Generic Rollout Planning

1: function PLAN(G, s0, H)
2: repeat
3: SEARCH(G, s0, H)
4: until Terminating Condition
5: return GREEDY(s0)
6: function SEARCH(G, s, h)
7: if h = 0 then
8: return EVALUATE(s)
9: a← SELECTACTION(s, h)

10: s′ ← GT(s, a)
11: r ← GR(s, a)
12: q̂← r + Gγ SEARCH(G, s′, h− 1)
13: UPDATE(s, h, a, q̂)
14: return q̂

3.5.1 Hierarchical Optimistic Optimization Applied to Trees

Building on UCT (Section 2.4.1), which takes actions during rollouts according

to UCB1, the same approach can be used to create new rollout planners by us-

ing other bandit algorithms in place of UCB1 to define policy. In particular, a

continuous bandit algorithm such as HOO can be used in place of UCB1, re-

sulting in a planner that operates natively in discrete state, continuous action

MDPs. We call this algorithm Hierarchical Optimistic Optimization applied

to Trees (HOOT) (Weinstein, Mansley, and Littman, 2010, Mansley, Weinstein,

and Littman, 2011). Aside from the modification of replacing one bandit al-

gorithm for another, all other aspects of UCT and HOOT are the same, with

the exception of computational costs. Just as the computational cost of HOO is

greater than UCB1, at O(N log N) as opposed to O(N), the computational cost

of HOOT is greater than that of UCT (Bubeck et al., 2010). HOOT is described

concretely in Algorithm 8; function calls in Algorithm 8 that are not defined

in generic rollout planning (Algorithm 7) refer instead to HOO, as defined in
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Algorithm 5.

Algorithm 8 Hierarchical Optimistic Optimization applied to Trees

1: function GREEDY(s)
2: ν← ν0 of HOOs,h
3: while ν is not a leaf do
4: ν← argmaxc∈C(ν) R̂(c)

5: return a ∈ A(ν)

6: function SELECTACTION(s, h)
7: HOOs,h.UPDATE(HOOs,h.ν0)
8: return HOOs,h.NEXTACTION()
9: function UPDATE(s, h, a, q̂)

10: HOOs,h.INSERT(a, q̂)

3.5.2 Weighted Upper Confidence Bounds Applied to Trees

Weighted Upper Confidence Bounds Applied to Trees (WUCT) is a planner for

continuous state, discrete action MDPs. Just as UCT uses UCB1 to perform ac-

tion selection during rollouts, WUCT uses weighted upper confidence bounds

(WUCB) in a similar structure for the same purpose. The primary difference

between the structure created by UCT and WUCT is the structure built by the

two algorithms to perform planning. UCT attempts to maintain statistics based

on each unique state encountered during trajectories through the domain, but

when working in continuous state spaces it is necessary to generalize across

states, as exact states may never be revisited due to the presence of stochas-

ticity. As a result, WUCT, like WUCB, performs generalization according to

a memory-based approach (Moore, 1990). During each step of each rollout, a

tuple d = 〈s, h, a, q̂〉 is recorded in the data set D, which contains the return, q̂

associated with a taken from s at depth h in the rollout, which is later used to

compare to states reached in the future during planning. WUCT is described
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in Algorithm 9.

Algorithm 9 Weighted Upper Confidence Bounds Applied to Trees

1: function GREEDY(s)
2: ∆′ ← 〈s′, h′, a′, q̂′〉 ∈ ∆ such that h′ = 0
3: for a ∈ A do
4: Q̂(s, a, h)← ∑∆′ D(s, s′)q̂′

5: a← argmaxa∈A Q̂(s, 0, a)
6: return a
7: function SELECTACTION(s, h)
8: ∆′ ← 〈s′, h′, a′, v̂′〉 ∈ ∆ such that h′ = h
9: for a ∈ A do

10: Q̂(s, a, h)← ∑∆′ 1an=aD(s, s′)v̂′

11: U(s, h, a)←
√

log(∑∆′ 1a′=aD(s,s′))
∑D′ 1a′=aD(s,s′)

12: a← argmaxa∈A
(
Q̂(s, h, a) + U(s, h, a)

)
13: return a
14: function UPDATE(s, h, a, q̂)
15: ∆← ∆ ∪ 〈s, h, a, q̂〉

A limitation of this approach is that due to the fact that each sample is

examined during each rollout, the computational cost of planning is O(N2),

which in practice makes the algorithm computationally too expensive to be of

use when large amounts of data are needed in high dimensional domains. An-

other limitation is that a distance metric D must be provided. Both properties

follow directly from the use of WUCB to perform action selection. Finally, as a

planning algorithm for discrete action, continuous state MDPs, WUCT is not a

planner that functions natively in fully continuous MDPs.

3.5.3 Weighted Hierarchical Optimistic Optimization Applied

to Trees

We have discussed two planning algorithms in this section, that are designed

for different combinations of discrete and continuous state and action spaces.
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HOOT builds a DAG in the same manner as UCT, but replaces UCB1 with

HOO, producing a rollout planner that functions in continuous state, discrete

action MDPs. Incorporating a memory-based approach and distance metric

allows for the associative bandit algorithm WUCB to be used in a similar plan-

ning structure, creating WUCT which allows for rollout planning in contin-

uous state, discrete action domains. Combining features of both results in a

closed-loop rollout planner that functions natively in continuous state and ac-

tion spaces (Mansley, Weinstein, and Littman, 2011).

Algorithm 10 Weighted Hierarchical Optimistic Optimization applied to Trees

1: function GREEDY(s)
2: ν← ν0 of WHOOh
3: while ν is not a leaf do
4: ν← argmaxc∈C(ν) R̂(c)

5: return a ∈ A(ν)

6: function SELECTACTION(s, h)
7: return WHOOh.NEXTACTION(s)
8: function UPDATE(s, h, a, q̂)
9: WHOOh.INSERT(s, a, q̂)

This algorithm, which places an associative bandit algorithm WHOO at

each depth in the rollout sequence, while maintaining a record of all 〈s, h, a, q̂〉
tuples observed, results in a closed-loop rollout planner that functions na-

tively in both continuous state and action spaces. While this algorithm has

many of the properties that we desire, like WUCT, the memory-based ap-

proach ultimately leads to prohibitive computational costs, making the algo-

rithm too computationally expensive to be of practical use. The algorithm,

called weighted hierarchical optimistic optimization applied to trees (WHOOT),

is outlined in Algorithm 10.
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3.6 Open-Loop Planners

While we have presented a number of closed-loop planning algorithms for use

in various settings including fully continuous MDPs, the weighted planners for

use in continuous state MDPs are computationally too intensive to be of use in

practice. This overhead comes from the fact that estimates of action quality de-

pend on state, but since continuous states may never be revisited, comparisons

must be made according to a distance metric applied to all samples previously

observed.

Being that the issue of generalizing across state introduces a significant

computational burden, one option is to simply disregard state while plan-

ning. As discussed, in Section 2.4.3 this approach can be particularly effective

when planning in domains with high-dimensional state spaces and a relatively

limited budget of trajectories, because in that setting trajectories are likely to

spread out in the state space quickly. As a result, data is spread too thinly over

the state space to greatly improve decision making.

An illustration of they type of optimization performed by open-loop plan-

ning algorithms is presented in n Figures 3.2(a) and 3.2(b), which graphically

show the return of one or two steps of open-loop planning (followed by a near-

optimal solution, for the sake of illustration) in the double integrator domain

(Santamarı́a et al., 1996). Although figures only render the fitness landscape for

H = 1 and 2, that optimization can naturally be extended to an arbitrary num-

ber of steps in the future, with the related fitness landscape becoming more

complex accordingly as the dimension of the problem grows.

Although closed-loop planners may exhibit provably poor results in stochas-

tic domains with particular structure, there are also proofs of performance in
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deterministic domains. Along with the results presented next, guarantees exist

such that, if the domain is Lipschitz smooth, open-loop planning methods are

complete (meaning it will find a desired goal state), even in the presence of

noise (Yershov and LaValle, 2010).

3.6.1 Hierarchical Open-Loop Optimistic Planning

The central concept of this section is that optimization algorithms can be ap-

plied to planning simply by an appropriate casting of the problem. This gen-

eral approach has previously been examined in Bayesian and PAC-MDP set-

tings (Duff and Barto, 1997, Kaelbling, 1993, Strehl and Littman, 2004, Even-

Dar et al., 2006). When performing planning in this manner, the optimization

space is all action sequences of length H, A, and vectors representing a so-

lution to that optimization problem, a, encode a sequence of actions. Corre-

spondingly, the evaluation function executes a in the domain and produces

the return of the resulting trajectory.

In this section, we will discuss the application of HOO to open-loop plan-

ning, which we name Hierarchical Open-Loop Optimistic Planning, or HOLOP

(Bubeck and Munos, 2010, Weinstein and Littman, 2012, Schepers, 2012). A

rare property of HOO that allows it to be used in such a manner is its ability to

tolerate noise while performing optimization, which arises due to stochastic-

ity in MDPs where policies are evaluated. Presented in Algorithm 11, HOLOP

is a rollout planner that is a simple wrapper around HOO (Algorithm 5). In

HOLOP, there are exceptions to the standard rollout model (Algorithm 7), be-

cause, as an open-loop planner, HOLOP does not perform action selection con-

ditioned on state in the rollout. Therefore, SELECTACTION produces the entire

action sequence a that is executed in the rollout, and UPDATE is called only
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after the entire sequence is executed with the resulting return for all of a.

Algorithm 11 Hierarchical Open-Loop Optimistic Planning

1: function GREEDY(s0)
2: ν← ν0 of HOO
3: while ν is not a leaf do
4: ν← argmaxc∈C(ν) R̂(c)

5: return a ∈ A(ν)

6: function SELECTACTION(s, h)
7: return HOO.NEXTACTION

8: function UPDATE(a, q̂)
9: HOO.INSERT(a, q̂)

As a planner, the properties of HOLOP are derived jointly from the open-

loop manner in which it plans, as well as the particular algorithmic underpin-

nings of HOO. Because of the strong theoretical guarantees of HOO, HOLOP

has a guaranteed fast rate of convergence to optimal open-loop behavior, and

has regret of Õ(
√

N). In particular, guarantees of the regret of HOLOP are in-

dependent of |A|, but this bound is only true as N >> |A|, so in practice when

the number of trajectories are fairly limited the size of the domain has an im-

pact on performance. This property, however, is an unavoidable aspect of local

planning, and the fact that theoretical bounds are independent of S, A and H

(as the number of trajectories grows large) is to our knowledge unique among

planning algorithms.

While the regret of HOLOP is optimal, its simple regret is not (Bubeck and

Munos, 2010). In particular, HOO has an expected simple regret of

Õ
(

N
log 1/γ

log κ + 2 log 1/γ

)
,

where κ describes the number of near-optimal sequences of actions. This bound

on simple regret is actually similar to the bound for naive uniform planning, so

depending on the measure of performance that is relevant to a particular use
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scenario, the performance of HOLOP may be near optimal (in terms of regret),

or fairly poor (in terms of simple regret).

Because HOLOP is an open-loop planner, it functions identically in do-

mains with discrete, continuous, hybrid, and partially observable state spaces.

In addition to these properties, HOLOP plans in continuous domains with-

out the risk of divergence that occurs from the use of value-function approxi-

mation. Likewise, because the policy is represented by a sequence of actions,

as opposed to parameterization of an FA (as is the case in traditional policy

search), the algorithm will always be able to represent the sequence action se-

quence a∗ that produces optimal returns.

In terms of empirical results, HOLOP has been shown to outperform a

number of continuous planning algorithms that use other forms of tree de-

composition to conduct planning in continuous MDPs (Schepers, 2012). In the

full RL setting where a generative model is not provided, HOLOP combined

with multi-resolution exploration (Nouri and Littman, 2008) to perform explo-

ration, and k-d trees to conduct model building, was found to outperform a

number of continuous RL algorithms (Weinstein and Littman, 2012), includ-

ing Ex〈a〉 (Martı́n H. and De Lope, 2009), which won the 2010 reinforcement

learning competition in the high dimensional helicopter control task (Whiteson

et al., 2010).

3.7 Discussion

This chapter has dealt with planning in continuous domains. Due to the fact

that existent global continuous planners are not applicable in the setting con-

sidered (because of costs, risk of divergence, convergence to local optima, or
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need for significant domain expertise), the focus of the chapter is on local con-

tinuous planners which do not suffer from these issues. A number of novel

closed and open-loop planning algorithms are introduced for differing com-

binations of discrete and continuous state and action spaces, as well as fully

continuous domains.

Focus is placed on HOLOP, which has many desirable characteristics. Due

to the strong theoretical underpinnings of HOO, the quality of actions selected

provably improves rapidly during planning. The planner itself is state agnostic

and behaves identically regardless of the size of the state space, and whether

the domain is discrete, continuous, hybrid, or partially observable. Indeed,

this algorithm is used in Chapter 4 to demonstrate the superiority of plan-

ning algorithms that run natively in continuous MDPs over those that require

coarse discretization of continuous dimensions to plan in continuous domains.

Additionally, the fundamental idea of optimization as planning that underpins

HOLOP is revisited in Chapter 5 to produce state of the art results in extremely

high-dimensional, complex domains.
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Chapter 4

Empirical and Analytic Comparison: Discrete
Versus Continuous Planners

In this chapter, we compare a number of planning algorithms discussed or in-

troduced in this work, specifically UCT, FSSS-EGM, OLOP, HOOT, and HOLOP.

These algorithms cover the state of the art in planning from both empirical and

theoretical perspectives, and are designed for differing combinations of dis-

crete and continuous state and action spaces. All domains tested have fully

continuous state and action spaces, and vary in size from small domains with

2 state and 1 action dimension up to very large domains with 16 state and 5

action dimensions. In all cases, planning algorithms are presented only with

an EGM of the domain, with bounds on allowed rewards and action ranges.

Planning is always restarted entirely anew at each planning step to test the ef-

fectiveness of the planning algorithms in the absence of evaluation functions,

shaping, warm-starting, and any other enhancements.

4.1 Planning Algorithms Revisited

In practice, UCT is currently the state of the art, dominating recent general

planning competitions (Kolobov et al., 2012), as well as computer Go tourna-

ments (Gelly and Silver, 2008). On the other hand, the theoretical guarantees of

the algorithm are extremely poor, as it may be outperformed by naive uniform
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planning in domains with particular structures. Most domains presented here,

however, have fairly smooth value functions, so the properties that are known

to be problematic for UCT are not present. Based on all these factors, UCT

should be regarded as the most competent discrete planner we could compare

against, especially in the domains considered.

Aside from the fact that both are discrete rollout planners, FSSS-EGM is in

many ways quite different from UCT. Unlike UCT, the original FSSS has strong

theoretical properties based on accurate upper and lower bounds of the return

of each 〈s, h, a〉, and will therefore never take a super-exponential number of

samples to find the optimal policy. On the other hand, the algorithm has not

seen thorough empirical testing, and unlike UCT, FSSS has not been selected

for use in prominent planning competitions. The only known published results

of the algorithm are from its original presentation, and have it in some cases

outperforming, and in some cases being outperformed by UCT (Walsh et al.,

2010).

OLOP goes even futher in this direction as it has extremely strong theoret-

ical backing, but has had limited empirical examination. The only results we

are aware of indicate that the performance of OLOP in practice is fairly poor,

and roughly equivalent to uniform planning (Busoniu et al., 2011). OLOP has

the distinguishing property of being a discrete action open-loop planner, so

it selects sequences of action while ignoring state. One of the reasons for its

selection is that it is the closest discrete analogue to HOLOP.

