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ABSTRACT OF THE DISSERTATION

IMPROVED EMPIRICAL METHODS IN

REINFORCEMENT-LEARNING EVALUATION

by VUKOSI N. MARIVATE

Dissertation Director: Michael L. Littman

The central question addressed in this research is ”can we define evaluation

methodologies that encourage reinforcement-learning (RL) algorithms to work

effectively with real-life data?” First, we address the problem of overfitting. RL

algorithms are often tweaked and tuned to specific environments when ap-

plied, calling into question whether learning algorithms that work for one en-

vironment will work for others. We propose a methodology to evaluate algo-

rithms on distributions of environments, as opposed to a single environment.

We also develop a formal framework for characterizing the ”capacity” of a space

of parameterized RL algorithms and bound the generalization error of a set of

algorithms on a distribution of RL environments given a sample of environ-

ments. Second, we develop a method for evaluating RL algorithms offline us-

ing a static collection of data. Our motivation is that real-life applications of
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RL often have properties that make online evaluation expensive (such as driv-

ing a robot car), ethically questionable (such as treating a disease), or simply

impractical (such as challenging a human chess master). We compared several

offline evaluation metrics and found our new metric (relative Bellman update

error”) addresses shortcomings in more standard approaches. Third, we exam-

ine the problem of evaluating behavior policies for individuals using observa-

tional data. Our focus is on quantifying the uncertainty that arises from mul-

tiple sources: population mismatch, data sparsity, and intrinsic stochasticity.

We have applied our method to a collection of HIV treatment and non-profit

fund-raising appeals data.
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Preface

Portions of this dissertation are based on work previously published or submit-

ted for publication by the author (Marivate et al., 2014; Marivate and Littman,

2013).
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Chapter 1

Introduction

Measurement is the first step that leads to control and eventually to im-
provement. If you can’t measure something, you can’t understand it. If
you can’t understand it, you can’t control it. If you can’t control it, you
can’t improve it. H. James Harrington

1.1 Evaluation in reinforcement learning

In machine learning (ML), there are numerous evaluation approaches and met-

rics used for different types of problems or to provide insight into the behav-

ior of learning algorithms. In supervised learning, the goal of evaluation may

be to characterize certain properties of an algorithm, for example, that could

be: how fast the algorithm learns, its computational complexity, the general-

ization power over multiple application domains etc. Another goal might be

to characterize the outcomes of a learning algorithm. For example, an outcome

could be the performance of the classifier or regression function produced by a

supervised-learning algorithm. There are many metrics associated with eval-

uating this second goal. In classification, just to name a few, the metrics used

could be: Accuracy, Precision, Recall, Area Under Curve and Receiver Operat-

ing Characteristics (Caruana and Niculescu-Mizil, 2004).

Reinforcement learning (Sutton, 1988) has similar challenges as machine

learning when it comes to evaluation. This dissertation argues that there is still
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more to do in terms of investigating and expanding evaluation methods that

can better give insight into the power of reinforcement-learning algorithms.

First, I will create experiments and metrics that better characterize the capacity

of reinforcement-learning algorithms to learn. That is, the experiments and met-

rics should characterize how well reinforcement-learning algorithms can learn

over different types of problems. Second, I would like to better predict the per-

formance of the outcomes of such algorithms, that is, the performance of the

policies produced by reinforcement-learning algorithms, even when we do not

have access to the original environments but only pre-collected (batch) data.

This dissertation tackles these two themes in three sections. First, I look

at how we can create evaluation approaches that can better characterize the

learning capability of algorithms when we have direct access to environments.

Secondly, I look at evaluating algorithms where we do not have direct access

to environments but have indirect access through batch data for evaluation

(maybe even learning). Finally, I look at generally evaluating policies arising

from reinforcement-learning algorithms and quantifying the uncertainty in pre-

dicting the outcomes. I develop policy evaluation models that take into account

uncertainty arising from using batch data for learning in sequential decision

making.

The rest of this section first presents some basic background to reinforce-

ment learning. Then I discuss the need for improved methods of online eval-

uation of reinforcement-learning algorithms. In the latter part of the section,

I discuss the motivation for the use of reinforcement-learning algorithms on

real-world data (often batch data) and the need to create better evaluation al-

gorithms to support the development of algorithms for this setting. Putting it

all together, I present my thesis statement.
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Figure 1.1: Reinforcement-learning framework

1.1.1 Brief Introduction to reinforcement learning

Reinforcement learning (RL) is a subset of machine learning that deals with

making sequential decisions under uncertainty. Reinforcement learning in-

volves an agent that interacts with its environment. The agent can perceive

a state through receiving observations from the environment, perform actions

and receive some reward (Figure 1.1).

The goal of reinforcement learning is for the agent to learn to maximize this

reward. For our purposes, the final outcome resulting from a reinforcement-

learning algorithm is a policy. A policy is a mapping from states to actions, indi-

cating which action(s) to take in a given state of the environment, thus defining

an agent’s behavior. Reinforcement learning thus aims to solve the complete

Artificial Intelligence (AI) (Russell and Norvig, 2010) problem, an agent acting

in a world, trying to maximize its utility.

Learning in reinforcement learning can take place online, that is, with the

agent having direct access to the environment or a simulator of the environ-

ment. Alternatively, learning can take place offline, that is, the agent has access
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to batch data that has in it an encoding of interactions with that environment.

This batch data may have been collected from another agent or from observing

some particular process. Similarly, evaluation in reinforcement learning can take

place either online or offline. Evaluation, normally in the form of measuring the

performance of the resulting policy, can be tested directly on the environment

in question. Conventionally, the performance of a reinforcement learning al-

gorithm is measured as the expected return of the agent executing the policy

resulting from the reinforcement-learning algorithm. Offline evaluation takes

the form of using the batch data and a policy or encoding of a policy, and pre-

dicting the performance that would result in the real online environment.

1.1.2 The quest for better online evaluation

Reinforcement learning, like machine learning, is an experimental science (Lan-

gley, 1988). In analyzing reinforcement-learning algorithms, researchers and

discuss theoretical aspects of algorithms and/or empirical performance prop-

erties. The latter is normally achieved by computing and showing the learning

performance of an algorithm or algorithms in an experiment. In reinforcement

learning, researchers control a large part of the experiment as well as the man-

ner in which we evaluate the algorithms. In these experiments, the researcher

chooses an environment or environments in which the learning will be carried

out. The amount of learning time, typically measured as the number of learn-

ing episodes in which the algorithm is allowed to learn is varied and the online

performance of the resulting policy is collected. This manner of evaluation re-

sults in learning curves, which are compared between algorithms. An example

of such a comparison is shown in Figure 1.2

When discussing the role of experiments in machine learning, Langley (1988)
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Algorithm 2

Figure 1.2: Learning curve illustration of two algorithms in an online setting.

covers a number of scenarios within which experiments can be set up to under-

stand the behavior of algorithms. First, a researcher can choose an environ-

ment, vary the learning method and then analyze the resulting performances.