In contrast to OLOP, which requires discretization only of the action space,

HOOT requires discretization only of the state space, as it adaptively decom-

poses the action space according to data acquired during planning. Since HOOT

performs planning in a manner highly similar to UCT, it likewise suffers from
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a lack of formal guarantees, due to the difficulty of the analysis of nonsta-

tionary return estimates that evolve with policy changes over time. Related

weighted algorithms of WUCT and WHOOT, discussed in Chapter 3, are not

tested here due to the heavy computational requirements that are a product of

the memory-based operation of those algorithms.

HOLOP, finally, does not require any discretization as it is state agnostic

and functions naturally in domains with continuous action spaces. Like OLOP

and FSSS, HOLOP has very strong theoretical guarantees, as it is based on

HOO, which has optimal regret, and also has formally analyzed (although

suboptimal) simple regret. As an open-loop planner, its optimal open-loop

policies may still be poorer than those of closed-loop planners. The implemen-

tation of HOLOP used here employs simple root parallelization (Weinstein and

Littman, 2012, Chaslot, Winands, and Van den Herik, 2008). Empirical results

in this section show that HOLOP has the desirable properties of having both

strong theoretical backing as well as excellent results in practice.

While there is a fairly small number of other fully continuous planners we

could select from for empirical testing, the ultimate goal in this chapter is not

to document which continuous planner is best, but rather to show empirical

superiority of a continuous planning algorithm over state of the art discrete

planners such as UCT, FSSS-EGM, and OLOP, when applied to canonical con-

tinuous domains.

4.2 Domains

All domains are based on actual physical systems in some form, but have

differing properties relating to linearity, smoothness, dimensionality, and the



77

existence of terminal states, among many other factors. For example, while

the double integrator can be controlled optimally according to a simple policy

(Sontag, 1998), the other domains tested do not have such properties, making

optimal solutions extremely difficult to find.

4.2.1 Double Integrator

The double integrator domain (Santamarı́a et al., 1996) models the motion of

a point mass along a surface. The object starts at some position and must be

moved to the origin (corresponding to a position p and velocity v of 0) by accel-

erating the object by a selected amount at each time step, balancing immediate

and future penalties. The dynamics of the system can be represented as a dis-

crete time linear system as follows: s′ = T1s + T2a where T1 =

 1 0

∆t 1

,

T2 =

 ∆t

0

.

The reward is quadratic and is defined as − 1
D
(
sTQs + aTRa

)
where Q =

 0 0

0 1

, R = [1].

Due to the characteristics of the domain, the value function and optimal

policy are a quadratic function of state, making the domain relatively simple to

plan in, and it therefore allows for a simple baseline against which performance

can be presented. In the experiments here, the initial state is set to (p, v) =

(0.95, 0). Stochasticity is introduced by perturbing all actions taken by ±0.1

units uniformly distributed.

In later experiments, the agent will be required to control multiple double
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integrators simultaneously. By extending the A, B, Q and R matrices to create

an appropriate number of position velocity dimensions. In all cases, agents are

allowed to plan from 200 trajectories per step, and episodes are 200 steps long.

Optimal performance is−1.312± 0.001, and random performance is−23.957±
2.342.

4.2.2 Inverted Pendulum

The second domain tested is the inverted pendulum, which models the physics

of a pendulum balancing on a cart (Wang et al., 1996, Pazis and Lagoudakis,

2009), where actions are in the form of force applied to the cart on which the

pendulum is balanced. Like the double integrator, the domain has 2 state di-

mensions and 1 action, but is more complex than the double integrator because

it, like the other domains to follow has nonlinear dynamics and does not have

a trivially computable optimal policy. Additionally, poor policies can lead to

terminal failure states (or states from which a terminal state is ultimately un-

avoidable), which do not exist in the double integrator, introducing disconti-

nuities in the value function.

The state s = 〈θ, θ̇〉 consists of the angle and angular velocity of the pendu-

lum, and the action is the force in Newtons applied to the cart. The dynamics

of the domain are computed in terms of the angular jerk of the pendulum:

θ̈ =
gsin(θ)− αmlθ̇2 sin(2θ)/2− α cos(θ)a

4l/3− αml cos2(θ)
,

where g = 9.8m/s2 is the gravity constant, m = 2 is the mass of the pendulum,

M = 8 is the mass of the cart, l = 0.5 is the length of the pendulum, and

α = 1/(m + M). The control interval is set to 100msec.

The reward function in this formulation favors keeping the pendulum as
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close to upright as possible using low magnitude actions and maintaining low

angular velocities of the pendulum:

R(〈θ, θ̇〉, a) = −
(
(2θ/π)2 + θ̇2 + (a/50)2

)
,

with |θ| > π/2 leading to the end of the episode with a reward of −1000.

Noise is introduced by perturbing the actions by ±10 Newtons uniformly

distributed. The full action range is (−50, 50) Newtons. Like the double inte-

grator, some experiments will test the ability of planning algorithms to scale by

controlling a number of independent pendulums simultaneously. In all cases,

agents are allowed to plan from 200 trajectories per step, and episodes are 200

steps long. Random performance is −1273.202± 80.746.

4.2.3 Bicycle Balancing

Bicycle balancing is a popular medium-sized domain (Randlov and Alstrom,

1998, Li et al., 2009). This domain is highly nonlinear with regards to dynamics

and values, and is considered to be one of the most difficult canonical rein-

forcement learning domains, with most algorithms requiring pre-supplied ba-

sis functions and shaping to plan effectively (Lagoudakis and Parr, 2003). Al-

though it is a fully continuous domain, earlier publications use algorithms that

only plan over a discrete set of actions and rely on a particular hand-engineered

discrete set of actions (not strictly a coarse discretization) to make successful

planning possible due to the difficulty of maintaining balance (Lagoudakis and

Parr, 2003).

The domain has a 4-dimensional state space and 2-dimensional action space.

The state consists of the angle and angular velocity of the handlebars with re-

spect to the body, and the angle and angular velocity of the body with respect
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to the ground. The actions are torque applied to the handlebars and displace-

ment of weight from the bicycle. The full dynamics are fairly complex and can

be found with other details in Randlov and Alstrom (1998). The one distinction

of the domain tested here is with regards to the reward function:

R(〈ω, θ〉, a) = −
((

ω

π/15

)2

+

(
θ

π/2

)2

+
( a1

2

)2
+
( a1

0.02

)2
)

,

with ω being the angle of the bicycle relative to the ground, θ being the angle

of the handlebars relative to the body of the bicycle, and a = 〈a1, a2〉 being the

torque applied to the handlebars and weigh displacement, respectively.

In all cases, agents are allowed to plan from 400 trajectories per step, and

episodes are 200 steps long. Unlike the double integrator and inverted pen-

dulum, no results controlling multiple bicycles simultaneously are presented

as no planning algorithm was able to balance more than one bicycle with the

number of planning trajectories provided.

4.2.4 D-Link Swimmer

In the D-link swimmer domain (Coulom, 2002, Tassa et al., 2007b), a simulated

snakelike swimmer is made up of a chain of D links, where D− 1 joint torques

must be applied between links to propel the swimmer to the goal point. The

total size of the state space is 2D + 4 dimensional, consisting of the absolute

location and velocity of the head of the swimmer and angle and angular veloc-

ities of the joints. The swimmer’s body exists in two dimensions, with all the

body at the same depth in the liquid in which it is swimming. In the experi-

ments here, planners must control swimmers with 3 to 6 links, which means

the smallest domain has 10 state dimensions and 2 action dimensions, while

the largest domain has 16 state dimensions and 5 action dimensions, making



81

it the largest domain that is used as a comparison. As is the case with the bi-

cycle domain, the dynamics are highly complex. Full details can be found in

Tassa et al. (2007a,c). In all cases, agents are allowed to plan from 300 trajec-

tories per step, and episodes are 300 steps long. The appearance of the 3-link

swimmer (the smallest tested) is presented in Figure 4.1, which also shows a

stroboscopic rendering of the policy constructed by HOLOP in the experimen-

tal setting used here, with the goal location being the origin on the plane.

Figure 4.1: A depiction of the policy produced by HOLOP in the 2-link swim-
mer domain.
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4.3 Results

We refer to an episode as the result of an algorithm interacting with the ac-

tual environment, and rollouts as being the result calculations based on the

provided episodic generative model. In all empirical comparisons, the per-

formance metric used is mean cumulative reward per episode. In all domain

domains, the discount factor γ = 0.95. Rollouts are performed with H = 50,

with the exception of OLOP, which computes the depth and number of roll-

outs based on the total budget of samples allowed (in practice, however, the

number of rollouts N and H computed by OLOP were extremely close to the

values selected a priori for the other planning algorithms).

4.3.1 Optimizing the Planners

Being that all domains considered are fully continuous, but only HOLOP oper-

ates natively in continuous domains, all other planning algorithms must plan

in a discretization of the state and/or action dimensions. Because we do not

assume that expert knowledge is available, a “good” parameterization is un-

known and therefore coarse discretizations of state and action spaces are addi-

tional parameters that must be searched over to optimize performance of the

planner. Here, it will be demonstrated that even when searching over a large

number of possible discretizations for state of the art discrete planning algo-

rithms, HOLOP, a native continuous planner, is able to produce lower sample

complexity and higher quality solutions, while being more robust.

The performance of different planning algorithms according to discretiza-

tions are presented as “heat maps”, where each cell in the map indicates the av-

erage performance of that particular parameterization. In these graphs, changes
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along the vertical axis indicate discretizations in state space (if applicable), and

changes along the horizontal axis indicate discretizations in the action space

(again, if applicable). In this experimental setting, discretizations produce be-

tween 5 and 35 (in multiples of 5) different cells per dimension. Discretizations

are considered separately between state and action dimensions, but within the

state or action dimensions, the number of cells produced are not considered

separately. We will refer to the number of cells per state dimension as σ and the

number of cells per action dimension as α, and the resulting discretized state

and action spaces as S′ and A′, respectively. Therefore, |S′| = σ|S|, |A′| = α|A|.

Because of the significant computational costs of running experiments in

the D-link swimmer, experiments testing the quality of varying parameteriza-

tions in that domain have not been produced. In particular, the 49 parame-

terizations that would need to be tested for UCT and FSSS-EGM discretizing

state and action spaces are prohibitively expensive. Results from the double

integrator, inverted pendulum, and bicycle balancing domains are presented

below.

Double Integrator

The first set of heat maps is displayed in Figure 4.2. The top row, from left

to right shows the performance of UCT, HOOT, and HOLOP, while the bot-

tom row displays the performance of FSSS-EGM and OLOP. Because UCT and

FSSS-EGM require discretizations of both state and action spaces, heat maps

for those algorithms are checkered, with a total of 49 different parameteriza-

tions tested. Because HOOT only requires discretizations of the state space,

its corresponding heat map has 7 horizontal stripes. Likewise, OLOP only
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requires discretization of the action space, and has a heat map with 7 verti-

cal stripes. Because HOLOP naturally functions in continuous MDPs, no dis-

cretization is required so the entire heat map is a constant color.
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Figure 4.2: Heat map representation of performance UCT, HOOT, HOLOP,
FSSS-EGM, and OLOP in the double integrator.

Both OLOP and FSSS-EGM have some parameterizations that lead to very

poor performance in the domain, with cumulative rewards ranging to approx-

imately −10, while the worst cumulative reward among UCT, HOOT, and

HOLOP was achieved by UCT at −4.9. Because the heat map scales colors

according to the entire range of values, another graph with OLOP and FSSS-

EGM omitted is presented in Figure 4.3, to more clearly differentiate the better

performing algorithms. In this domain, all parameterizations of UCT have

cumulative rewards statistically significantly worse than HOLOP, and 3 of 7
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parameterizations of HOOT are statistically significantly worse than HOLOP,

while none are statistically significantly better.
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Figure 4.3: Heat map representation of performance UCT, HOOT, and HOLOP
in the double integrator.

Inverted Pendulum

Results in the inverted pendulum domain are mostly consistent with results

from the double integrator, with performance of OLOP and FSSS-EGM not

competitive with UCT, HOOT, or HOLOP, as they were unable to consistently

maintain balance of the pendulum. Both algorithms displayed policies consis-

tent with myopic behavior, opting for very small magnitude actions because

of the immediate penalty for higher-magnitude actions. This policy leads to

some episodes with very good cumulative rewards (when stochasticity does
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not push the pendulum off-balance), but leads to failure when noise begins to

move the pendulum off-balance, as algorithms do not recover with necessary

high-magnitude actions. This pattern of failure of OLOP and FSSS-EGM due

to myopic decision making is consistent in all of the experimental domains, so

their performance will be omitted for the remainder of the chapter to simplify

presentation.

The performance of the best algorithms, UCT, HOLOP, and HOOT are dis-

played in Figure 4.4. The heat maps of UCT and HOOT both have a strange but

noteworthy characteristic, which is alternating bands of quality with respect to

discretizations of the state space. Specifically, discretizations of the state space

into 5, 15, 25, and 35 cells performed poorly, while discretizations into 10, 20, or

30 cells performed relatively well. It is unclear what the cause of this artifact is,

but the fact that it arises in both UCT and HOOT indicate that the phenomenon

has more to do with properties of the domain than peculiarities of a particular

planner.

It is worthwhile to dwell on this point for a moment to consider its impli-

cations. In contrast to what may be the common view on parameter search

of discretization in experimental settings, these results show that it is not the

case that there is some optimal discretization, with values close to that optimal

parameter being better and others being worse. Instead, these results show

that the impact of discretization on policy quality can be very unsmooth, and

that great care must be taken to ensure that parameterizations considered cre-

ate discrete state and action sets that allow for reasonable policies, as there can

be potentially strange interactions between planners, domains, and discretiza-

tions.

As was the case in the inverted pendulum domain, every parameterization
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of discretizations among the 49 tested for UCT was statistically significantly

worse than HOLOP. Out of the parameterizations tested for HOOT, 4 were

statistically significantly worse than HOLOP while none were statistically sig-

nificantly better.
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Figure 4.4: Heat map representation of performance UCT, HOOT, and HOLOP
in the inverted pendulum.

Bicycle Balancing

Bicycle balancing is considered the most difficult baseline domain. Although

it is smaller than the 3-link swimmer, it has terminal states that can be quickly

reached by an ineffective policy. At 4 state dimensions and 2 action dimen-

sions it is also twice as large as the double integrator and inverted pendulum.

Empirical results in Figure 4.5 show that bicycle balancing causes the poorest
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performance for UCT presented in this chapter. Although some parameteri-

zations of UCT are not statistically significantly different from that of HOLOP,

over half of the discretizations resulted in very poor policies similar to that of

OLOP and FSSS-EGM, which were not able to consistently maintain balance.

All parameterizations of HOOT, on the other hand, were not statistically sig-

nificantly different from that of HOLOP.
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Figure 4.5: Heat map representation of performance UCT, HOOT, and HOLOP
in the bicycle domain.

4.3.2 Scaling The Domains

In this group of experiments, the ability of planning algorithms to scale to large

domains is tested, with the motivation that the combinatorial explosion of |S′|
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and |A′|with respect to |S| and |A|will have a negative impact on the ability of

discrete planning algorithms (and in particular, UCT) to function in domains

of higher dimension. In the first two domains presented, increasing domain

size is achieved by creating new domains that are composed of a number of

independent subproblems, the number of which we will refer to as D. In par-

ticular, agents must simultaneously control an increasing number of indepen-

dent instances of the double integrator or inverted pendulum domains, while

the number of samples available for planning remains fixed. The planning al-

gorithms are not presented with the fact that the state and action spaces are

composed of multiple, independent problems, which would greatly simplify

the planning problem (Diuk et al., 2009). In all experiments, the discretizations

used for UCT and HOOT are those with the best average value in the heat map

experiments. Rewards are averaged over all instances, and a terminal state in

one instance is treated as a terminal state for the entire domain. In the D-link

swimmer, the complexity of the domain is increased by adding additional links

to the swimmer.