In reinforcement learning, this is done by comparing one algorithm to another,

producing graphs similar to the one shown earlier in Figure 1.2. Researchers

may use such comparisons to show what algorithm is best for a given problem.

Researchers may also compare their algorithm with different sets of underlying

settings or handicaps, further illustrating algorithm behavior.

Secondly, when conducting machine-learning experiments, the researcher

can vary environment characteristics. In reinforcement learning, this has not

been a major factor in experimentation. Most researchers vary the type of envi-

ronments in which their algorithm is applied but rarely do they vary properties

of single environments. The most faithful attempt at investigating the impact of

varying environment characteristics in reinforcement learning was developed

in learning and evaluation criteria of the Reinforcement Learning Competitions

(2007-2009) (Whiteson et al., 2010). These competitions included multiple types
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of of environments. For training and evaluation within each environment, com-

petitors were given a sample of environments drawn from a generalized envi-

ronment. For example, in the classic Mountain Car type environment (Sutton,

1988), where the goal is to get an underpowered car to reach the top of a hill, the

sample environments differed by having different levels of noisy observations,

as well as the varying levels of stochasticity in the outcomes of actions.

More recently, the Atari Arcade environment (Bellemare et al., 2013) has

also introduced an aspect of varying the environment characteristics, though

arguably this is done by varying the types of environments and not properties

within each environment. Concretely, the environments in the Atari Arcade

environment differ at the level of varying video-games themselves (Pac-Man

vs. Frogger), instead of an approach that monitors the effect of varying the

configurations of a game such as Pac-Man.

The Reinforcement Learning Competitions also had such a challenge in their

Polyathlon competition, where competitors could expect different types of en-

vironments to be used for learning. As such, in both the Arcade and the Poly-

athlon domains, the researchers wanted to spur the creation of algorithms that

could better generalize across multiple problems. Such an approach to experi-

mentation may still be undone by algorithms that simply aim to identify what

type of environment they are in and then deploy the best algorithm for such

a situation. Some may argue that this approach is still fine in as much as it

still results in good performance. I do not believe that this is what ultimately

reinforcement-learning researchers are trying to do when creating new algo-

rithms. I believe that reinforcement-learning researchers are trying to create

algorithms that have the capacity to learn and as such we would like to evalu-

ate the capacity of algorithms to learn and not to over-fit to specific problems.
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Other researchers argue against benchmark or ”bake-off” domains that re-

sult from such competitions (Drummond, 2006; Langley, 2000), as they may

preclude researchers from investigating other less popular problems. I wish

reinforcement learning had this type of problem, but alas we do not have a

heavily used testbed for our algorithms. I believe that having benchmark do-

mains is still a good goal, encouraging researchers to share algorithms and im-

proving cross comparability. Such benchmarks can be used to reveal interesting

algorithm behavior as long as researchers can be mindful of the manner they

perform experiments and sensible evaluation methodology.

I believe there is still work to do in creating evaluation methods that better

capture the behavior of reinforcement-learning algorithms. I believe a mixture

of both being able to vary the algorithm parameters as well as the characteristics

of the environment is needed. I believe that evaluating algorithms in such ex-

periments will give researchers a better understanding of the strengths and pit-

falls of their algorithms. More importantly, I believe this type of approach will

spur research into creating self contained reinforcement-learning algorithms

that learn to adapt given different environments, instead of researchers instanti-

ating algorithms such that they perform well on single environments. As such,

instead of simply saying that algorithm A is better than algorithm B in envi-

ronment X, we would like to be able to capture the capacity of a reinforcement-

learning algorithm to learn in environments like environment X as well as in-

tuition about how well the algorithm generalizes across environments.



8

1.1.3 Creating reinforcement-learning algorithms that deal with

real world data

Treating machine learning as an experimental science, as in any science, we

would like to be able to gain insight into real world phenomena that we can

observe. As such, we would like to be able to have reinforcement-learning al-

gorithms solve real world problems. To do so, we need algorithms deployed

in real world applications. In most cases this is easier said than done. There

are cases where environments are compact and easy to model. Take for exam-

ple the breakthrough of having a reinforcement-learning algorithm learning to

play the game of Backgammon at master level (Tesauro, 1994). Unfortunately,

most real world problems are not easy to model. Another example are envi-

ronments set in domains such as healthcare. Let’s say we would like to create

a reinforcement-learning algorithm that can find sequential treatments for pa-

tients suffering from diabetes. We may not be able to have direct access to the

subjects for multiple reasons, least being the ethical considerations of exploring

different treatments. On the other hand, environments such as flying a hobby

helicopter (Ng et al., 2006) are hard problems to solve but are made even harder

by the complexity of direct access to the helicopter in the learning process. Such

challenges necessitate the use of high fidelity simulators. Even so, these sim-

ulators might be hard to deploy, needing specialized computation hardware,

and as such, the simulators become hard to share between researchers. Com-

plex and hard to access environments make it harder for researchers to compare

methods to each other, further necessitating an approach that might side step

such restrictions.

In supervised learning, a lot of progress has been made in applying methods
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in the real world, especially after the introduction of the UCI database (New-

man et al., 1998). The UCI database provides what Langley and Kibler (1991)

term ”Natural Domains” of classification and regression problems. The devel-

opment and evaluation of supervised learning algorithms on the UCI database

datasets has shown (and ushered) the real world applicability of such methods.

An analogous database of datasets of sequential decision problems might spur

on new research and discoveries in reinforcement learning. The explosion of

data collected from healthcare, education and marketing, as well as the reduc-

tion in computational cost, has resulted in an opportunity for the application

of reinforcement-learning algorithms. The natural question that arises is how

do we now evaluate and compare different reinforcement-learning algorithms

given that we only have access to the batch data?

There are few past approaches to evaluate reinforcement-learning algorithms

with batch data. Later in the dissertation, we explore the approach of directly

evaluating algorithms, comparing metrics, using batch data, and characterize

shortcomings. Afterwards, given that the evaluation of the RL algorithms relies

heavily on the data collection process, we develop methods to evaluate policies

resulting from reinforcement-learning algorithms, taking into account multiple

sources of uncertainty given the batch data.

1.1.4 Thesis Statement

The applicability of reinforcement-learning methods to real-world challenges

can be improved by novel evaluation methodologies, including online proce-

dures for characterizing the capacity of reinforcement-learning algorithms and

offline evaluation procedures that account for the uncertainties resulting from

the use of noisy batch data.
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1.2 A Road-map for this document

This section gives an overview of each of the chapters of this dissertation, briefly

describing the evaluation challenges tackled in each chapter.

1.2.1 Improved Online evaluation for Reinforcement Learning

I first tackle the problem of creating an evaluation approach that will lead to

less overfitting in RL methods. I propose approaching reinforcement learning

from two different levels. First, defining reinforcement learning as taking in

a single environment and producing a policy for that environment. Secondly,

defining meta-reinforcement learning as an algorithm that takes in a sample of

environments and produces a reinforcement-learning algorithm. I explore the

use of Rademacher complexity in estimating the generalization error of meta-

reinforcement learning algorithms. Then utilizing a sample-optimized gener-

alization bound to quantify generalization given sets of algorithms. Further,

I show how cross-validation may be sufficient to make decisions on which al-

gorithms to use given different situations. I present ensemble reinforcement

learning as a possible meta-reinforcement learning algorithm.