As in Section 4.3.1, because the empirical performance of FSS-EGM and

OLOP is not competitive with the other algorithms, their results are omitted

from this section, as their presentation would only clutter presentation of the

results of the more effective planning algorithms.

Double Integrator

Because of the smoothness of T and R, along with the lack of terminal states,

the double integrator is the simplest domain tested, and it is therefore expected
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that algorithms will scale more effectively in this domain than others. The cu-

mulative reward of UCT, HOOT, and HOLOP, when faced by various num-

bers of instances of the double integrator, are presented in Figure 4.6. The first

point on the x-axis corresponds to the original domain, while the point where

x=5 corresponds to controlling 5 examples simultaneously, with |S| = 10 and

|A| = 5. As can be seen, the performance of HOLOP and HOOT are not sta-

tistically significantly different, while the performance of UCT is statistically

significantly worse than HOOT and HOLOP, regardless of the size of the do-

main. Furthermore, the gap in performance between UCT and HOLOP grows

as complexity increases, with a gap of 0.61 growing to 1.84 by the end of the

experiment.
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Figure 4.6: Performance of UCT, HOOT, and HOLOP while controlling multi-
ple instances of the double integrator problem.
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Inverted Pendulum

For the most part, the patterns that arose from increasing problem complex-

ity in double integrator also hold in the inverted pendulum, although they

are more exaggerated here, with the results presented in Figure 4.7. In par-

ticular, once again the performance of HOLOP and HOOT are not statistically

significantly different, and UCT is statistically significantly worse. The poorer

performance of UCT is very clear because, in the largest instances of the do-

main, it loses the ability to consistently balance the pendulum, leading to many

episodes that end with a large penalty.
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Figure 4.7: Performance of UCT, HOOT, and HOLOP while controlling multi-
ple instances of the inverted pendulum problem.
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D-Link Swimmer

Because of the significant costs of running simulations (due to more sophisti-

cated methods of integration to estimate dynamics) in this domain, testing dif-

ferent parameterizations of α and σ for UCT and HOOT would be prohibitively

time consuming. For this reason, heat map results are not presented for the D-

link swimmer. Being that parameters could not be selected experimentally, α

and σ were set to 5, with the motivation being that small values for these pa-

rameters would lead to the slowest (although still exponential) growth in |S′|
and |A′|, easing planning. Even with this parameterization, UCT still must

reason over an enormous space |S′| × |A′| > 1014 for the largest domain of

D = 6. The results of HOLOP, HOOT, and UCT in this domain are depicted

in Figure 4.8. As is the case in previous domains, FSSS-EGM and OLOP are

not competitive as their myopic decision making selects high-reward but low-

value actions where no (or minimal) torque is applied, resulting in a swimmer

that remains stationary for the duration of the experiment.

There are a number of items to note with regards to the results in this do-

main. While HOOT was able to perform essentially as well as HOLOP in do-

mains where σ was selected carefully, when tuning is not, or cannot be per-

formed, the performance of HOOT suffers significantly. In the case of this

domain, performance of HOOT without tuning is always statistically signif-

icantly worse than HOLOP, and occasionally equivalent to the very poor UCT.

Additionally, due the huge size of the discretized state and action spaces, the

performance of UCT and HOOT with D = 6 is closer to that of chance than of

HOLOP.
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Figure 4.8: Performance of planning algorithms in 2- to 6-link swimmer.

4.3.3 Sample Complexity

Previous scaling experiments demonstrate the performance of planning algo-

rithms with a fixed budget of samples, as domains increase size. Another eval-

uation approach is to consider how many samples planning algorithms need to

match the performance of HOLOP. In this experiment, we use the performance

of HOLOP as a baseline, and examine the factor of samples UCT needs over

HOLOP to reach the same level of performance. (HOOT is ignored as it almost

always has performance indistinguishable from HOLOP when discretization

is optimized.)

In particular, we consider the scaling problems for the double integrator

and inverted pendulum domains. Using the performance of HOLOP with 200
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trajectories as a baseline for each problem, we repeatedly double the number

of trajectories available for UCT to use (starting at 400 trajectories, as-in all

cases-it has worse performance with 200 trajectories per step), and stop doing

so once the difference in performance between HOLOP and UCT cease to be

statistically significantly different. Essentially the goal is to measure the fac-

tor of samples needed to shift the error bars of UCT up to overlap with those

of HOLOP in Figures 4.6 and 4.7. We call this measure (the relative number

of trajectories used) the sample complexity, and present the results of UCT as

compared to HOLOP in terms of sample complexity in Figure 4.9.
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Figure 4.9: Sample complexity of UCT as compared to HOLOP in scaling prob-
lems of the double integrator and inverted pendulum

As can be seen quite clearly, the number of samples needed by UCT grows
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superlinearly in the number of problems being controlled, and the curve ap-

pears to have exponential growth. When controlling 4 masses or pendulums,

UCT needs 32 times the number of trajectories given to match the performance

of HOLOP for the same problem. Results for what would be the final point

on the x-axis, where 5 problems are controlled, are not shown because even at

32 times the number of trajectories, the performance of UCT is still statistically

significantly worse than HOLOP in both problems, and running the domains

with N = 12800 (or more) trajectories per planning step is unreasonable given

the amount of time needed to run such experiments.

There is an excellent explanation as to why the numbers of trajectories

needed by UCT would grow exponentially to match the performance of HOLOP.

As parameterized, the number of actions available by UCT in both domains in-

creases by a factor of 10 every time problem complexity increases (the size of

the state space increases even more quickly). Because coarse discretization has

no means of generalizing, the number of samples needed must grow exponen-

tially to get a sufficient number of samples of each policy to maintain quality

(which devolves into a selected initial action followed by a random action se-

quence).

Until the number of samples increases exponentially to match the expo-

nential growth in actions, each initial action simply does not have enough

data to perform an accurate estimate of quality, due to the signal and noise

issue discussed in Section 2.4.3. HOLOP, on the other hand, performs adaptive

discretization and is able to generalize effectively. As such, even based on a

limited number of samples, HOLOP is always able to give some reasonable

estimate of action quality for any point in the entire action space, and therefore

suffers much less from increasing problem size.
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4.4 Running Time and Memory Usage

One reason that native continuous planners have traditionally been avoided

is the common belief that costs (both in terms of computation and memory)

of continuous methods are prohibitively large when compared to those of dis-

crete algorithms. In this section, we debunk this misconception. An interesting

aspect of working in high dimensional domains is that, as domains grow in

size, steps that are taken as trivial when operating in small discrete domains

can dominate costs, and even make planning prohibitively expensive. As such,

continuous methods can be significantly less expensive than discrete planning

methods. In particular, we show that HOLOP has almost constant planning

times and memory requirements, while UCT has an exponential growth in

running time and memory usage as dimension increases. In terms of the anal-

ysis, we will consider S, A, H, N as variables that may influence costs. We will

make the reasonable assumption that |A| << N << |A′|, as |A′| grows expo-

nentially in |A|, and likewise for state.

4.4.1 Illustration of Signal-to-Noise Problem

Local search presents planning in stochastic domains as a signal-to-noise prob-

lem. That is, fixed policies (both closed- and open-loop) will produce a distri-

bution of returns when executed in the domain. The goal of a planner, then, is

to create reliable estimates of return based on a finite amount of noisy data. In

low-dimensional domains, the rollout budget is generally large enough to con-

struct reasonable estimates regardless of the planning technique. Once plan-

ning moves to high-dimensional domains, reasoning more carefully about data

becomes critical. Coarse discretization, however, is very poor at doing such
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computation. This is because data is not generalized outside of cells, and as

the number of cells explodes in higher dimensional domains, the amount of

samples per cell vanishes to either 0 or 1 samples. Methods constructed to

plan natively in continuous domains, however, are capable of reasoning about

data in a more sophisticated manner that allows for better decision making,

especially in larger domains.

As an illustration, an experiment is conducted in the 2-double integrator.

In particular, the return estimates of UCT (with a 10x10 discretization) are

compared with that of HOLOP. Just as in the previous experimental setting,

N = 200. Because HOLOP performs an adaptive decomposition of the action

space, it performs a hierarchy of estimates, with average returns recorded for

tree depths of 3, 5, and 6 presented in Figures 4.10, 4.10 and 4.11, respectively.

In each figure, the region of the action space that is selected by the adaptive

decomposition at the end of planning is represented in pink. The importance

of this adaptive discretization is highlighted in Figure 4.11, which has an addi-

tional region shaded in green, which has a better average reward than the pink

region (selected by HOLOP). This distinction is important because the green

region corresponds to poorer actions, but appears better based on the available

noisy data. A more naive approach that does not reason as carefully about

available data, therefore, would end up selecting an action from the green re-

gion, producing a suboptimal policy.

Indeed, this exact behavior is what occurs with UCT, shown in Figure 4.11.

Because N = 200, even from the root, UCT is able to select each action at most

2 times, leading to a very limited amount of data to attempt to retrieve the

desired signal (the optimal action) from the present noise (stochasticity in T, as

well as in the randomized action selection in UCT lower in the tree).
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Longer rollouts produce higher variance results (Gabillon et al., 2011). UCT

has been shown to produce particularly high variance rollouts, and bagging

has even been proposed to help mitigate the issue (Fern and Lewis, 2011).

Modifications in UCT that allowed a variant to achieve master level play in

9x9 Go was designed specifically to help reduce variance of estimates (Gelly

and Silver, 2008). Additionally, because this has been identified as a problem

when performing local search, work has explored how to compute estimates

of bias and variance of Monte-Carlo algorithms (Fonteneau et al., 2010).

4.4.2 Analytical and Empirical Memory Costs

With regards to memory, data structures built by HOLOP will be smaller than

those built by UCT. For every 〈s, h〉 pair that is visited by UCT, a node must be

created that ∀a ∈ A′ maintains a constant amount of information. In the worst

case, 〈s, h〉 are never revisited, leading to memory costs of O(HN|A′|). In the

5-double integrator, as considered in this section, the worst-case memory cost

is quite large at 50 · 200 · 105 = 109, and is incurred during each planning step.

HOLOP, on the other hand, builds a data structure that always grows by a

single node every trajectory, as opposed to every step of every trajectory. Ad-

ditionally, each node contains a constant amount of information, as opposed

to UCT which requires |A′| memory for each node. Constant costs can be

achieved in HOLOP by representing A(ν) only by the index in H|A|where the

child differs from the parent, and what the value of the difference is (this incurs

an additional log N computational cost but such a cost is already incurred dur-

ing normal execution). Because one such node is built only after each trajectory,

the memory requirement of HOLOP is O(N). Because we assume N << |A′|
(Section 4.4), UCT has significantly higher memory requirements as compared
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Figure 4.10: Estimated initial action quality as estimated by HOLOP at tree
depth 2 and 4.
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Figure 4.11: Estimated initial action quality as estimated by HOLOP at tree
depth 6, and by UCT with α = 10.
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to HOLOP.

As the overall framework used by HOOT closely resembles UCT, with an

algorithmic underpinning of HOO, it has memory costs somewhere between

UCT and HOLOP. Unlike UCT, HOOT does not have different memory costs

based on whether 〈s, h〉 are revisited. Because whereas UCT must maintain

statistics on each a ∈ |A′| for each node, HOOT only adds one constant cost

HOO node regardless of whether that 〈s, h〉 was previously visited or not.

The distinction is that whereas HOLOP adds one node during each trajectory,

HOOT adds H per rollout. Therefore, the memory requirements of HOOT are

greater than HOLOP, with a cost of O(NH).

The actual memory usage of the 3 algorithms in the D-double integrator

are presented in Figure 4.12. A few background items are worth discussing.

Firstly, the implementations are in Python 2.6 64 bit (van Rossum and de Boer,

1991, Dubois et al., 1996), and as such exist in an environment devoid of direct

memory control, so numbers reported here should be taken as only approxi-

mate values, keeping various items such as garbage collection and imported

libraries into consideration. The entire experimental environment aside from

the planning algorithms was subtracted from the memory use displayed in

Figure 4.12. Secondly, the implementations used here emphasize correctness

and simplicity over optimization of computational or memory costs.

The actual memory results have a number of noteworthy elements, and

are in line with analytical results. Firstly, HOOT is shown to have very high

memory costs, which is between roughly 10 to 25 as much memory as used

by HOLOP depending on the particular problem instance. This value is not

terribly far from the factor of H = 50 expected by the analytical results when

considering the actual environment the experiments are run in. Also, memory
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Figure 4.12: Memory usage of UCT, HOOT, and HOLOP in megabytes in the
scaling domain of the double integrator.

usage of both HOOT and HOLOP are shown to be nearly constant with respect

to domain size.

The only algorithm that is significantly impacted by increasing domain size,

also in agreement with the analytical memory requirements, is UCT. Although

somewhat difficult to discern due to the scaling imposed by HOOT, it is clear

that the growth in memory usage in UCT is exponential. In particular, the

entire change in memory from D = 1 to 4 is 10 mb of memory, whereas the

change in memory usage from D = 4 to 5 is more than double that value at 24

mb. Based on this rate of growth in memory use, and the almost flat memory

use of HOOT and HOLOP, it is clear that in domains of only slightly larger size

UCT would have the largest memory costs. Indeed with D = 6 (not shown) the
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costs of HOOT and HOLOP are essentially unchanged, while UCT becomes

the most expensive planner by a large margin, requiring approximately 200

megabytes of memory.

4.4.3 Analytical and Empirical Computational Costs

For the most part, proof that computational costs of UCT are heavier than

HOLOP follow from the analysis of the memory requirements. Once UCT

stores data on ∀a ∈ A′, it has already incurred an equivalent computational

cost of |A′|, which we assume dominates other variables (aside from |S′|). The

main difference between the two costs are that memory costs are worst case,

but computational costs are the same in best and worst case analysis. During

each step of each rollout, even if an 〈s, h〉 is reencountered, UCT must com-

pute maxa∈A U(s, h, a). There is no simple way to work around this cost, as

all U(s, h, a) change continuously and must be recomputed at each time step

(some other planners can mitigate this cost by maintaining priority queues

based on value estimates of all a ∈ A′). It is worth mentioning that simply due

to interaction with the generative model, executing rollouts has computational

costs of O(HN(|S| + |A|)), so this cost will appear in all analyses. During

each step of each rollout, UCT simply computes maxa∈A′ U(s, h, a), followed

by some constant-cost operations, leading to a computational complexity of

O(HN(|A′|+ |S|)).

The cost of traversing the tree built by HOLOP to conduct action selection

is O(log N), and incorporating the results of the rollout are constant-time op-

erations, so the computational cost of the entire algorithm is O(N(log N) +

H(|A|+ |S|)). HOOT has an equivalent O(log N) cost, but this cost is incurred
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during each step in the rollout, as opposed to once for each rollout. Combin-

ing the computational cost of tracking state results in a computational cost of

O(HN(log N + |A|+ |S|)). From a theoretical standpoint, UCT has the highest

computational requirements, HOOT is in the middle, and HOLOP is the most

computationally efficient.

The O(N log N) times are based on an optimization of the original presen-

tation of HOO, which does not impact the formal regret bounds. The original

presentation of the algorithm requires recomputing U and B for the entire tree

at every time step, and therefore has an O(N2) running time just to interact

with the HOO tree. Based on our testing, however, the version of the algo-

rithm that has the O(N2) running time has statistically significantly better per-

formance than the O(N log N) version, so the empirical results in this chapter

are presented with respect to the O(N2) version of the algorithm. The differ-

ence in observed performance is because exploration occurs more uniformly in

the O(N log N) version, which impacts performance in practice.

To determine whether real-world computational costs match the analytic

values, computation times of 1 round of planning in the D-double integra-

tor are presented in Figure 4.13 (note that the y-axis is log-scaled). Based on

the results, it is clear that UCT has exponentially larger computational costs

than HOOT or HOLOP. In fact, the curve for UCT is slightly super-linear as

scaled in the graph, so in practice the running costs of UCT actually look super-

exponential. Clearly, UCT has the heaviest computational requirements, going

from the fastest planner at D = 1 to taking over 350 times as long as HOLOP

to conduct planning when D = 5.

Aside from the extremely high computational costs of UCT, a few other

points are worth mentioning. HOOT is actually significantly more expensive
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Figure 4.13: Logscale running time of UCT, HOOT, and HOLOP, in seconds in
the scaling version of the double integrator domain.

for D = 1 than for even D = 5, which at first seems unusual. As discussed

in Section 2.4.3, the reason this pattern appears is because in the 1-double inte-

grator, the state space is small and trajectories are therefore significantly more

likely to reencounter 〈s, h〉 pairs. When pairs are revisited, action selection

must traverse deep into each tree for each h ∈ H during action selection. As

D increases, the effective state-space S′ used by HOOT explodes, meaning that

〈s, h〉 pairs are revisited much less frequently, and the internal HOO trees are

therefore more shallow and also take less time to traverse.

With respect to HOLOP, aside for 1-double integrator, the actual running

time of HOLOP is significantly less expensive than the alternative algorithms,



106

which is a result of the fact that a HOO tree is only traversed once at the begin-

ning of the rollout, and the rest of execution is performed open-loop. The slight

increase in running time over increasing D is due to the extra computational

costs of running D simulations instead of one for each planning step.

It is worth focusing on the fact that consistent with the motivations of local

planning, state is almost a non-factor in the analyses conducted. Aside from

the unavoidable HN|S| costs of simply performing rollouts, they are not a fac-

tor in memory or computational costs. Even though UCT becomes untenable

in high dimensional domains due to costs based on |A′|, there is no such direct

contribution of |S′| in the running time of the algorithm.

4.5 Discussion

In this chapter, HOLOP, a fully continuous state-action open-loop planner is

compared to a number of state of the art discrete planning algorithms. These

competitor algorithms span the spectrum from the closed-loop empirically dom-

inant UCT, to the theoretically motivated open-loop OLOP. The unifying prop-

erty of the competitor algorithms is that they all require some form of dis-

cretization to plan in continuous domains. The experiments that test the rel-

ative performance of these algorithms are set up in two main groups, exam-

ining different aspects of the performance of planners in practice. The heat

map results show that, even in small domains, the performance of HOLOP is

not exceeded by, and and is generally better than, the various discrete alter-

natives. The second set of scaling experiments shows that as domains grow

in size, the impact of discretization causes the gap in performance to grow

even wider, especially in the case of comparison to the fully discrete planner
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UCT. In an extension to the scaling experiments, important metrics of mem-

ory and computational requirements are considered both analytically as well

as empirically. Results show that HOLOP is superior to its rivals, with UCT

having exponentially higher costs in terms of required samples, memory, and

computation time as domain size increases. In this discussion, we will further

consider the implications of each comparison.

Discussion of Heat Map Results

As the empirically most effective discrete planner, the most significant result

of the heat map experiments is empirically demonstrating HOLOP’s ability

to outperform UCT in all domains tested. There was not a single parame-

terization of UCT or HOOT tested that outperforms HOLOP with statistical

significance, although there are many bad parameterizations that lead to per-

formance that is statistically significantly worse. Additionally, we have shown

that two discrete planning algorithms that have excellent theoretical properties

fail to be competitive in practice. Specifically, OLOP was selected both because

of its analytical qualities and because it is the most directly comparable discrete

planner, as both OLOP and HOLOP are regret-driven open-loop planners with

the main distinction being that one requires a discretization a priori while the

other selects a discretization adaptively. The heat map results show the impor-

tance of selecting a “good” parameterization, and indeed, the worst parameter-

izations for UCT resulted in performance not statistically significantly different

from the empirically ineffective OLOP and FSSS-EGM. Conversely, HOLOP

had absolutely no parameter changes throughout all of the experiments pre-

sented, and always produces excellent results without parameter tuning.
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It is also worth focusing again on the phenomenon of the nonsmooth opti-

mization landscape over optimiziation discussed in Section 4.3.1 and displayed

in Figure 4.14, which shows how the optimization space over coarse discretiza-

tions with respect to policy quality can be highly unsmooth. This is due to the

fact that, domains, discretizations, and algorithms can interact in unexpected

ways, leading to behavior that is both poor, and may require domain expertise

to avoid. As another concrete example of this phenomenon occurring, but this

time over discretization of the action space, consider the results of sparse sam-

pling (discussed in Section 2.3.1) planning in the double integrator, presented

in Figure 4.14. A local planner that requires discrete action space, sparse sam-

pling is well known for being extremely myopic (even more so than OLOP

or FSSS-EGM). Because of this, if 0 ∈ A′, a = 0 will always be selected (as

it produces the least immediate penalty), and the object is not moved for the

duration of the experiment (ultimately creating poor cumulative reward). If,

on the other hand, 0 6∈ A′, the algorithm will the smallest magnitude accel-

eration in A′ in the appropriate direction. Therefore, discretizations that have

an odd number of cells (that present the 0 action) produce poor results while

those that have an even number of cells produce more reasonable results (at

the point where there are 30 cells, there is almost no distinction between the

near-0 and 0 actions, so results from that parameterization are also poor).

In general, any coarse discretization is going to be suboptimal. As discussed

in Section 3.1, from the perspective of regret, acting optimally according to

a coarse discretization is indistinguishable from a degenerate policy. From a

purely practical standpoint, in real-world domains exhibit smoothness, there

are large regions that can quickly be determined to be unimportant, along with

contrasting high-value areas that need to be examined with care to sample as
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Figure 4.14: Unintuitive influence of action discretization on cumulative re-
ward of sparse sampling in the double integrator.

closely as possible to the optimum. Methods that rely on coarse discretization

fail on both counts. By allocating resources evenly, too much is expended on

suboptimal regions, leaving few samples to focus on the most promising areas

of the domain. HOLOP and HOOT, on the other hand, succeed in focusing

samples on appropriate regions of the action space, and as a result are the most

effective planning algorithms tested.

Another critical point is that coarse discretizations apply the same discretiza-

tions at all times, but there is no fixed discretization (coarse or not) that will

work for all states in a domain; if one considers planning from two differ-

ent states, discretizations should look different to maximize performance. For

example, consider the case in the inverted pendulum where the pendulum is



110

about to fall either to the left (which we will call s1), or to the right (s2). From s1,

it is clear that the whole range of actions that moves the pendulum further to

the left are suboptimal, and therefore a planning algorithm should quickly cut

off about half the action space from consideration entirely. From s2, however,

the good and bad regions are exactly opposite as those from s1, and using the

same discretization found to be effective for s1 in s2 would lead to very poor

behavior. As opposed to algorithms that require a discretization provided a

priori, HOLOP and HOOT will perform different, appropriate discretizations

over A for any provided start state.

Discussion of Scaling Results

The primary purpose of the scaling experiments is to show how coarse dis-

cretization causes discrete algorithms to suffer from the curse of dimension-

ality. One could argue that the results are unfair to the discrete planning al-

gorithms due to the fact that the best discretization from the D = 1 domains

is applied to the larger instances of the domain, where coarser discretizations

may allow for increased performance, but in the largest instances where D = 5,

even discretizing action dimensions into 5 cells results in 3125 actions in the

double integrator and inverted pendulum, far greater than the allowed budget.

Allowing even lower resolution cells would also not serve to improve results

much as agents would be allowed only to take actions from the extremes of the

action ranges, which is heavily penalized. No matter how one tries to set up a

more advantageous situation for the discrete planners, it is simply not possible

for such methods to be competitive in larger domains.

As has been mentioned many times, algorithms that rely on coarse dis-

cretization fail in high dimensional domains due to the explosion in the size
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of |S′| and |A′| (for local planners, growth in |A′| is particularly problematic).

Given this exponential growth, almost all discrete local planners (including

UCT) quickly devolve into what is commonly called vanilla Monte Carlo plan-

ning, where rollouts are performed by chance. This situation occurs because

coarse discretization in high dimensional spaces leads to violation of one of the

most common assumptions among discrete planners, which is that N > |A′|.
When this assumption is violated, each action is selected from the start state at

most once, and policies are otherwise selected uniformly at random. After the

budget of N rollouts is exhausted, the planner simply selects the action that

produced the highest return (no averaging is needed as each action initiates at

most one rollout). Therefore, the results of UCT in the scaling problems would

be consistent with the performance a large class of discrete local planners in

that setting.

Discussion of Cost Results

Analytical results show that UCT must maintain an exponentially increasing

amount of data in D, |A′|. Adding insult to injury, results presented in Sec-

tion 2.4.3 demonstrate that as domains grow in size, the rate at which 〈s, h〉
are revisited decreases rapidly. In such a situation, the statistics maintained

by UCT serve to increase computational requirements substantially while also

not helping with policy construction, as action selection is not meaningful until

each the number of visits to any 〈s, h〉 > |A′|. Although UCT must maintain

O(HN|A′|) items in memory, this data does not become of use until N greatly

exceeds some combination of |S′| and |A′|. Therefore, the algorithm is left with

enormous memory costs that do not even serve to influence decision making.
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With regards to HOOT, after parameter optimization, HOOT generally pro-

duces policies of quality equivalent to HOLOP. On the other hand, while the

quality of these results are not statistically significantly better than HOLOP, the

computational and memory costs of HOOT are larger than HOLOP by a factor

of H. That is, while HOLOP only inserts and queries for an action sequence

at the beginning of each rollout, HOOT must insert and query for an action

at each individual step in a rollout, with each query being potentially as ex-

pensive as that made by HOLOP. In summary, HOOT is more expensive by a

factor of H while also requiring a parameter search over σ to perform well.

In Closing of Comparison

In this chapter, algorithms from a number of different areas and backgrounds,

intended for use in different settings, were tested. Some were selected because

of strong analytical bounds, while others due to strong empirical support in the

literature. Others yet were selected to cover different aspects of planning, such

as closed- versus open-loop, or different aspects of discrete versus continuous

planning.

FSSS-EGM and OLOP in particular, have strong guarantees of performance

in worst-case settings. On the other hand, it should be noted that guaran-

tees do not prove optimal performance. In the case of OLOP, its bounds are

not equivalent to the best bounds possible. (No currently existent algorithm

achieves those theoretically optimal bounds in all settings.) FSSS, on the other

hand, simply guarantees that unlike UCT, it will not take super-exponential

time to find the optimal policy, and that its estimates of action quality are PAC.

Regardless, from the perspective of regret,S attempting to behave optimally

according to a discretization is meaningless (Section 3.1).
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FSSS-EGM and OLOP are not effective in the domains considered, and like-

wise do not have support in the literature of being effective planners in prac-

tice. UCT, on the other hand, has extremely poor worst-case performance, but

is known to be effective in many real-world problems. Considering the results

here, a conclusion that can be drawn is that based on prior state of the art for

discrete planning, it is possible to select either an algorithm that has strong

theoretical guarantees or optimize for real-world performance, but not both.

Because this chapter primarily focuses on empirical results, the focus has been

on the empirically dominant UCT.

Regardless, UCT was still shown to be ineffective in comparison to HOLOP.

Although it is known to be suboptimal with respect to simple regret, HOLOP

still has formal guarantees both in terms of standard and simple regret, which

is not true of UCT or HOOT in the general case. Based on these results, we

have a guarantee that is fairly similar to that of FSSS, which is that in the worst

case it will behave as badly as uniform planning in terms of simple regret, but

not worse. The distinction is that in addition to the formal theoretical results

surrounding HOLOP, it also is superior in practice, as none of the algorithms

outperform it in this chapter. As such, HOLOP is a planner that allows for what

discrete planning algorithms currently do not provide, which is both strong

theoretical guarantees as well as strong results in practice.

It is worth noting, however, that the goal of this chapter is not to show

that HOLOP is the best continuous planner. The literature on fully continu-

ous planners in general MDPs is still quite underdeveloped, and there is room

for improvement both in terms of analytical and empirical results. The goal

is instead to show that even an initial attempt into the field of native continu-

ous planners (which is known in some ways to be suboptimal) can still easily
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outperform the best discrete planners that are known to exist both in terms of

analytical regret as well as empirical performance.
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Chapter 5

Scalable Continuous Planning

In Chapter 4, it was demonstrated that, as compared to a wide range of dis-

crete planners, HOLOP has lower sample complexity, produces higher quality

solutions, and is more robust. These properties result from the fact that it does

not require search over a discretization to produce effective policies, and more

effectively uses acquired data. HOLOP is a natural baseline continuous plan-

ner by which to test other algorithms, as it has a number of desirable properties

such as tight performance guarantees, a built-in exploration policy, good real-

world performance, and parameter-free operation. Additionally, it was shown

that HOLOP scales better than the discrete planners tested, which spanned a

number of categories.

While it has already been made clear that discrete methods are unusable

in even the medium-sized domains of Chapter 4, in this chapter, we consider

planning in large domains, such as humanoid locomotion tasks that have up

to 18 state dimensions and 7 action dimensions. When working in large do-

mains where domain expertise is minimal, many trajectories are required to

conduct planning. In this case, the linear memory requirements and super-

linear computational requirements of HOLOP that were previously acceptable

causes planning to be prohibitively expensive. Therefore, in this chapter, we

restrict consideration to methods of planning that have planning and mem-

ory costs at most linear in N, and that are easily parallelizable in order to take
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advantage of modern hardware. Algorithms in this chapter follow a model

similar to HOLOP, where a continuous optimization algorithm is used to op-

timize a sequence of actions with respect to return, building on the insights

gathered in Chapter 4.

5.1 Cross-Entropy Optimization

Originally designed for rare event simulation (Rubinstein, 1997), the cross-

entropy method (CE) was extended to perform global optimization by casting

high value points as the rare event of interest (Rubinstein, 1999). While the al-

gorithm can be described generally at the cost of simplicity (Boer et al., 2005),

we focus on the specific version described in Algorithm 12.

Briefly, the algorithm functions iteratively by: sampling a set of I actions

a1...aI from the distribution p based on p’s current parameterization Φg−1 (line 3);

assigning rewards (or returns) to r1...rI to a1...aI according to the (potentially

stochastic) evaluation function f (line 4); selecting the ρ fraction of “elite” sam-

ples (lines 5 and 8); and then computing the new parameterization of p Φ̂g

used in the next iteration based on the elite samples (line 8). This occurs for Γ

generations, with the total number of samples taken being N = ΓI.

The algorithm requires several items to be specified a priori. First among

them is the type of distribution p, which defines main characteristics of how a

is drawn. Although p can be any distribution, in this chapter, unless otherwise

specified, we assume p is a Gaussian. Ideally, p(·|Φ̂0) would be the distribution

that generates optimal samples in the domain (although, if that were known,

no optimization would be necessary). Since, generally, this distribution is not



117

Algorithm 12 Cross-Entropy

1: function OPTIMIZE(p, Φ̂0, R, ρ, I, Γ)
2: for g = 1→ Γ do
3: a1...aI ∼ p(·|Φ̂g−1)
4: r1...rI ← R(a1)...R(aI)
5: sort actions according to descending reward

6: µg =
∑
dIρe
i=1 ai
dIρe

7: σ2
g =

∑
dnρe
i=1 (ai−µg)T(ai−µg)

dIρe
8: Φ̂g = 〈µg, σ2

g〉
return a1

known, or is difficult to sample from, other distributions are used. When do-

main expertise is limited, which is the case we consider here (Assumption 4), it

should be ensured that p(Φ̂0) has good support over the entire sample space.

Doing so helps to ensure that some samples will fall near the global optimum

in the first generation. The update rule for the parameter vector Φ̂g in line 8

is defined as the maximum likelihood estimate for producing the elite samples

in the current generation (although other rules can be used as well).