1.2.2 Offline evaluation of reinforcement-learning algorithms

I compare several offline reinforcement-learning evaluation metrics, pointing

out significant shortcomings that limit their utility. Proposing a new metric,

the Relative Bellman Update Error, that scores pairs of value functions using

offline data. I provide formal analysis and empirical results that suggest the

Relative Bellman Update Error metric is a viable way of comparing value func-

tions offline.



11

1.2.3 Uncertainty in offline evaluation of RL algorithms

I advocate applying techniques from batch reinforcement learning to predict

the range of effectiveness that policies resulting from RL algorithms might have

for individualization. Identifying three sources of uncertainty and present a

method that addresses all of them. It handles the uncertainty caused by popu-

lation mismatch by modeling the data as a latent mixture of different subpopu-

lations of individuals, it explicitly quantifies data sparsity by accounting for the

limited data available about the underlying models, and incorporates intrinsic

stochasticity to yield estimated percentile ranges of the effectiveness of a policy

for a particular new individual. Using this approach, I highlight some inter-

esting variability in policy effectiveness amongst individuals in two real-world

datasets. The approach highlights the potential benefit of taking into account

individual variability and data limitations when performing batch policy eval-

uation for new individuals.
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Chapter 2

Background

2.1 Introduction

In this chapter, I survey a number of important reinforcement-learning con-

cepts that form the basis of the studies explored in later chapters. I first give a

background of the reinforcement-learning framework. I then discuss two ap-

proaches to developing learning algorithms in this framework that are used in

later chapters.

2.2 Reinforcement-learning framework

This section introduces the classical reinforcement-learning (RL) framework (Sut-

ton, 1988). At its most basic, reinforcement learning is concerned with an agent

that acts in some environment and receives some form of a reward. The agent

perceives some state through receiving observations from the environment.

Thus, the agent is in some state sk in the environment at time step k and chooses

an action ak to execute. After execution of the action in the environment, the

agent receives a reward rk and moves to a next state sk+1. This process pro-

ceeds indefinitely or to some predetermined timestep. The goal of reinforce-

ment learning is to find a good policy in the environment that leads to a large

cumulative reward.



13

Formally, in RL we describe the environment as a Markov decision processes

(MDP). An MDP is a 5-tuple 〈S, A, T, R, γ〉 where:

• S is the state space.

• A is the action space.

• T : S× A× S′ → [0, 1] is the transition function, the probabilities of tran-

sitions between states as actions are taken.

• R : S× A → < is the reward function, which returns reward values as a

function of states and actions.

• γ ∈ [0, 1) is the discount factor, which weighs the rewards obtained from

future actions versus present actions.

Over a sequence of state transitions, the return is the sum of discounted re-

wards received. A policy π : S → A is a mapping from state to action that

defines an agent’s behavior. That is, it gives either a deterministic or stochas-

tic mapping of which actions to take in a given state. Given a policy π and an

MDP, I define the value function

Vπ(s) = ∑
a∈A

π(s, a)R(s, a) + γ ∑
s′∈S

T(s′|s, π(s))Vπ(s′), (2.1)

as the prediction the discounted return obtained from starting in state s and

following policy π. In this dissertation, this quantity is important as it is equiv-

alent to the expected sum of discounted rewards of starting in a state s0 and

executing policy π, E[∑K
k=0 γkR(sk, π(sk))]. Similarly, I define the state-action

value function as

Qπ(s, a) = R(s, a) + γ ∑
s′∈S

T(s′|s, π(s))Vπ(s′), (2.2)
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that is, the prediction of the discounted return obtained from state s if action a

is taken for one step and then actions are chosen according to policy π. Equa-

tions (2.1) and (2.2) are known as Bellman Equations (Sutton, 1988). Further inter-

rogation of the state-action value function will be made later when I cover mul-

tiple approaches to evaluating reinforcement-learning algorithms with batch

data.

In general, the goal of reinforcement-learning algorithms, given an MDP, is

to find the optimal policy π?, which results in the optimal state-action value

function Q?—Q?(s, a) ≥ Qπ(s, a) ∀π, s, a. It follows that

V?(s) = max
a

Q?(s, a)

and

π?(s) = argmax
a

Q?(s, a).

There are different approaches for learning the policy in reinforcement learn-

ing. In the following subsections, we will discuss two approaches that will be

revisited in later chapters.

Given a full MDP model, we can find the optimal policy by finding V?. We

can estimate V? using the value-iteration algorithm (Bellman, 1957) shown in

Algorithm 1. There are a number of termination criteria used for the algorithm.

One can run the algorithm until it approximately converges. A somewhat natu-

ral way to do so is to monitor the largest change in the estimate at each iteration,

δ, and when it is smaller than some small value ε, terminate. At termination,

we can then extract the policy π.

There are other approaches of finding the optimal policy that do not need

the direct estimation of the optimal value function, such as the policy-iteration

algorithm (Sutton, 1988). The focus of this dissertation is on estimating value

functions, which is a key step in policy-iteration algorithms.
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Algorithm 1 Value Iteration
Input: MDP {T, S, A, R, γ}, ε
Initialize V(s) = 0 ∀s ∈ S
δ = inf
while δ > ε do

δ = 0
for s ∈ S do

Vprev = V(s)
for a ∈ A do

Q(s, a) = R(s, a) + γ ∑s′∈S T(s′|s, a)V(s′)
end for
V(s) = maxa Q(s, a)
π(s) = argmaxa Q(s, a)
if ||Vprev −V(s)|| > δ then

δ = ||Vprev −V(s)||
end if

end for
end while
return V, π

2.3 Reinforcement-learning algorithms

In this section, I give an overview of two approaches to reinforcement learn-

ing. First, I discuss model-based reinforcement learning. Then, we discuss

algorithms that do not learn the model but instead aim to estimate the value

function, model-free reinforcement-learning algorithms.

2.3.1 Model-based reinforcement learning

Model-based approaches are a class of reinforcement-learning algorithms that

aim to learn the MDP model dynamics and use this model to derive the optimal

policy. That is, they aim to learn the transition function T and reward function R

directly through interacting with the environment. The encoding of this model

M can vary among approaches. Later in the dissertation, I will use a tabular

representation for the model.
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The simplest approach to learn the model is to explore the state-space and

keep statistics of states visited, actions taken and reward received. Given these

tallies, we can then contract the maximum likelihood estimate (MLE) transition

model and reward function. After constructing the model, we can then use

algorithms such as Algorithm 1 to find the optimal policy or estimate of the

optimal value function for this approximate model.