There are a number of other parameters for CE. The parameter ρ determines

the proportion of samples that are selected as elite, and is important because it

impacts the rate at which Φ̂g changes from generation to generation, as well as

the final solution Goschin, Littman, and Ackley (2011). The variable I defines

the number of individuals per generation; it is important that this number be

large enough so that the early generations have a good chance of sampling

near the optimum. The number of generations evaluated by the algorithm is

defined by Γ.

These parameters must all be set sensibly to find a good solution for the do-

main of interest. While doing so, tradeoffs in solution quality, computational

requirements, convergence rates, and robustness must all be considered. To
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simplify the application of CE to various domains, there are methods that au-

tomatically adjust (or remove) these parameters. While we use a fixed number

of generations in optimization, another common method is to examine the sta-

bility of Φ̂ or r1, ..., rI from generation to generation, and terminate when the

change of the variable drops below a threshold. The fully automated cross-

entropy method (Boer et al., 2005) further reduces the need to manually define

parameters to CE by adjusting them automatically during execution.

CE has a number of beneficial properties. By attempting to perform global

optimization, it avoids getting trapped in local optima; if attempting to find

near-optimal solutions, local search methods require shaping functions to ini-

tialize search near the global optimum, making them inapplicable in our set-

ting as shaping functions require domain expertise. Another property of CE

is that its computational costs are linear in the number of samples, and the

method parallelizes trivially within a generation, meaning the optimization it-

self is not computationally intensive.

While CE has guaranteed convergence to optimal results in some discrete

(Costa et al., 2007) and continuous domains (Margolin, 2005), the conditions

required in existing proofs are fairly strong and are violated in the experiments

discussed here. To our knowledge, there are no guarantees in terms of the rate

of convergence or sample complexity.

As compared to HOLOP, there are two primary drawbacks involved with

using CE. Firstly, HOLOP is a parameter-free planning algorithm. CE, on the
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other hand has a wide range of parameters, and the algorithm is generally sen-

sitive to changes in their values. Additionally, extra modifications are some-

times needed in practice, such as a temperature schedule that prevents prema-

ture convergence to local optima (Szita and Lörincz, 2006). Therefore in prac-

tice, whereas HOLOP can simply be applied to a problem with no additional

work, parameter optimization and other modifications are a necessary compo-

nent of producing quality results in CE. Secondly, whereas HOLOP has strong

formal guarantees, the lack of such guarantees for CE in the setting considered

in this chapter is a item worth considering.

5.1.1 Cross-Entropy Optimizes for Quantiles

When using CE, an item to keep in mind is that instead of optimizing for expec-

tation, it optimizes for quantiles (Goschin, Littman, and Weinstein, 2013). The

formal proof is related to one that was produced showing the same behavior in

genetic algorithms (Goschin et al., 2011), but will not be covered here. Instead,

this section presents an intuitive argument as well as a concrete case study out-

lining when optimizing for quantiles can cause poor behavior in practice and

how to correct this behavior when using CE.

In standard CE, an all-or-nothing approach is used to define elite samples

(defining the top ρ-fraction as elite and discarding the rest). Doing so means

all data of non-elite samples are simply ignored when constructing Φ̂g. Con-

sider a 2-armed bandit, with R(a1) producing 1 with probability 0.2, and −1

with probability 0.8, and R(a2) producing 0.5 with probability 1. In this case,

of course E[R(a1)] = −0.6, and E[R(a2)] = 0.5. CE can be used for this ban-

dit task by defining a Bernoulli distribution p, selecting either a1 or a2 (when
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a ∼ p = 0 or 1), with Φ̂0 = 0.5, initialized to chance selection. Assume ad-

ditionally that ρ = 0.1 and that I is some large value. In the first generation,

the samples where R(a1) = 1 will constitute the elite samples, and thereafter

Φ̂ = 0, sampling only from a1, even though it is poorer in expectation.

The change that causes CE to maximize expectation instead of quantiles

is simple, and is accomplished by weighing each sample proportionally to its

value, as opposed to the standard threshold (0 or 1 weight) (Goschin, Littman,

and Weinstein, 2013). We call this simple variant of the algorithm CE-Proportional

(CEP). This modification has the added benefit of simplifying the algorithm by

removing the parameter ρ. CE used in this manner can be related to a broader

family of optimization algorithms (Stulp and Sigaud, 2012).

In a larger, more real world example of this phenomenon, we discuss two

variants of the game of blackjack and describe how differences in mechanics

can lead to changes in policies when optimizing for quantiles or expectation.

The first variant of the game reduces the game to its most important dynamics,

as described in Sutton and Barto (1998). At the start of play, the dealer is dealt

one visible card, and the player is dealt two cards from a infinitely large shoe

made of standard decks. At each point in time, the player can choose to either

hit (add another card to his hand), or stick (cease to add cards and pass play to

the dealer). If the sum of the player’s hand surpasses 21 points, he busts, losing

the round. Once the player sticks, the dealer hits until his hand sums to 17 or

more points.

Likewise, the dealer busts if his hand sum reaches greater than 21 points.

Assuming neither busts, the winner is the player with the hand closest to 21

points (if both hands are equal valued, play ends in a draw). Each numeric

card has points equal to its number, with face cards having a value of 10. The
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ace can be valued at 1 or 11 points. If the ace can be valued at 11 points with-

out busting, it is scored as such and is said to be usable. We also adopt the

policy representation of Sutton and Barto (1998). The state is represented by

the dealer’s showing card, the sum of the player’s hand, and whether or not

the player holds a usable ace. On hand values less than 12, the player auto-

matically hits, because there is no chance of busting. Therefore, the game can

be represented with 200 states with 2 actions of hitting or sticking (the distri-

bution over which is binomial). CE begins with a uniform distribution over all

pure policies, represented by 200 individual binomial distributions initialized

with Φ̂0 = 0.5. As such, each sample from the space optimized over by CE is a

point in policy space of size 2200.

Using CE in this manner is equivalent to classical policy search. Although

in this chapter we focus on CE for performing policy search over open-loop

policies, the algorithm does have a history of use in standard policy search.

CE has had significant empirical success in a number of settings, among them

buffer allocation (Alon et al., 2005), scheduling, and vehicle routing. More ref-

erences and applications are described in the standard CE tutorial (Boer et al.,

2005). The first paper to apply the CE method formally in the context of RL

for policy search was Mannor et al. (2005). The idea of using CE to search in a

parameterized policy space was subsequently used to obtain results that were

orders of magnitude better than previous approaches in the challenging RL

domain of Tetris (Szita and Lörincz, 2006, Szita and Szepesvári, 2010, Goschin,

Littman, and Weinstein, 2013).

Returning to blackjack, the experiment is run with G = 2000, and I =

10000. Each experiment is repeated 10 times. Figure 5.1(a) shows the aver-

age reward per generation over each of the 10 executions of CE with various
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selection methods. As can be seen, policy improvement occurs most rapidly

with ρ = 0.5, but levels off quite rapidly. It is then surpassed by CEP, which

produces the highest quality policies for the rest of the experiment. The distri-

bution of rewards according to strategy is depicted in Figure 5.2(a), with error

bars displaying the standard deviation of the average of the 10 final popula-

tions in each experiment. While CEP produces the best policy, the difference

between it and standard CE is minimal.

In the second variant tested, the option to double is introduced. This action

causes the player to double the wager (after which payoffs can be only −2, 0,

or 2), hit, and then stick. All other details (with changes in resulting state and

action spaces) are identical to the first setting, and the dealer is not able to

apply this action. The performance of the various CE variants is rendered in

Figure 5.1(b). Whereas in blackjack without the double option all parameteriza-

tions of CE and CEP improved over time, once the double option is presented,

only CEP results in consistent improvement over time. Both CE with ρ = 0.2

and ρ = 0.5 initially improved but later degraded, with ρ = 0.5 being essen-

tially equal to chance performance by the end of the experiment, and all other

policies produced by non-proportional selection being worse than chance. The

reason for the difference in average performance is because without propor-

tional selection, CE maximizes for quantiles, and therefore prefers the double

action as it occasionally produces higher reward even though it is worse on

average. As can be seen in the distributions over rewards in Fig. 5.2(b), CEP

exercises the double action less than 10% of the time, and has an action dis-

tribution markedly different from the other strategies. In particular, CE with

ρ = 0.1, 0.2 both performed the worst, and doubled the most (almost 95% of

the time), and lost almost 1/3 of all bets where doubling was used, resulting in
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very poor performance. Essentially, the CEP variant both removes a parameter

that must otherwise be searched over, while improving the performance of CE

drastically in cases where optimizing for quantiles produces a different result

than optimizing for expectation.

5.2 Open-Loop Planning with Cross-Entropy

In this section, we discuss the application of CE to open-loop planning. Essen-

tially the approach is the same as HOLOP, with the distinction that CE replaces

HOO for optimization. This planning algorithm will be called cross-entropy

open-loop planning (CEOLP). As compared to HOLOP, the advantages of CE-

OLP are memory costs independent of N and planning times only linear in

N. As an open-loop planner underpinned by a global optimization algorithm,

CEOLP shares properties with HOLOP, such as having planning costs are in-

dependent of |S|. Additionally, it operates identically in continuous, hybrid,

and partially observable domains. This final property is extremely important

when considering the humanoid walking problems that will be presented later

in this chapter, as physical domains with hard contacts (such as feet contacting

the floor) make the state space a discrete-continuous hybrid, significantly com-

plicating planning in closed-loop methods. CEOLP is shown in Algorithm 13.

Applying CE to local planning does not require any changes to the algo-

rithm itself; only the manner it is used changes. The evaluation function f

now performs a complete rollout according to the action sequence and evalu-

ates the sequence according to its return (lines 4, 9-16); parameters necessary

for the rollout are bound by the agent, and f is left to accept a as a parameter

during optimization in CE (line 4). For the fixed planning horizon H, optimiza-

tion is now conducted over length-H action sequences (vectors of length |A|H)
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Algorithm 13 Open-Loop Planning with CE

1: function AGENT(G, H, s0, p, Φ̂0, ρ, I, Γ)
2: s← s0
3: loop
4: f ← λa. ROLLOUT(a, s, 0, H, G)
5: a← OPTIMIZE(p, Φ̂0, f , ρ, I, Γ)
6: a′ ← a1...a|A|
7: s′ ∼ GT(s,a′)
8: s← s′

9: function ROLLOUT(a, s, h, H, G)
10: if h ≥ H then
11: return EVALUATE(s)
12: R← GR, T ← GT, A← GA, γ← Gγ

13: a′ ← ah|A|...a(h+1)|A|
14: r ← R(s, a′)
15: s′ ∼ T(s, a′)
16: return r + γ ROLLOUT(s′, a, h + 1, H, Γ)

with respect to their returns (line 5). After optimization is complete, the first

action in the sequence (line 6) is performed in the true domain (line 7), and the

process repeats anew from the resulting state (line 8).

Cross-Entropy has been used for local planning in MDPs to search over

sequences of states in domains as complicated as simulated helicopter control

and navigation (Kobilarov, 2011). Additionally, CE has been been used in place

of a uniform distribution to improve the performance of rapidly exploring ran-

dom trees (Kobilarov, 2012). This previous work, however, is concerned with

domains that are deterministic, and planners that have access to more domain

knowledge than we assume (Assumption 4), such as inverse kinematics and

precomputed motion primitives.



127

5.3 Empirical Results

This section presents a detailed comparison of performance between HOLOP

and CEOLP, using benchmark domains from Chapter 4. It should be noted

that the goal of this section is not to make the claim that CEOLP is a better

algorithm than HOLOP, as it is somewhat unfair to compare them. While it

will be shown that CEOLP does outperform HOLOP in terms of policy quality,

memory usage, and computation time, the differences in assumptions made by

the two algorithms must be kept in mind. Theoretical results (which CEOLP

essentially does not have) aside, HOLOP is an entirely parameter free algo-

rithm, while CEOLP requires the following parameters specified:p, Φ̂0, I, Γ,

and (if CEP is not used) ρ. The argument that will be made, however, is that

properties of HOLOP make the algorithm more difficult to use when dealing

with large planning domains, and in such settings other algorithms such as

CEOLP are more practical.

In the second set of experimental results, CEOLP is then selected for plan-

ning in a number of large domains involving humanoid locomotion. These

domain have |S| = 18 and |A| = 7, and are difficult planning problems for

a number of reasons. Although characteristics and difficulties involved in the

domain will be discussed at length, it is high dimensional domain with sparse

effective policies, the space of which has many discontinuities with respect to

return (Tassa and Todorov, 2010, Erez, 2011, Erez et al., 2011, Tassa et al., 2012).
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5.3.1 Double Integrator

In this section, performance of CEOLP is presented in the double integrator

domain, introduced in Section 4.2.1. In the first part of the section, perfor-

mance and costs are compared to HOLOP, and the second set of results shows

a detailed comparison to optimal performance by a linear quadratic regulator

(Sontag, 1998).

CEOLP and HOLOP

In the first set of empirical results with CEOLP, performance is compared to

HOLOP. Whereas Chapter 4 focused primarily on the ability of algorithms to

scale to high-dimensional domains, in this section we consider results from

that setting as well as differences in planning costs as N increases. In CEOLP,

N is divided into 10 evenly sized generations, with ρ = 1/4, and p is a distri-

bution over H = 50 independent Gaussians.

Figure 5.3 presents scaling results for HOLOP and CEOLP, which are equiv-

alent to those presented in Section 4.3.2. As can be seen, although the al-

gorithms have essentially identical performance when D = 1, increasing D

causes a great deal more performance degradation for HOLOP than CEOLP.

In fact, the performance of CEOLP at D = 5 is not statistically significantly dif-

ferent from that of HOLOP at D = 2. These results are essentially the same in

the inverted pendulum, although in that domain CEOLP at D = 5 outperforms

HOLOP at D = 2 with statistical significance (not shown).

A reason for the disparity in performance of the two algorithms is that the

impact of new data is smaller in HOLOP than in CEOLP. Whereas CEOLP

updates the distribution over all dimensions over the entire sample space after

each generation, in HOLOP each new sample can only refine the policy in one
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region of one dimension. Therefore, in practice refining the policy requires

more samples for HOLOP compared to CEOLP.
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Figure 5.3: Performance of planning by HOLOP and CEOLP in the double
integrator.

In the next series of results, we compare the costs of planning as N in-

creases. Cost of both algorithms are effectively invariant to changing D, so re-

sults for fixed D are not presented. Figure 5.4 shows the change in memory use

as N increases. As expected, the memory use of HOLOP is linear in N, as each

trajectory results in one additional constant-size node being stored in the HOO

tree decomposing the space of action sequences. CEOLP, on the other hand,

has constant memory memory costs. This property is important, and holds be-

cause between generations the only variables the algorithm must maintain are
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Figure 5.4: Comparison of memory usage of HOLOP and CEOLP as the num-
ber of trajectories increases.

the current generation g and Φ̂g, which in this setting has a memory require-

ment linear in |A|H (or |A|H2 if multivariate Gaussians are used). Even within

a generation, only a1, ..., aI and r1, ..., rI are required, which is slightly larger,

but also invariant to changes in N.

A comparison of actual running time for one step of planning in each algo-

rithm is presented in Figure 5.5. Again, consistent with analytical results, the

running time of HOLOP is super-linear in N. This point, compounded with

the degraded performance shown in Figure 5.3 as D increases means that the

number of samples required and resulting planning time in large domains be-

comes prohibitively expensive. CEOLP, on the other hand, has running times

that are exactly linear in N, and more efficiently uses samples to refine plans in
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Figure 5.5: Comparison of actual running time of HOLOP and CEOLP as the
number of trajectories increases.

large domains.