Collecting these tallies requires the availability of an algorithm to choose

actions while interacting with the MDP. After arriving in a state, most model-

based algorithms carry out two important steps. First, the model-based algo-

rithm chooses an action given its estimate of the best action given value iter-

ation. Afterwards, in the second step, the algorithm experiences a state tran-

sition and receives some reward, updating its tallies. Given this information,

the algorithm updates its model and goes back to the first stage. In the data

collection phase, a balance has to be struck between exploring different parts

of the state-action space and exploiting the value estimates gained during the

learning process; this challenge is known as the exploration-exploitation trade-

off (Sutton, 1988). As such, the algorithms usually consist of an action-selection

policy, e.g. Epsilon Greedy, that has an accompanying exploration parameter.

In a second setting, data is collected before any planning takes place. The

RL algorithm is given a pre-collected set of experience data. In this batch set-

ting, the success of the algorithm relies on data being collected well. In the

latter part of this dissertation, I will show how to evaluate policies using this

model-based approach. Model-based approaches are easy to use when the state

space is discrete, small and tractable, since the tallying operation is sufficient

for learning an accurate model. When the state space is continuous, one can

either discretize the continuous input from the MDP or estimate models using
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better underlying function approximators (Atkeson et al., 1997).

2.3.2 Model-free algorithms

Earlier, I discussed algorithms that first learn the model of the MDP and then

learn the optimal policy through algorithms such as value iteration. In this

subsection, I discuss approaches that require no models. A classic approach

is to use temporal difference algorithms (Sutton, 1988). Temporal difference

(TD) methods use experience tuples (s, a, r, s′) representing transitions in the

environment. The simplest implementation, TD(0), updates the estimate of the

state-action value function using the update rule

Ql+1(s, a) = Ql(s, a) + α(r + γ max
a′

Ql(s′, a′)−Ql(s, a)), (2.3)

where α is the learning rate. Given the experience tuples, each time we experi-

ence a state action pair, (s, a), the estimate of Q(s, a) is updated to be closer to

r + γ maxa′ Q(s′, a′). With infinite experience of each action in each state, this

algorithm is guaranteed to converge to the optimal state-action value function

Q? (Watkins and Dayan, 1992).

There are different TD-based algorithms. There are relatively simple algo-

rithms such as Q-learning (Watkins and Dayan, 1992), which uses a simple up-

date rule and is policy independent. An example of a policy-dependent algo-

rithm is SARSA (Sutton, 1988), which is similar to Q-learning but incorporates

action choices from the policy that would result from its estimate of the value

function as part of the update. That is, the update is of the form

Ql+1(s, a) = Ql(s, a) + α(r + γQl(s′, â)−Ql(s, a)), (2.4)

where â is the action chosen by the policy. Thus, for SARSA, a learning step
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is comprised of tuple (s, a, r, s′, â) . For both model-free and model-based al-

gorithms, representation of the learned information can use different forms of

function approximation. In small, discrete environments, the tendency is to use

tabular representations of state and actions. In continuous states and/or ac-

tion environments, other function approximation schemes are used. As such,

the algorithms discussed above may incorporate different function approxi-

mation schemes. Convergence when using function approximation may not

be guaranteed (Baird, 1995), but using function approximation has allowed

reinforcement-learning algorithms to scale to some large problems (Busoniu

et al., 2010; Kober et al., 2013).

The model-free algorithms described above tend to be used online, updat-

ing their estimates during data collection. The policies resulting from their esti-

mates are then used to collect more data. There is another set of algorithms that

are more suited to learning from batch data. Algorithms such as Least-Squared

Policy Iteration (Lagoudakis and Parr, 2003) and Kernel Based RL Ormoneit

and Śaunak Sen (2002) estimate the optimal Q-value using only pre-collected

batch data. I will use such algorithms later when discussing metrics for evalu-

ate RL algorithms using only batch data.
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Chapter 3

Improved Online Evaluation of Algorithms

Part of the work done in this chapter was accomplished with the collab-
oration of Michael Littman, James MacGlashan, Matthew E. Taylor, Carl
Trimbach and Eli Upfal

3.1 Introduction

Classically, the input in the training phase in reinforcement learning is an MDP

and an algorithm. The output of this first phase is a policy. In the evalua-

tion phase, we take the resulting policy and deploy it in the same MDP used

for training. We record the cumulative discounted return during this evalua-

tion. We compare this metric, the cumulative discounted return, across differ-

ent policies created by different algorithms. This type of evaluation is classed

as being online, that is, it is done with access to the real MDP.

Typically, we plot the performance of the policies resulting from algorithms

versus the amount of training/learning experience used to create the policy.

An example of such a plot is illustrated in Figure 3.1 with policies from 2 algo-

rithms, Algorithm 1 and Algorithm 2.

This type of evaluation highlights how fast or slow algorithms converge to

policies with (hopefully) a high level of performance. In the illustration, we see

that with very low training episodes, we would likely make the choice of us-

ing Algorithm 2. But, as the amount of learning experience increases, we see
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Figure 3.1: Illustration of a typical learning curve comparing the performance
of policies resulting from two algorithms

that Algorithm 1 produces the best policies, leading to the highest accumulated

reward. This has, for a long period of time, been the standard practice in com-

paring algorithms in the community. When comparing algorithms in different

environments, researchers would likely only report the performance at some

high number of learning episodes. Thus, in making choices about which algo-

rithms to use, we would use the performance of an algorithm in a single MDP

as a data point.

A question that needs to be asked then is how well does an algorithm’s per-

formance generalize across different problems. Using a single MDP is akin to

fitting a curve to a single data point. That is, training and evaluating an algo-

rithm on a single MDP is unlikely to be very instructive in predicting perfor-

mance on other MDPs.

As such, the logical—by supervised learning standards—next step is to find
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way of evaluating algorithms that allows effective generalization to other prob-

lems. In particular, evaluation should discourage overfitting. In the MDP set-

ting, problems are MDPs.

In this chapter, I explore the approach of using distributions of MDPs to eval-

uate classes of algorithms. We can think of a class of algorithms as algorithms

mixed with its parameter space.

3.1.1 Related work

In supervised machine learning, there is a lot of work that has gone into un-

derstanding the behavior of algorithms given different amounts of data and

difficulty in generalization. Generalization is how well we can predict the per-

formance of an algorithm on an unseen test set given its performance on the

training set. Given that we choose an algorithm from its class to maximize per-

formance on the training set, a principal challenge is how to perform an evalu-

ation in such a way that discourages overfitting—good training set performance

leading to poor test set performance (Dietterich, 1995).

In reinforcement learning, some other work has looked at approaches to

training and testing learning algorithms to encourage better generalization. One

of the largest efforts was the Reinforcement Learning Competitions (2007–2009)

(Whiteson et al., 2010) and their associated evaluation approach (Whiteson et al.,

2011). Their perspective is to imagine that MDPs are drawn from a general-

ized environment U : Θ → [0, 1] from which individual MDPs can be sam-

pled. Given this framework, first a training sample of MDPs is used to choose

a reinforcement-learning algorithm and its parameters, after which this algo-

rithm is evaluated on a testing set drawn from the same distribution. While

important for insuring the validity of the results in the competition, use of this
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approach is still not widespread. This chapter first provides support for this

type of approach and then looks at evaluation procedures we can use to gain

better understanding of known algorithms and how their performance varies

with different MDP characteristics.