CEOLP and Optimal Performance

In this section, a comparison between the performance of CEOLP and optimal

performance by a linear quadratic regulator (LQR) in the double integrator is

conducted. The cumulative reward per episode obtained by CE for varying

numbers of trajectories (ΓI) per planning step, as well as the LQR solution ap-

pear in Figure 5.6. Here, ρ = 0.1 and Γ = 30, with I divided evenly across

generations. The mean cumulative reward of CE with ΓI = 7, 000 is not statis-

tically significantly different from optimal (p < 0.05). In fact, in some episodes

the solution found by CE is slightly better than the “optimal” LQR solution.



132

Such a result can occur because the LQR solution assumes the domain is time

continuous, which is not actually the case.1
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Figure 5.6: Performance of planning in the double integrator with cross-
entropy compared to optimal.

A visualization of the planning performed by CEOLP in the double inte-

grator from s0 is rendered in Figure 5.7. Alternating in shades of red and blue,

trajectories are grouped according to increasing generation during optimiza-

tion, in planes of increasing height along the vertical axis. These planes cor-

respond to the trajectories developed in generations 0, 7, 14, 21, and 28. The

policy at generation 0 (lowest on the vertical axis) is simply a random walk in

the domain. The trajectory rendered highest along the vertical axis in black is

1 An optimal finite-horizon discrete-time solution is possible, but not tested (Chow, 1975).
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the trajectory selected by LQR, and the start state s0 is represented by the verti-

cal cyan line. As can be seen, the basic shape of the policy forms quickly, with

the later generations performing minute refinements.

It is worth mentioning that the trajectories from generation 28 and the LQR

policy (2nd to highest, and highest, respectively, in the plot) are initially similar,

but differ later in the trajectories. While differences from the LQR policy should

be regarded as errors, CE can still achieve very high performance due to the

fact that it uses receding-horizon planning. Because planning is completely

restarted during each step in the episode, the planner only needs to produce a

near-optimal initial action each time planning is conducted.
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the double integrator from the episode start state.
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5.3.2 Humanoid Locomotion

In this series of experiments, we demonstrate the ability of open-loop plan-

ning by CEOLP to produce effective strategies for humanoid locomotion in

high-dimensional domains that are deterministic, stochastic, or even contain a

flawed generative model.

As modeled here, the walker’s planar body consists of a pair of legs, a pair

of arms, and a torso. The legs have upper and lower segments, while the arms

and torso are made of one segment. At each of the 7 joints, a desired angular

joint speed is set at each time step, so the action space for planning is these

7 values. In a compact representation, the state is 18 dimensions, as one part

of the body must be specified in terms of location and velocity, and all other

points can be described in terms of its angle and angular velocity from the joint

it connects to. The reward function is the velocity of the hip along the x-axis.

Any state where a part of the body other than a foot contacts the floor is termi-

nal, with a large penalty. We use ρ = 0.2 and CE is allowed 10,000 trajectories

of planning per time step distributed evenly across 30 generations, with I = 30.

Aside from parallelization, the simulation and planning algorithms were not

optimized, with the simulation run in PyODE (PyODE, 2010). The sampling

distribution p is a multivariate Gaussian.

In the simplest experiment, called the deterministic walker, we demon-

strate the ability of CE to find an effective policy when the domain is deter-

ministic. A stroboscopic rendering of the policy is shown in Figure 5.8, with

locomotion going from right to left. It is worth noting that the gait is highly

dynamic; there are entire classes of planning devoted to legged locomotion

that are unable to produce this type of behavior, such as classical zero moment
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Figure 5.8: The deterministic walker, renderings from every 10th frame.

point controllers. As compared to such controllers, those that can move dy-

namically both appear more natural and are more efficient (Manchester et al.,

2011). Because there are phases where the body is ballistic, it is more accurate

to call the form of locomotion running, as opposed to walking. The increasing

distance between each successive rendering from right to left indicates that the

agent is accelerating throughout the experiment, increasing reward per time

step as the episode progresses. In contrast, the policy constructed by UCT in

the same domain is rendered in Figure 5.9. The last frame with the body ren-

dered in red is the last step in the episode, as a part of the body has contacted

the ground. In this domain, UCT with α = 5 has to consider 78, 125 different

actions, much more than what is allowed by the budget of N = 10, 000. Failure

of UCT in this large domain is consistent with results in Chapter 4.

In the next experiment, called the stochastic walker, the basic setting is ex-

panded by introducing stochasticity in the form of random “pushes”. These

pushes are applied to one joint selected uniformly at random at each time step,

are of a uniformly random magnitude, and are always toward the right (op-

posite the direction of desired locomotion). This type of noise makes planning
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Figure 5.9: Performance of UCT in the deterministic walker, renderings from
every 10th frame.

difficult because it is not zero-mean, and perturbs an individual joint strongly

at each time step (as opposed to an equivalent force being distributed evenly

over the body). Figure 5.10 is a rendering of the performance of CE planning

in this noisy domain. As compared to the deterministic walker, locomotion

takes roughly 3.5 times as long to cover the same distance. Because of the dif-

ficulties associated with balance in the presence of external forces, methods

that explicitly compensate in simpler settings (more constraints on the type

of forces, balance of a lone leg) have been proposed, and require precomput-

ing policies just to maintain balance (Liu and Atkeson, 2009). In contrast, the

method of planning here does not rely on precomputation, but is still able to

produce full-body strategies for walking (as opposed to simply balancing) that

are robust to these challenging forms of noise.

Another experiment in this domain is to test the importance of replanning.

In a modification of the planning scenario, the entire planning sequence of 30

steps is used before replanning is conducted again (as opposed to replanning

at every step in the other experiments). In order to keep the amount of data
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Figure 5.10: The stochastic walker, renderings from every 30th frame.

available to the algorithm constant, CEOLP is given access to N = 30 ∗ 10000

trajectories. The stroboscopic results of this experimental setting are presented

in Figure 5.11, with renderings from every 10th frame. When planning is con-

ducted in this manner, by the end of execution of the the first 30 steps, the body

is already in a configuration that cannot be recovered from, leading to an in-

evitable fall. The terminal state is reached somewhere around step 60, either

just before the end of the second action sequence (steps 30-59), or the beginning

of the third (steps 60-89), depending on stochasticity. These results show that

replanning is necessary in stochastic domains, as action sequences that maxi-

mize expected reward are in general highly suboptimal once a long period of

time has passed and stochasticity begins to strongly influence the trajectory.

In the final, most difficult walking experiments, we demonstrate the ability

of CE to plan in settings where the generative model used for planning is er-

roneous. In one of the experiments, the domain itself is deterministic (without

any external forces), but the model incorrectly introduces stochastic pushes

(Figure 5.12). In the other experiment, the situation is reversed, where the

domain is deterministic, but the model incorrectly includes stochastic pushes
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Figure 5.11: The stochastic walker, with replanning every 30 steps. Renderings
from every 10th frame.

(Figure 5.13). Locomotion is also performed successfully in these more diffi-

cult settings, albeit at a slower pace. In the deterministic walker, using a false

stochastic generative model results in locomotion that takes 1.7 times as long

to reach a fixed point as when the correct generative model is used. The policy

developed for this experiment is characteristically more conservative than the

policy developed for the normal deterministic walker with correct model. In

particular, in this experiment the body spends almost the entire episode with

at least one foot in contact with the ground, whereas in the fully deterministic

walker the body spends a fair amount of time airborne, completely free of any

ground contact. Compared to the stochastic walker, planning with an incor-

rect deterministic model produces locomotion taking approximately 1.4 times

as long as planning with a correct model. Similarly, in this experiment the

agent takes a policy that is somewhat better suited to the model, as opposed to

the actual environment, taking a more risky policy that spends less time with

ground contact as compared to the policy constructed for the stochastic walker

when the correct model is provided.

The purpose of the final experimental domain is to demonstrate the ability



139

Figure 5.12: Performance of CEOLP in the deterministic walker, with an incor-
rect stochastic model. Renderings from every 30th frame.

Figure 5.13: Performance of CEOLP in the stochastic walker, with an incorrect
deterministic model. Renderings from every 30th frame.

of open-loop planning with CE to enable a humanoid to traverse uneven ter-

rain. In particular, the final task requires the descent of a flight of stairs. Aside

from the addition of stairs, the setting is identical to the deterministic walker.

The solution to the task found by CE appears in Figure 5.14. As can be seen,
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the policy found is to run to the edge of the top step and then take a leap that

clears the entire flight of stairs. The landing is performed successfully and run-

ning proceeded after the landing (not rendered). We anticipated a policy that

would walk down the steps, but because the goal is to maximize the velocity

of the hip along the horizontal axis, jumping across the the flight of stairs is

superior to deliberately walking down it step by step, as long as the landing

can be performed without falling.

Figure 5.14: Cross-Entropy finding a creative solution to the stair-descent prob-
lem. Renderings from every 10th frame.
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5.4 Iterative Greedy Rejection

CEOLP is able to plan effectively in large domains because of its ability to

generalize over different sequences of actions. In some settings, however, the

similarity between different sequences of actions has almost no implication on

the similarity of returns. This is the case, for example, in pure navigation tasks

that give a large reward for reaching the goal, but zero reward elsewhere. In

this type of domain, because reward is very sparse, small changes in policy can

be the difference between zero and nonzero returns. As a result, the landscape

of returns versus policy is highly unsmooth, violating common assumptions

of smoothness.

The infinite-armed bandit problem (Goschin, Weinstein, Littman, and Chas-

tain, 2012) defines a problem where an agent is allowed either to sample arms

from an unknown distribution D, a ∼ D(), or to resample an arm previously

drawn from D, r ∼ R(a). Arms may be drawn from continuous or discrete

spaces, making the approach applicable to domains with discrete or continu-

ous action spaces with the only modification being to D. Based on the PAC

formalism, the algorithms for use in the infinite-armed bandit problem require

the specification of the common ε and δ parameters, along with a minimum ac-

ceptable reward, r0. Given these values, a bound on the minimal sample com-

plexity based on the Hoeffding/Bernstein bounds is Ω
(
1/ε2 (1/ρ + log 1/δ)

)
,

with ρ being the probability of sampling an arm with expected reward of at

least r0, or ρ = Pa∼D(E[R(a) ≥ r0]).

In the original presentation of the problem (Goschin, Weinstein, Littman,

and Chastain, 2012), three algorithms are discussed that have polynomial time

bounds similar to the bound just described. Empirically, the algorithm called

iterative greedy rejection (IGR) achieves the best performance, even though the
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theoretical bounds provided are slighly inferior to the other two methods. IGR

operates by greedily rejecting arms at any point that their sample mean drops

below r0, and only accepts an arm once it is possible to prove E[R(a) ≥ r0 −
ε] with probability 1− δ, according to the Hoeffding bound. While this may

result in a large number of rejected good arms, the algorithm compensates by

rejecting poor arms very quickly (for example, if the arm has a Bernoulli payoff,

a reward of 0 on the first pull will result in the arm being rejected immediately).

IGR and related approaches are shown to be effective planning algorithms

in a number of domains. The most complex and difficult domain tested is the

videogame Pitfall!, which will be discussed at length here. Prior to the applica-

tion of IGR and related methods, the only known algorithm able to construct

policies in this domain solved only the very simple initial screen. In addition,

that method requires significant expert knowledge to define the types of inter-

actions that can occur between objects (Diuk et al., 2008).

The success of IGR as the state of the art for planning in Pitfall! is due to

the minimal assumptions made by the algorithm. In fact, the only assumption

made is that a successful sequence of actions can be drawn from D (a uni-

form distribution over action sequences in the experimental setting). The lack

of other assumptions is crucial because Pitfall! has many properties that vio-

late standard assumptions of other planning algorithms, which are discussed

briefly here.

Because the game runs in a complex emulator, it is not possible to reach ar-

bitrary states at any point in time - only an episodic generative model is avail-

able. Not only is it impossible to reach arbitrary states at any time, but even

defining state is quite difficult in Pitfall! The state is only fully defined by the

entire configuration of memory, which is enormous at 8128, which the agent
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does not access to. Therefore, the domain is partially observable (Kaelbling

et al., 1998), as agents only have access to image frames and not contents of

memory. The game is non-Markovian on the level of on screen pixels, as some

important information is conveyed only at rare intervals. Although the domain

is a POMDP, open-loop planners such as IGR can plan effectively in Pitfall!, as

state is ignored, and the required reset to s0 is available through the emula-

tor. This an example of how making minimal assumptions about the domain

lead to more general planning algorithms. Aside from partial observability,

smoothness between action sequences and returns does not exist because the

difference in one pixel location anywhere along a trajectory hundreds of steps

long can mean the difference between success and failure, making straightfor-

ward generalization impossible. Finally, in the experiments run, stochasticity

is introduced by occasionally randomly changing the requested action, mean-

ing that planners must tolerate noise.

Given all these complications of huge state space, partial observability, no

domain expertise, and stochasticity, planning in Pitfall! objectively seems ex-

tremely difficult. IGR, which makes almost no assumptions about the domain,

however, is able to plan sequences of actions hundreds of steps long (the en-

tire hypothesis space as designed in the experiment is 8500) in even the most

difficult screens reliably with only a few thousand trajectories (Goschin, We-

instein, Littman, and Chastain, 2012). The best policy found for three screens

are shown in Figure 5.15. Although IGR as tested operates on a domain with a

discrete action set, because it only samples arms from D, it can be used with no

modification to plan in domains that have continuous state or action spaces.
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5.5 Discussion

In this section, two planning algorithms are presented that produce effective

policies in large planning domains. The first algorithm, CEOLP, is an open-

loop planner in the same form of HOLOP but underpinned by cross-entropy

optimization. Direct comparison between the two is difficult as HOLOP is a

parameter-free algorithm with strong performance guarantees, and CEOLP is

sensitive to a wide number of parameters and does not have known theoretic

guarantees for the setting considered. That in mind, results show that when

attention is paid to its parameterization, CEOLP is more efficient with increas-

ing sample size than HOLOP. In the most complex domain considered in this

work, CEOLP is used to produce effective walking and running gaits in a high

dimensional humanoid locomotion task even in the face of uneven terrain,

noise, and minimal domain knowledge, granted only an episodic generative

model. This is the case even though the formal study legged locomotion (ap-

proached from which are not used here) is a complex field of research to itself,

generally requiring significant amounts of expert knowledge.

In addition, IGR is also introduced. Following in the pattern of evaluat-

ing planning algorithms in complex domains, IGR is shown to be an effec-

tive planner in the game of Pitfall! The success of IGR there is partially due

to the generality of the method, as it produces policies far superior than the

previous state of the art, which makes a number of hard assumptions and is

only capable of completing the simple first screen (Diuk et al., 2008). Although

the domain has a discrete action space, its is extremely challenging due to the

high-dimensional state space, partial observability, and stochasticity, which are

problems that can also exist in continuous domains. Likewise, the method can
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be used in domains with continuous action spaces simply by changing the dis-

tribution D from a discrete to continuous distribution (in most cases, uniform

distributions over action sequences suffice). One particular strength of IGR is

that the only assumption made is that “good” arms or action sequences are

produced by D with some minimal likelihood. This means that it can be ap-

plied to almost any planning setting. Even in the absence of knowledge of

what a good return is, methods such as the doubling trick (Bubeck et al., 2010)

may be used to produce acceptable plans.
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Figure 5.15: Successful policies found by IGR in three challenging levels in
Pitfall!



147

Chapter 6

Conclusion

Although reinforcement learning is a very general problem setting, research in

the area has traditionally focused on a small scope of problems, considering

domains of small, finite size. Even though most canonical RL domains are ac-

tually continuous, due to focus on this small subset of problems, it has become

accepted practice to apply a coarse discretization to the original continuous

domain and plan in the resulting discrete domain. This work has focused on

raising a critical view of the approach.