A more recent approach that is related is the use of the Atari Arcade video

game MDP (Bellemare et al., 2013). For clarity, I will refer to it as the Atari Ar-

cade platform. The Atari Arcade platform introduced the concept of varying

the environment ‘types’ by varying specific video games (Pac-Man vs. Frogger)

that an algorithm has access to for training and testing. The video games could

be sports games, action games, adventure games etc. The focus is less on what

happens when one takes a game such as Pac-Man and monitors the effects of

changing game properties such as the number of enemies (ghosts). The Re-

inforcement Learning Competitions themselves had a challenge similar to the

Atari Arcade platform, albeit at a smaller scale and ambition. The challenge

was known as the Polyathlon. In the Polyathlon, both the types of environments

and individual MDP parameters were varied (Whiteson et al., 2010). So a type

of environment could be a gridworld, a physics based environment etc. Within

the training and tests sets there could be different variations of the same grid-

world or physics environment.

In both the Arcade and the Polyathlon domains, the researchers wanted to

spur the creation of algorithms that can better generalize across multiple prob-

lems. (Dabney et al., 2013) introduced a performance metric that dealt with

the biases that might be introduced when tuning parameters for algorithms

and/or when researchers try to compare their tuned algorithms in MDPs to

those tuned by other researchers.
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3.1.2 Outline

This chapter is split into 3 sections. I discuss current reinforcement-learning

evaluation methods and show why the evaluation methods may not align with

the goals of researchers. I then explore online evaluation approaches that better

measure the learning power of RL algorithms. That is, I explore evaluation ap-

proaches that quantify the generalization capability of algorithms. To do so, I

introduce the problem of meta-reinforcement learning and methods for evalu-

ating meta-reinforcement-learning algorithms. Lastly, I discuss potential meta-

reinforcement learning algorithms, discussing ensemble reinforcement learn-

ing and connecting this approach to ensemble supervised learning.

3.2 Generalization in reinforcement learning

In this section, I will explore the concept of generalization in RL by using a

small but interesting MDP to shed light on the pitfalls of making algorith-

mic decisions using a single MDP. I also introduce the problem of the meta-

reinforcement learning, an expansion of the reinforcement-learning problem

that incorporates learning and evaluation on multiple MDPs.

3.2.1 The 5-state chain

What if we would like a learning algorithm to generalize across different MDPs?

To explore this question, I describe a running example that will be used in this

chapter. I introduce the 5-state chain MDP.

The 5-state chain environment consists of 5 states and 2 actions, a and b

(Figure 3.2). In the classic version of the environment, the effect of the actions

in this system are stochastic. With p = 0.2 as the slip probability, there is a
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Figure 3.2: The 5-state chain (Strens, 2000)

0.8 (1− p) probability that the agent will move in the direction of the chosen

action and a 0.2 (p) probability that the agent will move in the direction of the

other action. A reward of 0 is given for choosing a in any state. The exception

is that in State 5 it results in a reward of 10. In all the states, action b results

in a reward of 2. The discount factor used is γ = 0.95. For this environment,

performance of a learning algorithm is measured as the probability of finding

the optimal policy for the MDP after 1000 steps of learning experience.

First, for learning in the classic 5-state chain, I consider two variations of the

widely used Q-learning learning (Watkins and Dayan, 1992). For both variants,

the learning rate (α) is varied between 0.0 and 0.5 and the exploration rate (ε)

varied between 0.0 and 0.4. In the constant initialization Q-learning algorithm,

all initial Q values are set to 45 (a value near the optimal state-action value

function). In the variable initialization algorithm, each state-action pair has an

initial Q-value set independently to a value between 0 and 200. We observe that

the parameters of the first algorithm are a strict subset of those of the second

algorithm.

We would like to try and answer the question: Which algorithm results in

the best performance? To do so, we can generate multiple Q-learning algo-

rithms by sampling different parameters and then testing them in the MDP.

What we find is that the best parameter values for the constant initialization
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Table 3.1: Initial Q-Values of best variable initialization algorithm in Five-State
chain

Q(s, a = a) Q(s, a = b)
s = 1 93.86 78.53
s = 2 85.27 104.07
s = 3 93.52 19.53
s = 4 136.77 0.42
s = 5 194.82 80.62

algorithm results in a performance (probability of finding the optimal policy)

of 0.945 and, with the variable initialization algorithm, we find the best param-

eters result in a performance of 1.000. The parameters of the best performing

constant initialization algorithm are α = 0.16, ε = 0.40. For the best performing

variable initialization algorithm, the parameters are α = 0.05, ε = 0.16 and the

initial Q-values shown in Table 3.1.

Is it sensible then to recommend preferring the variable initialization algo-

rithm over the constant initialization algorithm at all times? With only a single

MDP, we might be overconfident in the general performance of one algorithm

over another. The better thing to do is to compare the algorithms across the dis-

tributions of MDPs we would like our algorithms to be deployed in. Consider

two different distributions of 5-state chain MDPs:

• Static Order 5-state chain distribution: The MDPs are 5-state chains with

varying slip probabilities between 0.19 and 0.21 and the order of the states

is consistent with the original 5-state chain. This distribution only con-

tains chains very similar to the original 5-state.

• Dynamic Order 5-state chain distribution: The distribution consists of 5-

state chains with a variable order of the states and slip probabilities vary-

ing between 0.0 and 0.5. An example with states reordered is shown in
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Figure 3.3: A sample of the Dynamic Order 5-state chain

Figure 3.3. The Static Order distribution is a subset of MDPs drawn from

the Dynamic Order distribution, while most MDPs drawn from the Dy-

namic Order distribution would not be drawn from the Static Order dis-

tribution.

The best algorithm from the variable initialization for the original 5-state

chain performs poorly on average in the Dynamic Order 5-state chain MDP

distribution. The variable initialization algorithm achieves an expected perfor-

mance of 0.293 (that is, it has 0.293 probability of finding the optimal policy

in the distribution). What this result indicates is that by tuning the parame-

ters, specifically the initial state-action values, of the algorithm to the original,

5-state chain single MDP, the algorithm ends up encoding part of the MDP it-

self within its parameters. The setting results in poor performance if the MDP

distribution that it is then deployed on is sufficiently dissimilar. On the other

hand, the constant initialization algorithm performs better than the variable ini-

tialization algorithm in this space, achieving an expected performance of 0.632

in MDPs drawn from the distribution. As such, the variable initialization algo-

rithm overfit the original 5-state chain.

However, when comparing the relative performance of the two algorithms
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in the Static Order MDP Distribution, the variable initialization performs as

well as in the original 5-state chain (achieving a performance level of 0.999) and

the constant initialization algorithm does slightly worse (achieving a perfor-

mance level of 0.901). What is observed in the Static Order MDP distribution is

underfitting by the constant initialization algorithm. Had we chosen are more

flexible algorithm class, we would have gotten better performance. This simple

example illustrates why we need to change the way we evaluate RL problems

to take into account variations in the space of possible test MDPs. To that end,

I introduce the meta-reinforcement learning problem next.

3.2.2 Meta-reinforcement learning

When we choose a reinforcement-learning algorithm, we want it to work well

in the environments in which it will be deployed. The classic reinforcement-

learning problem is deriving a good policy for an MDP given the ability to in-

teract with it. This definition is generalized to capture learning in the presence

of MDP distributions. Let X be the space of possible environments and D be a

distribution over these environments. Let G be a set of available learning algo-

rithms. The set G could be made up of individual algorithms or sets of differ-

ent combinations of algorithms (an ensemble). The meta-reinforcement learning

problem is, given G and a sample S of environments drawn from distribution

D, find a learning algorithm ĝ that results in good expected performance on

MDPs drawn from D.

Formally, let F be a finite set of functions on a domain X such that for all

f ∈ F, f : X → [0, 1]. Concretely, we have F = fg|g ∈ G, where fg(x) is the out-

come of running learning algorithm g on MDP x. We call F the set of evaluation

functions for algorithm set G.
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Ideally, a meta-reinforcement learning algorithm outputs the best algorithm,

g? = argsup
g∈G

ED[ fg(x)] = argsup
g∈G

∫
X

fg(x)P(x)dx. (3.1)

But, as the algorithm will only have access to a sample S made up of x1, . . . , xm

drawn from distribution D on X, then choosing the best algorithm given the

sample results in

ĝ = argsup
g∈G

ÊS [ fg(x)] = argsup
g∈G

1
m ∑

x∈S
fg(x). (3.2)

For this problem formulation, if a single MDP is representative of the class of

environments that will be encountered by the learning algorithm (an example

being the Static Order 5-state chain distribution), then there is no need to learn.

A fixed policy will suffice for any MDPs within that class of environments. If

the single MDP is not representative of the class of environments, we cannot

choose an algorithm that does well in a single MDP as that algorithm is likely

to overfit.

In reality, we do not have access to the full distribution D but will have some

sample S . We use the samples S as a training set available to us. But, how large

should the training set be so that we can make good decisions in selecting the

algorithm to be deployed in the full distribution? That is, how do we reduce the

generalization error, |ÊS [ f ĝ]− ED[ f ĝ]|, the difference between the performance

we optimize for in the sample (training) set and the actual expected perfor-

mance of that algorithm in the full distribution?

To illustrate this issue, I return to the two 5-state chain distributions ex-

plored earlier. Static Order distribution results are shown in Figure 3.4 and

Dynamic Order distribution results are shown in Figure 3.5. I plot the expected

performance of the best algorithms—ĝ for both the constant and variable ini-

tialization Q-learning using the training set S—as solid lines. I also include
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Figure 3.4: Performance in the Static Order 5-state chain environment

the performance, illustrated as dotted lines, of those best algorithms in the test-

ing set – the full distribution approximated by sampling 1000 MDPs from each

distribution.

For the Static Order distribution (Figure 3.4) , the constant initialization al-

gorithms consistently underfit—they are not able to reach as good performance

as the variable initialization (a more powerful algorithm space). In the Dy-

namic Order distribution (Figure 3.5), though, we observe that with very few

training samples, |S| less than 4, the variable initialization algorithm has the

largest training performance but the worst testing performance—it has large

generalization error. Variable initialization is clearly overfitting with few train-

ing samples. On the other hand, the constant initialization has a lower training

performance, but a lower generalization error. As the amount of data is in-

creased, the training performance for both algorithms is reduced, indicating

the richness of the set of MDPs, while the testing performance increases. This
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Figure 3.5: Performance in the Dynamic Order 5-state chain environment

pattern is familiar, as it mimics the learning curves regularly observed in super-

vised learning. With enough training data, the variable initialization algorithm

has better performance on the full distribution than the constant initialization

algorithm. Had we not had the testing performance on the full distribution

available and only a few training samples, choosing the variable initialization

algorithm may have led to bad choices for the full distribution. In the absence

of enough training samples, the better choice would have been to choose the

algorithms from the constant initialization set instead. In practice, we would

not have access to the testing performance, and as such there is a need to look

at methods that allow us recognize overfitting based on training performance

alone.

3.2.3 Unresolved questions

How can we better create reinforcement-learning algorithms that generalize

well? To answer that question, we need a mechanism by which we can estimate
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the generalization error of algorithms given a small sample from the environ-

ment distribution. I cannot reasonably expect researchers to run their learning

algorithms on an infinite set of environments. Hidden in this approach is the

question of quantifying how hard it is to find good parameters for an algorithm

given only a sample of environments. This question is not trivial as it also con-

tains within it problems that might face researchers who are not familiar with

unwritten specifics of certain reinforcement-learning algorithms. Further, we

would like to know how many samples are necessary for us to be able to make

meaningful conclusions about the performance of algorithms. In the next sec-

tion, I introduce a procedure for evaluating sets of reinforcement-learning al-

gorithms online built on top of the theoretical underpinning of function com-

plexity.

3.3 Evaluation for meta-reinforcement learning

Given a set S of MDP samples, we would like to be able to predict how well one

set of algorithms performs compared to another set of algorithms. Concretely,

we would like to predict the generalization error of different sets of algorithms.

One way to do so is to use the concept of the complexity of the set of evaluation

functions F. The complexity defines how expressive the set of algorithms G is

relative to a set of environments X. Intuitively, if the complexity of an algorithm

is small, then the full distribution performance of an algorithm—even with a

small set of training samples S—will be very narrow. If the complexity of an

algorithm is large, the performance of the best algorithm chosen in the training

set in the full distribution will vary. As such, a larger set of samples will be

needed to better find the best algorithm.
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3.3.1 Rademacher complexity

In supervised learning, specifically, Boolean classification, hypothesis class com-

plexity is often expressed in terms of VC dimension (Mohri et al., 2012). Given a

hypothesis class of classifiers C defined over inputs Z, the VC dimension quan-

tifies the complexity of C. The VC dimension of C, d(C), is the size of the largest

set of inputs that, for all possible assigned labels of those inputs, a function can

be produced that correctly labels all the points. We are then able to produce

a uniform convergence bound, a probabilistic bound that holds uniformly for all

functions in C, in terms of d(C). These bounds are then used to bound the

generalization errors of learning algorithms. The VC dimension is known for a

number of hypothesis classes.

Unfortunately, VC dimension does not apply directly to the hypothesis classes

that appear in reinforcement learning and as such we cannot use it to pro-

duce uniform convergence bounds. A related complexity measure, which ap-

plies more broadly not just Boolean classifiers, is the Rademacher complexity.