Chapter 1 introduced the general problem setting, the thesis statement, and

some intuitive arguments as to why the thesis statement may be correct. Chap-

ter 2 then discussed background information on discrete planning, including

why global planning is impractical in the case considered here. In response

to this, the motivation and history of local planning is presented, concluding

with to the state of the art of planning in discrete domains. Chapter 3 intro-

duced planning in continuous domains, demonstrating that, from the perspec-

tive of regret, optimizing according to a discretization is meaningless. Follow-

ing that point, a number of full planning algorithms are presented, finishing

with HOLOP, which has tight performance guarantees, is state agnostic, and

plans natively in continuous action domains. Chapter 4 empirically compares

the state of the art in discrete planning with HOLOP, showing that the latter

has significantly better performance than all discrete planners across the many
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domains tested. In addition to cumulative reward, other important factors

of memory and computational requirements were considered, showing that,

from all perspectives, discrete planners do not scale to even medium sized do-

mains. Chapter 5 then moved consideration from small and medium sized

domains to significantly more difficult large high dimensional and even par-

tially observable domains, showing that methods that reason natively in the

planning domain without modification are the state of the art.

For the remainder of this chapter, we will change focus to related algo-

rithms not yet discussed as well as potential extensions to the planners con-

sidered as future work. Finally, some remaining concluding remarks are pre-

sented.

6.1 Additional Related Work

Although this work is ultimately concerned with planning, HOLOP, CEOLP,

and IGR have all focused on algorithms that cast planning as an optimization

problem. As such, we will discuss a number of global optimization algorithms

as well as pure planning algorithms. Algorithms introduced here overlap with

a number of fields of study including operations research, control theory, and

motion planning, so it is impossible to discuss all related work. Therefore,

we restrict consideration to algorithms that are particularly related because

of theoretical contributions, similarity in setting, or algorithmic similarity to

previously discussed methods.
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6.1.1 Optimization Algorithms

Because the field of optimization is very large, we focus on a restricted class of

optimization algorithms that are useful for the setting considered. Specifically,

because the MDPs considered have noise in the transition function, optimiza-

tion algorithms (aside from DIRECT, which is discussed because of other novel

characteristics) must tolerate noise (Assumption 5). Limited domain expertise

(Assumption 4) introduces two other constraints that rule out large classes of

optimization algorithms. First, algorithms must perform global optimization,

as local optimization requires expert knowledge to initialize search near the

global optimum. Secondly, many optimization algorithms rely on convexity;

we do not provide any guarantees of convexity, and do not provide informa-

tion in terms of the overall shape of any aspects of the problem such as R, T, or

V.

Dividing Rectangles (DIRECT)

A common issue with branch and bound optimization algorithms based on

the Lipschitz constant K, is that they require this constant to operate. When

unknown, there are methods that attempt to estimate it, but estimates should

be conservative to avoid prematurely removing areas from consideration. The

DIRECT algorithm (Jones et al., 1993) operates without K, or any estimate of

the value. Instead, the algorithm simultaneously searches over all values of K,

creating ranges of possible values for each cell, and selecting any cell that is

potentially optimal. The method assumes a deterministic domain, but because

of the significance of the method it is being discussed, as it is often referenced

in more recent work. Although it has been shown to work well in practice, it



150

does not have tight regret bounds and convergence is only guaranteed asymp-

totically (Bubeck et al., 2011b).

Zooming Algorithm

The zooming algorithm (Kleinberg, 2004, Kleinberg et al., 2008) combines the

upper confidence bound technique with an adaptive step that uses samples to

focus on regions near the possible optimum and to explore more thoroughly

in these regions. The analytical results place a bound on what is called the

covering dimension, which is related to the number of balls needed to cover a

corresponding metric space. Based on the covering dimension d, the best possi-

ble regret at time step is O(N(d+1)/(d+2)). Ultimately, the algorithm is complex

and requires a “covering oracle” that determines if a region is covered by a

set of points, and if not, reveals what regions need covering. Because of these

complexities (in particular the assumption of a covering oracle which may not

exist), the zooming algorithm is more interesting theoretically than it is prac-

tically useful, and is an influence in more practical optimization algorithms

developed later.

UCB-AIR

The most common cause for the development of poor strategies when apply-

ing a discretization to a high dimensional continuous domain is the violation

of the implicit assumption that N >> |A′|. Algorithms developed for this

setting, such as IGR are a small exception to this rule. Another algorithm de-

signed for use in this setting is UCB-AIR, or arm-increasing rule (Wang et al.,
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2008). The primary difference between IGR and UCB-AIR is that in IGR a de-

sired average reward is specified, whereas in UCB-AIR there is an assump-

tion about the probability of sampling a near-optimal arm. The algorithm is

also related to OLOP in the sequential planning setting, with UCB-Air having

superior bounds in some cases, but also requiring more domain knowledge

in terms of the number of near-optimal arms which OLOP does not require

(Bubeck and Munos, 2010).

Estimating the Lipschitz Constant

When the Lipschitz constant K is unknown, one approach is to estimate bounds

according to a range of values, as is the case in DIRECT. Another approach is

to estimate K based on samples from the domain. Theoretical results show

that optimal regret (even in comparison to the case where K is known) can be

achieved by this approach (Bubeck et al., 2011b). The regret bounds according

to the method are O(K|A|/(|A|+2)N(|A|+1)/(|A|+2)) in domains where E[R] and

its derivative are Lipschitz. The algorithm works by performing a discretiza-

tion, similar to that proposed in the Zooming algorithm (Kleinberg et al., 2008).

Functioning in two phases, the algorithm first performs uniform exploration to

produce an estimate of K that is tight enough to achieve the regret bound. Fol-

lowing this step, an exploration-exploitation phase is conducted, which can be

performed by existing bandit algorithms. They also present the idea that such

a branch and bound method may be applicable in settings outside pure opti-

mization; it is likely that sequential planning is another potential application

of this general approach.
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6.1.2 Local Planners

Ultimately, this work is concerned with finding native continuous planners

that outperform the state of the art in discrete planning when coupled with

coarse discretization. Here, we will discuss a number of other algorithms out-

side of HOLOP, CEOLP, and IGR that function natively in continuous domains.

Some algorithms discussed here violate the assumptions made in this work,

but are still worthy of mention because of their contributions.

Differential Dynamic Programming

Differential dynamic programming (DDP) operates based on the assumption

that the domain has locally quadratic dynamics and value function (Mayne,

1966). Although it is a fairly old method, it has been used to produce state of

the art results in a number of domains. Perhaps the most significant success

of the approach was its use in performing real-time control of highly complex

acrobatic helicopter maneuvers (Abbeel et al., 2007, Coates et al., 2008, Abbeel

et al., 2010). Another significant application of the approach was in the domain

of simulated humanoid control (Tassa et al., 2007b, Tassa and Todorov, 2010,

Erez, 2011, Erez et al., 2011, Tassa et al., 2012).

While, DDP has been shown to be extremely effective (especially in com-

plex time sensitive domains), it does have a number of limitations. Firstly, the

approach is fragile due to the strong assumptions made with respect to the

form of dynamics of the MDP. Domains that have discontinuities in rewards

or dynamics (which occur in any physical setting such as walking where hard

contacts occur) need to have noise artificially introduced to smooth out dis-

continuities. This noise becomes a parameter that must be controlled, because



153

the introduction of noise reduces policy quality in the original domain (gener-

ally becoming more conservative), but introducing too little noise may result

in failure (Tassa and Todorov, 2010). Another result of the hard dependence on

quadratic dynamics is that regularization must used to prevent divergence by

ensuring small policy changes between generations. Controlling the regular-

ization variable leads to a trade off between safety from divergence and speed

of convergence (Erez, 2011).

Although these issues require extra parameter manipulation to use the do-

main successfully in many domains, they do not prevent DDP from being used

in the setting we consider. There are however, two more significant assump-

tions made when using DDP. Firstly, we assume access only to an episodic

generative model (meaning that states cannot be selected arbitrarily during

rollouts), but because of the approach of finite differences, DDP requires a full

generative model. Secondly, DDP is a gradient method, meaning convergence

is only to the locally optimal policy. As with other gradient methods, the im-

pressive results produced by DDP requires significant domain expertise to ini-

tialize search in a manner that allows effective policies to be generated (Erez,

2011).

Binary Action Search

Binary action search (BAS) is a method of transforming a discrete action, con-

tinuous state planner into a continuous action, continuous state planner (Pazis

and Lagoudakis, 2009). Similar to HOO, this method dynamically divides the

continuous action space into regions of smaller size. It performs this transfor-

mation by creating an augmented state space that represents state in the tradi-

tional sense, as well as the current selected action. From this point, the discrete
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action set becomes binary decisions in each original dimension in A, with each

binary action causing an increase or decrease in the binary search of the corre-

sponding action dimension. Because of the generality of the approach, it can

be used either in pure planning algorithms such as those discussed here, or in

the full learning setting where a generative model is not available. Results in

the literature on the full learning setting show that HOLOP is empirically more

effective at conducting decompositions: see Pazis and Lagoudakis (2009) and

Weinstein and Littman (2012).

Optimistic Planning for Sparsely Stochastic Systems

One of the reasons for the high planning costs of sparse sampling and FSSS is

that both algorithms must take enough samples to adequately factor in stochas-

ticity in T. One way to reduce planning costs is to construct algorithms that can

take advantage of particular features of the planning domain, such as limited

stochasticity. In particular, the optimistic planning for sparsely stochastic sys-

tems algorithm leverages sparsity in the transition matrix, if it exists (Buşoniu

et al., 2011). The algorithm in many respects is similar to FSSS, performing

rollouts based on computed bounds estimated during rollouts. Differences are

that it also requires access to a set of all possible next states, and analysis is

with respect to simple regret, as opposed to a PAC-style result. Empirical re-

sults contain a comparison to OLOP, which is shown to be less effective in

practice.
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Tree Learning Search

Tree learning search (TLS) is another method of performing planning in con-

tinuous MDPs (Van den Broeck and Driessens, 2011). In TLS, data from roll-

outs are given to an on-line regression tree learner, which determines which

regions of the action space may contain high reward. These estimates then in-

form the policy when performing rollouts at the next iteration. Unfortunately,

TLS lacks any theoretical guarantees of performance, and was not shown to

perform better than planners that used a priori discretization (Van den Broeck

and Driessens, 2011).

Schepers (2012) compared TLS to HOLOP with regard to the form of the

decomposition of continuous spaces conducted during planning, and places

TLS and HOLOP in a family of related algorithms. Although, given a bud-

get of samples from a generative model, TLS is outperformed by HOLOP and

other discrete planners, given a budget of clock time, the algorithm is highly

effective. In experiments, TLS is shown to be faster than HOLOP as well as

UCT. This is because the data structure built by TLS only grows when data in-

dicates that further decomposition would increase decision quality. As a result,

TLS is generally able to build very compact representations of its policy, which

is in contrast to HOLOP and UCT, which maintain data structures that grow

in either the number of trajectories (HOLOP), or in the total samples from the

generative model (UCT).

POWER

Policy learning by weighting exploration with the returns (POWER), is an algo-

rithm intended for use in episodic continuous state and action MDPs (Kober

and Peters, 2011). Instead of gradient methods, which require learning rates
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and are vulnerable to noise and getting caught in local optima, POWER is in-

stead based on the expectation-maximization (EM) paradigm (Dempster et al.,

1977). The mathematical underpinning of the algorithm is based on analysis

of the worst-case performance, as opposed to the more common consideration

of the performance of policies in expectation. Exploration in POWER is per-

formed locally, based on a temperature that decreases over time, and results in

the original publication show that some other gradient methods can be derived

from the analysis used to produce the algorithm. As a local-search method, the

experimental results presented with the algorithm require expert initialization

to start search near the global optimum.

Path Integral Policy Improvement and Related Algorithms

A particularly influential approach, path integral policy improvement (PI2),

(Kappen, 2005) is similar in some ways to differential dynamic programming,

and has resulted in a whole family of related algorithms. A benefit of PI2 in

its original formulation is that it is not particularly complex (although more

complicated than CELOP), and has a low risk of divergence because it does not

perform matrix inversions or gradient estimations. Empirically, the approach

has been successful both in simulation and real world obstacle avoidance tasks

with the “little dog” robot (Theodorou et al., 2010). Aside from exploration

noise, the method is mostly parameter free. One significant constraint is that

knowledge of the dynamics is required and there are constraints on their form.

Chapter 5 focused primarily on cross-entropy for planning. Recent work

has tied cross-entropy with the PI2 family of algorithms (Theodorou et al.,

2010) and the covariance matrix adaptation evolution strategy (Hansen and

Ostermeier, 2001), with essential differences being how samples are weighed
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(Stulp and Sigaud, 2012). One resulting benefit of creating this association is

the creation of a new planning algorithm that attempts to take the most ad-

vantageous components of each algorithm, producing Path Integral Policy Im-

provement with Covariance Matrix Adaptation (PI2-CMA). A primary advan-

tage of the method is that it determines the magnitude of exploration noise.

Covariant Hamiltonian optimization for motion planning (CHOMP) is a

rollout method that attempts to improve return according to gradient estima-

tion (Ratliff et al., 2009). It is intended for use in motion planning problems,

and, like PI2, has impressive empirical results including uneven domain traver-

sal with the little dog robot. As a gradient method, however, it runs the risk

of converging to poor local optima (Theodorou et al., 2010). In response to the

tendency of CHOMP to converge to poor policies, Stochastic trajectory opti-

mization for motion planning (STOMP), a planning algorithm based on PI2,

was proposed (Kalakrishnan et al., 2011). Like CHOMP, it can plan smooth

trajectories in motion planning tasks, simultaneously avoiding obstacles and

optimizing constraints, which in traditional motion planning algorithms oc-

curs in separate steps. An added benefit of the removal of gradients is that it

allows for more general reward structures, and can optimize arbitrary terms in

the cost function like motor efforts.

6.2 Extensions and Future Work

Although the computational costs of HOLOP, CEOLP, and IGR are relatively

low, the actual running time of the algorithms depends heavily on the cost of

performing the rollouts, and in particular sampling from R and T. In domains

that have simple dynamics such as the double integrator, this is not a great
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concern. For domains that are expensive to evaluate, such as full physics sim-

ulations or machine emulation as required in Chapter 5, actual running time

can be long, or even prohibitive. Future research regarding improved respon-

siveness of the algorithms when coupled with expensive evaluation functions

is warranted in settings with time sensitivity. Following the consideration of

the general RL setting, we focus on general purpose extensions. Therefore, we

ignore domain specific extensions such as the use of Poincaré maps and limit

cycles which, is common in the literature of legged locomotion (Manchester

et al., 2011).

Warm Starting

In all the planning settings considered, the only planning parameter that changes

throughout execution is the starting state s0. As such, the planner never ben-

efits from previous experience, which is generally wasteful. Information from

previous planning steps can be very useful for current decision making. A

simple approach to reduce planning time is to “warm start” planning with re-

sults from the last round of planning. A simple example is Φ̂0 in CEOLP. In

the experiments, in Chapter 5, Φ̂0 defines a uniform sampling of the entire ac-

tion range, but another option would be to initialize Φ̂0 to Φ̂G from the last

round of planning. In particular, Φ̂0 could be defined by shifting the previous

trajectories forward, removing the just-taken initial action in the sequence, and

replacing the last action with one that is randomly selected. This method is

used in much of the DDP (Section 6.1.2) work to drastically reduce planning

costs. A risk is that search during planning becomes much more local in nature,

and additional noise should be included to maintain policy diversity. Informal

results in CEOLP indicate both policy quality improvements along with drastic
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savings in sample use.

Another option is to use learning algorithms to estimate an appropriate

Φ̂0 based on s0 and previous experience in the domain. A similar method of

reusing search data transformed UCT into its variant, UCT-RAVE, which was a

key component of MOGO, the first computer Go agent to achieve master level

play in 9x9 Go (Gelly and Silver, 2008).

Parallelization

When working in large domains, parallelization (Amdahl, 1967) of planning

becomes increasingly important (Bourki et al., 2011). Based on the assumption

of limited domain knowledge, higher dimensional domains must in general

be met with increasingly large N. Additionally, the trend in modern proces-

sors has been to increase core count as opposed to speed, meaning that the

improvement in planning time for a single core is decreasing with time.