Rademacher complexity (Bartlett and Mendelson, 2003),R, quantifies the rich-

ness/expressiveness of a function set with respect to a target distribution. In the

RL case, we would be measuring the richness of a set of reinforcement-learning

algorithms relative to a target environment distribution. The Rademacher com-

plexity can be used to produce a uniform convergence bound. Rademacher

complexity has been used in the past in the RL setting to analyze the General-

ized Classification-based Approximate Policy Iteration framework (Farahmand

et al., 2012).
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The definition of the Rademacher complexity is: Given a finite set of func-

tions F, the Rademacher complexity is

Rm(F) = ES [Eσ[sup
f∈F

1
m

m

∑
i=1

σi f (xi)]], (3.3)

where σ = (σ1, σ2, . . . , σm) is a vector of m independent random variables such

that σi ∈ {−1,+1}, P(σi = 1) = (σi = −1) = 1/2 and S is a set of MDPs

sampled from D, S = {x1, x2, . . . , xm}. The empirical Rademacher complexity

for a fixed sample S is

RS(F) = Eσ[sup
f∈F

1
m

m

∑
i=1

σi f (xi)]. (3.4)

The σ variables intuitively create different configurations of the dataset, pro-

ducing different noisy variations of the input dataset. The supremum thus car-

ries out an optimization over all functions in F for these different variations of

the dataset. If the function class is rich, then it will, on average, be able to fit

the noisy input sample set. The Rademacher complexity is high if the function

class F can fit these noisy variations. If so, larger input sets would be needed to

avoid overfitting.

An important uniform convergence bound using Rademacher complexity

(Mohri et al., 2012, Theorem 3.1) says, with probability 1− δ for samples S , for

any function f ∈ F, we have that

ED[ f (x)] ≤ ÊS [[ f (x)] + 2Rm(F) +

√
ln(1/δ)

2m
, (3.5)

and

ED[[ f (x)] ≤ ÊS [ f (x)] + 2RS(F) + 3

√
ln(2/δ)

2m
, (3.6)

for the empirical Rademacher complexity. The Rademacher complexity thus

gives us an approach to quantify the expressiveness of function class F, given
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only samples of environments. One difference from VC dimension is that it de-

pends on the inputs and not just the function class. As such, we are able to make

decisions on the potential generalization performance of a set of algorithms

given a smaller set of environments. It is a very good fit for understanding gen-

eralization error in meta-reinforcement learning. It tells us more about a set of

learning algorithms than we can learn from just using single environments for

evaluations.

One challenge is that, in practice, it is hard to compute the supremum in

the definition of RS(F). An alternative is to adapt the bound such that we

only need to calculate the maximum approximately. In the next subsection, the

above bound is adapted for a specific kind of approximation to the supremum—

the maximum computed over a size k set of functions sampled independently

from F, Fk.

Sample-optimized generalization bound

I now handle the case in which we have a smaller finite set of k functions sam-

pled from F, Fk, with H as a probability distribution over F. With only k func-

tions, Equation 3.4 now changes to RS(Fk), which is easier to calculate as we

now use a maximum over the smaller set of functions, Fk, instead of a supre-

mum. With the set Fk, the function with the best expected performance over

the the samples S is

f k
S = argmax

f∈Fk

1
m

m

∑
i=1

f (xi).

The accompanying generalization error with Fk is |ÊS [ f k
S ]− ED[ f k

S ]|.

Theorem 3.3.1. The expected generalization error EH,S [ED[ f k
S ]− ÊS [ f k

S ]] is bounded
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by 2Rm(F), and with probability 1− δ over choices of S ,

EH[ED[ f k
S ]− ÊS [ f k

S ]] ≤ 2EH[Rm(Fk)] +

√
ln(1/δ)

2m
.

Proof. For a fixed Fk, applying the Rademacher bound (Equation 3.5), we have

simultaneously for every f ∈ Fk,

ES [ED[ f ]− ÊS [ f ]] ≤ 2Rm(Fk).

In particular, this statement holds for the function f k
S . Thus, for a fixed Fk,

ES [ED[ f k
S ]− ÊS [ f k

S ]] ≤ 2Rm(Fk).

Taking expectation over the choices of Fk ⊆ F, we have

EH,S [ED[ f k
S ]− ÊS [ f k

S ] | Fk] ≤ 2EH[Rm(Fk) | Fk].

We now observe that since 0 ≤ f (x) ≤ 1, a change in one sample xi can

only change the value of EH,S [ED[ f k
S ] − ÊS [ f k

S ] | Fk] by 1/m. Applying the

Azuma-Hoeffding martingale inequality (Mitzenmacher and Upfal, 2005, The-

orem 12.4), as in the argument for Rademacher bounds, we prove with proba-

bility 1− δ over the distribution of S ,

EH[ED[ f k
S ]− ÊS [ f k

S ] | Fk] ≤ 2EH[Rm(Fk) | Fk] +

√
ln(1/δ)

2m
.

Changing the sup to a max over a finite samples of functions in the empir-

ical Rademacher bounds results in bounds that are similar and hold over the

average finite sample. There is a need for a practical method that accurately es-

timates EH[Rm(Fk)] from the samples as it is not possible to compute the exact

expectation.
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Corollary 3.3.1. Assume that we choose ` random sets F1
k , . . . , F`

k from F according to

the distribution H, and a set S of m random environments according to the distribution

D. With probability 1− 2δ/3 over the choice of S and the Fj
ks,

EH[Rm(Fk)] ≤
1
`

`

∑
j=1
RS(Fj

k) +

√
ln(3/δ)

2m
.

Proof. For a fixed Fk, the bound on the empirical Rademacher complexity (Mohri

et al., 2012, Equation 3.14) gives, with probability 1− δ
3 ,

Rm(Fk) ≤ RS(Fk) +

√
ln(3/δ)

2m
.

Applying the same Azuma-Hoeffding martingale inequality to bound∣∣∣∣∣1` `

∑
j=1
RS(Fj

k)− EH[RS(Fk)]

∣∣∣∣∣ .

Given that f ∈ [0, 1] for all Fk, changing a single xi may change each function

by at most 1. Therefore,RS(Fj
k) changes by at most 1/m since it is an empirical

average over m such functions. The total change in the empirical average over

the Rademacher values that results is `
m ·

1
` = 1

m . Applying the inequality, we

get

Pr

(∣∣∣∣∣1` `

∑
j=1
RS(Fj

k)− EH[RS(Fk)]

∣∣∣∣∣ ≥
√

ln(3/δ)

2m

)
≤ δ/3.

Using Corollary 3.3.1, we can remove the exact expectations over H and S

in Theorem 3.3.1.

Corollary 3.3.2. With probability 1− δ

EH[ED[ f k
S ]− ÊS [ f k

S ]] ≤
2
`

`

∑
j=1
RS(Fj

k) + 5

√
ln(3/δ)

2m
.
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These results justify an approach to meta-reinforcement learning using sets

of algorithms. Given the sample of environments S and set of algorithms G,

create a mixture ensemble over G by repeating, ` times, the process of selecting

k algorithms from G and then selecting the one with the best training perfor-

mance. Now, assign each of these winning algorithms a probability of 1/` in the

mixture ensemble. That is, when deploying the meta-reinforcement learning

algorithm for testing, we deploy the mixture ensemble and sample uniformly

from the ` winning algorithms. These bounds provide a way to measure the

generalization error of this mixture ensemble.