A central problem in parallelization is the cost-granularity problem, mean-

ing that the overhead of performing the actual parallelization (delegation of

work, integration of results) must be lower than the actual cost of performing

the work (planning, performing rollouts) in order for parallelization to actu-

ally improve running time. Fortunately, in most cases the costs of conducting

planning is high with respect to the cost of delegation, and empirical results

show parallelization of planning yields the most significant speedups in do-

mains that are computationally expensive (Evans et al., 2007). Aside from the

improvements in processing time, different forms of parallelization can serve

to improve performance by increasing the diversity of planning (Chaslot et al.,

2008), and can in some cases behave in a manner similar to bagging (Schapire,

1990) in standard supervised learning (Fern and Lewis, 2011).
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By its nature, closed-loop planning is difficult to parallelize. In closed-loop

planning, policies are commonly encoded by a tree or some other complex data

structure. Such a data structure either requires shared memory or frequent

communication to keep the data structure synchronized across processes. If

shared memory or frequent message passing is to be avoided, the only form

of parallelization that is usable in most closed-loop planners is fairly primitive

root parallelization (Chaslot et al., 2008).

Parallelization of open-loop planners, on the other hand, is ver simple. One

method is to simply have each process execute the following steps: query for

an open-loop policy, execute the policy, and then report the return to the cen-

tral process. This paradigm shares much in common with batch-mode opti-

mization (Desautels et al., 2012). Open-loop planning therefore, is simpler to

parallelize than closed-loop planning, and is also more efficient. Additionally,

because shared memory is not required, algorithms can be trivially parallelized

across physical machines with minimal communication, allowing for highly

scalable parallelization.

Some open-loop planners can parallelize even more efficiently than at the

level of individual sequences of actions. In CEOLP, for example, it is trivial to

parallelize across a generation; the only data that needs to be passed is Φg. IGR

is simpler, as it is essentially parallelizable without limit, and the only piece of

data that must be sent is the distribution over actions D, with the first process

that finds a good sequence simply returning it. Parallelization can also be per-

formed with HOLOP; results (aside from time and memory measurements) in

Chapter 4 used simple root parallelization (Weinstein and Littman, 2012). An-

other method for conducting batch sampling with HOO would be to pass the
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action range for the leaf, A(ν), to each process, and allow a fixed number of ac-

tions to be executed from A(ν), as opposed to just one. For a large part of the

planning phase, A(ν) is quite large, so it would not significantly impact sam-

ple diversity. Furthermore, theoretical guarantees remain intact when using

this method.

Value-Function Approximation

In our rollout planners, the structure of Generic Rollout Planning (Algorithm 7)

a function EVALUATE exists to assign a value to the final state of the trajectory.

In all empirical results, we simply evaluate every function as 0, to demonstrate

the performance of the planning algorithms in isolation. However, the EVAL-

UATE function can be concretely instantiated as some form of VFA. Although

there are significant problems that can arise when using VFAs (Section 3.3.1),

there are a few reasons to consider their use in conjunction with rollout plan-

ners. When using a VFA, it is always better to use it as an evaluation function

at the end of the rollout, as opposed to simply acting greedily according to the

VFA. Theoretical results show that using rollouts in conjunction with a heuris-

tic is always at least as good as the heuristic function alone (Bertsekas et al.,

1997).

The use of VFAs as such evaluation functions have led to some of the most

significant successes RL in game environments. Short rollouts rollouts fol-

lowed by VFAs defined play in TD-Gammon, which achieved world-class play

in backgammon (Tesauro, 1995). Heuristic UCT, a variant of UCT which incor-

porates VFAs was an important component in MOGO, which led to the first

computer agent that achieved master level play in 9x9 Go (Gelly and Silver,

2008), and a similar approach is documented in Silver et al. (2008). The most
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well-known application of this is in Watson, the Jeopardy! agent built by IBM,

which used a VFA in a manner very similar to TD-Gammon to predict the prob-

ability of winning Jeopardy! based on differing wager amounts and confidence

levels and other state information (Ferrucci et al., 2010).

Additionally, while standard VFAs are unsafe, there is a class of algorithms

that performs VFAs based on the recorded returns of trajectories, as opposed

to the standard dynamic programming approach (Stolle and Atkeson, 2006).

Using trajectory libraries in such a manner was a key element in the success of

recent applications of DDP (Liu and Atkeson, 2009, Tassa and Todorov, 2010).

LQR Trees (Tedrake, 2009) is another algorithm that helps guide search and

has had a significant impact in the control and robotics literature. Like many

approaches from control theory, the primary objective is to bring the system

into stabilization around a goal state, as opposed to value maximization. As

such, it does not provide any guarantees of optimality. While the first descrip-

tion of the algorithm is very complex and difficult to implement, a later exten-

sion (Reist and Tedrake, 2010) allows for much of the complex computations

to performed based on simple estimates from the generative model. Planners

discussed in this work are a natural fit with LQR-Trees, as the LQR-Trees do

not directly define a policy; a continuous planner is needed in conjunction to

actually formulate a policy.

A final note, however, is that attempting to use VFAs introduces costs in the

full size of the domain. Some of the most impressive applications rely on suf-

ficient domain knowledge to perform significant domain reduction to mitigate

this issue (Tassa and Todorov, 2010, Erez et al., 2011). Without reduction, the

costs of planning can increase very quickly with increasing domain size (Reist

and Tedrake, 2010).
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Model Building

This work considered the pure planning problem in RL where an episodic gen-

erative model is provided to the planner. Another possible setting is where an

EGM is not known a priori. In this case, an EGM can be learned from direct

interaction with the domain, using acquired 〈s, a, r, s′〉 tuples. In general, two

components are necessary to build an accurate model in such an RL scenario:

exploration and supervised learning.

Multi-Resolution Exploration (Nouri and Littman, 2008) or MRE is a method

that can be used inside almost any RL algorithm to drive efficient exploration

of a domain, assuming R and T are Lipschitz continuous. Originally con-

cerned with domains of continuous state and discrete actions, the algorithm

can be modified simply to explore the continuous space S× A (Weinstein and

Littman, 2012). When used in this manner, MRE functions by decomposing

S × A via a tree structure. Each leaf of the tree represents a region of S × A

within which “knownness” κ(s, a) is computed. As samples are experienced

in the MDP, they are added to the corresponding leaf that covers the sample.

Once the leaf contains a certain number of samples, it is bisected.

When a query is made for a predicted reward and next state, MRE may in-

tervene and return a transition to smax (a state with value Vmax) with probability

1− κ(s, a). The presence of this artificial state draws the agent to explore and

improve its model of that region. Doing so increases κ, which in turn means

it will be less likely to be explored in the future. In terms of model building,

the tree used by MRE can be used not only to drive exploration, but also as

a regression tree. Instead of inserting only 〈s, a〉 samples, inserting 〈s, a, r, s′〉
allows estimates R̂ and T̂ to be constructed.
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We note that other methods of exploration and model building are avail-

able. In terms of randomized exploration, the most popular method is ε-

greedy, but as an undirected search method it can fail to explore efficiently

in certain MDPs (Strehl and Littman, 2004), a limitation MRE does not have.

In terms of model building, any supervised learning algorithm can be used

to build estimates of R and T. Once MRE is chosen as the method of explo-

ration, however, the same tree can also be used as a regression tree with only

constant-time additional costs. Emprically, HOLOP combined with MRE for

exploration and model building has been shown to outperform other discrete

and continuous learning algorithms (Weinstein and Littman, 2012).

6.3 In Closing

Overall, this work has produced analytical as well as empirical results that

demonstrate the veracity of the thesis statement:

When compared to algorithms that require discretization of continuous

state-action MDPs, algorithms designed to function natively in continuous

spaces have: lower sample complexity, higher quality solutions, and are

more robust.

To be clear, arguments are not being made against discretization as a whole,

as HOLOP is an algorithm that performs a discretization performed adaptively

and automatically. Coarse discretizations, on the other hand, make the poor

tradeoff of focusing too little on important parts of the search space while fo-

cusing too much on suboptimal regions. As the dimension of the problem

increases, the need to carefully allocate samples becomes critical for effective

planning. A simple idea is that planning algorithms should be suitable for the
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domains they are applied to, and not vice versa.

Indeed, coarse discretization is one of the worst ways to attempt planning

in continuous domains. There are a number of reasons why. From the per-

spective of generalization, a coarse discretization is simply a primitive form of

function approximation; the fact that it is not used in general supervised learn-

ing is good evidence that the approach will not make good use of provided

data. Because it performs poor generalization, coarse discretization leads to a

difficult signal-to-noise problem, where, due to the curse of dimensionality, ac-

tions can only be sampled once and rollouts devolve into vanilla Monte Carlo

estimates of quality. When this occurs it becomes impossible (in general) to se-

lect actions optimally, as actions are selected according to a chance, as opposed

to near optimal, policy. When applied to large domains, coarse discretization

leads to difficulties in operations that are generally taken for granted. For ex-

ample, simply performing a maxA′ becomes exponentially expensive in |A|,
and even simple enumeration of |A′| becomes prohibitively expensive.

Perhaps a reason that reliance on coarse discretization is so common is that,

until recently, algorithms that function natively in continuous domains lead

to significant problems. As discussed at length, VFA has a number of issues

including the requirement that not only the final value functions, but all in-

termediate value functions be representable by the FA. The more significant

issue is risk of divergence. Classical policy search also suffers from significant

problems—functions representing the policy must be significantly complex to

represent near-optimal policies while still having a simple parameter space.

Additionally, most methods rely on gradient or local searches and converge

only to local optima. Algorithms presented here greatly simplify the task of

planning in continuous domains. They are both very simple to implement and
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do not risk divergence of the value function. They perform an overlooked

type of policy search without requiring domain expertise to initialize gradient

search, or to determine efficient parameterizations of function approximators

representing value functions or global policies.

Recall that the thesis statement does not claim that we have found an op-

timal continuous planning algorithm; such an algorithm does not exist for the

general setting in RL. The claim is rather that there are continuous planners

that outperform the best discrete planners that depend on a discretization pro-

vided a priori. A rather simple planning algorithm, HOLOP, is shown to be

superior to a wide variety of state of the art discrete planners based on several

important metrics. On the basis of theoretical performance, HOLOP achieves

near-optimal cumulative regret and planners that rely on fixed discretizations

have theoretically degenerate cumulative regret. On the basis of empirical per-

formance, HOLOP outperforms all tested discrete planning algorithms in all

domains considered. Additionally, on the basis of memory and computational

costs, HOLOP significantly outperforms its discrete counterparts. Primarily,

effective failure of discrete methods in even medium sized domains is due to

the manner in which coarse discretization suffers from the curse of dimension-

ality.

Following the formal and empirical results demonstrating the inability of

discrete planners to compete with native continuous methods, the discussion

progressed from small and medium canonical RL domains to large domains

that are still highly challenging for the state of the art. Two algorithms, CEOLP

and IGR are presented that are both algorithmically very simple and produce

effective policies for such domains. The simplicity of the approaches is par-

tially derived from the minimal assumptions the algorithms make about the



167

planning domain, which makes them very general purpose; other methods

generally require significant domain expertise to plan in the walking and Pit-

fall! domains of Chapter 5. Although no claims in particular are made about

open-loop planning in the thesis statement, HOLOP, CEOLP, and IGR are all

open-loop planning algorithms. Their ability to plan in the humanoid loco-

motion domain, which has hybrid state, and in Pitfall!, which is discrete but

enormous and partially observable, is a testament to the advantages of the ap-

proach and the benefits of working directly from data and making minimal

assumptions about the planning setting. The lack of assumptions also makes

the algorithms less fragile as many algorithms make hard assumptions about

domains and fail if those assumptions is violated, or if required provided in-

formation is incorrect.

Why is coarse discretization still favored?

In light of these results, it is worth asking the following question: if coarse dis-

cretization has known unavoidable exponential costs as domains grow, and is known to

fare so badly with respect to generalization, optimization, memory requirements, and

computational costs, why is it still the case that RL literature continues to leverage this

approach as both viable and state of the art?

Part of the answer may lie in the results in Chapter 4. Consider again the

results in Figure 4.13, which show that discrete planners are the fastest meth-

ods only for toy-sized domains (2 state dimensions and 1 action dimension).

Additionally, the gap in performance between discrete and continuous plan-

ners in these smallest domains is still low. Domains of this size such as the

inverted pendulum, acrobot, hillcar, double integrator, racetrack, and others,
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are still the canonical baselines by which results are presented in the litera-

ture (Sutton and Barto, 1998). In most cases, experiments are not performed in

larger domains; by doing so, simple and fundamental problems have simply

been hidden, or worse, ignored.

Essentially, planning algorithms have come to overfit cannonical RL do-

mains, which are toy domains unchanged for decades. The majority of even

modern results in the RL literature, therefore, deal with domains that are eas-

ily and efficiently solvable with algorithms 20 years old (Moore and Atkeson,

1993). Comparing computational power of consumer CPUs between then and

now shows a roughly 15, 000-fold increase in computing power (Int, 2013a,b).

Just as other disciplines have had to develop new approaches in the move

forward to more complex problems enabled by increasing computational power,

if the field of reinforcement learning takes the challenge of working on high-

dimensional domains, obsolete techniques will be discarded and new algo-

rithms will be developed by necessity. On the positive side, the reinforcement

learning competitions (Whiteson et al., 2010, Doe, 2013) have been providing

new domains which can serve as baselines for comparing performance in non-

trivial domains in the future. While there certainly is work in the literature that

deals with planning in high dimensional domains, at the moment such work

is the exception as opposed to the rule; moving forward it is hoped results in

more complex domains will become the norm, leading to entirely new plan-

ning approaches that function natively in the domain of interest, whatever its

properties.
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Istvan Szita and Csaba Szepesvári. sztetris-rl Library. http://code.google.

com/p/sztetris-rl/, 2010.



179

Y. Tassa and E. Todorov. Stochastic complementarity for local control of discon-
tinuous dynamics. In Proceedings of Robotics: Science and Systems. Zaragoza,
Spain, 2010.

Yuval Tassa, Tom Erez, and William Smart. Lagrangian analysis of the swim-
mer dynamical system. 2007a. URL http://homes.cs.washington.edu/

~tassa/papers/SDynamics.pdf.

Yuval Tassa, Tom Erez, and William Smart. Receding horizon differential dy-
namic programming. In Advances in Neural Information Processing Systems 20,
pages 1465–1472. 2007b.

Yuval Tassa, Tom Erez, and William Smart. The swimmer dynamical system.
2007c. URL http://www.cs.washington.edu/homes/tassa/code/swimmer_

package.zip.

Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis and stabilization of
complex behaviors through online trajectory optimization. In International
Conference on Intelligent Robots and Systems, pages 4906–4913. 2012.

Russ Tedrake. LQR-trees: Feedback motion planning on sparse randomized
trees. In Proceedings of Robotics: Science and Systems, pages 17–24. 2009.

Gerald Tesauro. Practical issues in temporal difference learning. Machine Learn-
ing, 8, 1992.

Gerald Tesauro. Temporal difference learning and TD-gammon. Communica-
tions of the Association for Computing Machinery, 38(3):58–68, 1995.

Gerald Tesauro and Gregory R. Galperin. On-line policy improvement using
Monte-Carlo search. In Neural Information Processing Systems, pages 1068–
1074. 1996.

Evangelos Theodorou, Jonas Buchli, and Stefan Schaal. Reinforcement learning
of motor skills in high dimensions: A path integral approach. In International
Conference on Robotics and Automation, pages 2397–2403. 2010.

Sebastian Thrun and Anton Schwartz. Issues in using function approximation
for reinforcement learning. In Proceedings of the 1993 Connectionist Models
Summer School. 1993.
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