3.3.2 Sample-optimized generalization bound experiments

Here, I present the results of applying the sample-optimized generalized bounds

to the 5-state chain and a larger a second environment.

5-state chain experiments

I apply the sample-optimized Rademacher bounds derived to the two 5-state

chain distribution environments. Figure 3.6 illustrates the sample-optimized

bounds for the earlier 5-state chain examples.

For these plots, I show the performance of using a mixture ensemble with k

functions. That is, I sample k Q-learning algorithms for both constant and vari-

able initialization algorithms. In contrast with out earlier plots, in Figures 3.4

and 3.5, I plot the expected training and testing performance of using the best

algorithm found by taking the max over k sampled algorithms. As such, in the

plots, k indicates the number of evaluations done, or the “power” of the opti-

mization. The training and testing performance is averaged over 50 runs, and,

for the sample-optimized bound, ` = 50.
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Figure 3.6: Sample-optimized Rademacher bounds for the Static and Dynamic
Order 5-state chain MDP distributions at different values of k

For the Static Order distribution (top plots of Figure 3.6), note that, when us-

ing k = 20, the constant initialization algorithm has a higher training and test-

ing performance as well as a lower sample-optimized Rademacher bound com-

pared to the variable initialization algorithm. The variable initialization algo-

rithm has a lower training and testing performance and the sample-optimized

Rademacher complexity is larger, leading to an even lower lower bound. What

is important to note is that, for all the plots, with a small MDP sample size,

the sample-optimized Rademacher bound is wider but gets narrower as more

training data is available. For both the constant and variable initialization, with

a larger algorithm function set, k = 750, the training and testing performance

increase and the generalization bounds also increase in width. The variable

initialization now results in the best training performance and the bound also

shows that it is better to choose the variable initialization algorithm in tackling

problems from the Static Order distribution.
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For the Dynamic Order distribution (lower plots of Figure 3.6), we have a

similar situation for both optimization strengths as in the Static Order distribu-

tion experiments. With k = 20, the constant initialization algorithm has higher

training performance and the lower bound on the performance is higher than

the variable initialization. With k = 750, the variable initialization algorithm

has a higher training performance but the lower bound is much lower than that

of the constant initialization for |S| < 200. As the size of the MDP training

set increases, both algorithm bounds decrease but it takes a large sample size

to make the decision to use variable initialization over constant initialization

given the generalized bound. This is in contrast to observing that, for the test-

ing performance, we would make the decision at |S| = 20 for k = 750. As such

the sample-optimized Rademacher bound is pessimistic.

Mountain car

The second environment I use in this chapter is the classic Mountain Car (Fig-

ure 3.7). Here, the goal is to get an under-powered car to reach the top of a hill.

The MDP’s state space has two dimensions (position and velocity) and three

actions (forward throttle, backward throttle and no throttle). The system has a

reward of 0.0 when the car reaches the top of the hill and a reward of −1.0 for

every time point when the car is not at the top of the hill. The discount factor

for this MDP is γ = 0.95.

In the classic configuration, the MDP is deterministic and the car always

starts at the bottom of the hill. For our purposes, I make two changes. First, I

make the MDP stochastic by adding varying levels (per MDP) of noise to the

force applied by the throttle. Second, I vary the gravity variable for each MDP.
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Figure 3.7: Mountain car environment from Sutton (1988)

For simplicity, I measure the performance of a reinforcement-learning algo-

rithm as the negated expected number of steps to goal of the policy it identifies

after 50 learning episodes (each episode can last up to 1000 steps). In experi-

ment plots, I present this value as normalized between 0 and 1.0, so higher is

better.

The learning algorithms in the Mountain Car experiments come from both

classic Q-learning and Q-Lambda (Q-learning with eligibility traces (Sutton,

1988)). Both algorithm sets have a discretization of 10 blocks for each continu-

ous dimension, and I vary the learning rate (α) between 0.0 and 0.5. I also vary

the exploration rate (ε) between 0.0 and 0.5. The default initialization value

for state–action values is fixed at 0.0 for both algorithm sets. The difference in

the two algorithm sets is that Algorithm 1 effectively has a fixed λ of 0.0, while

the second, Algorithm 2, has a λ that takes on a value between 0.0 and 0.6. I

show the performance of meta-reinforcement-learning algorithms from both

algorithm sets in Figure 3.8. For the plot, I used 200 MDPs to approximate the

full distribution and 50 learning episodes with a maximum of 1000 steps.

Algorithm 2 has higher performance in the meta-reinforcement-learning

setting, but how do the two sets compare in the context of the sample-optimized
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Figure 3.8: Meta-reinforcement learning performance in the Mountain Car
Distribution

Rademacher bound? Figure 3.9 shows that, with lower optimization power,

k = 10, the Algorithm 1 and Algorithm 2 sets have similar training perfor-

mance, but Algorithm 1 has lower testing performance. Initially, the sample-

optimized bounds indicate that Algorithm 2 has a lower performance on the

full distribution, but, very quickly, at |S| = 8, we see that Algorithm 1 switches

to have the worse lower bound. Here, the complexity of the Algorithm 2 set is

higher and as such the bound is more pessimistic. With an increasing number

of MDPs, the graph communicates that the Algorithm 2 set is better algorithm

to deploy. With k = 300, the Algorithm 1 set clearly has a higher training per-

formance but at the same time its sample-optimized Rademacher complexity

is high, giving rise to a worse lower bound at |S| = 2. Again, with increasing

MDP samples (|S| ≥ 4), it becomes clear that the Algorithm 1 set has the better

lower bound.

In both the 5-state chain and Mountain Car domain, the sample-optimized
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Figure 3.9: Sample-optimized Rademacher bounds for the Mountain Car MDP
distribution at different values of k

Rademacher bounds do help us identity overfitting of algorithms and give us a

method to choose which algorithm set to use given the environment sample S .

One practical problem is that the bounds are very conservative (pessimistic),

producing very wide bounds for small samples. In the next subsection, I look

at using cross-validation as a way to produce tighter bounds with smaller sets

of MDP samples.

3.3.3 Cross-validation

Borrowing another technique from supervised learning, I next look at cross-

validation. Cross-validation is an often-used technique to assess how well an

algorithm or function generalizes (Kohavi, 1995). In cross-validation, given a

set of samples S of size m, I partition the data into a training set and a held out

set. This procedure should not be confused with the earlier setup of using all m

samples for training and then attempting to predict the performance in the full

distribution D. I use the training sets to find the best algorithm given Fk func-

tions and then test this algorithm on the held out set. For the experiments, I use

repeated random partitioning (random sub-sampling cross-validation (Kohavi,

1995) with random partition sizes) of the m samples to get a sense of how well

an algorithm generalizes. For all of the experiments below, the cross-validation
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sampling was repeated 50 times while the partitioning was repeated 100 times.

I also indicate the size (k) of the mixture ensemble in any of the experiments I

highlight.

Cross-validation experiments

Returning to the 5-state chain, I now plot the results of the cross-validation per-

formance of both the Static and Dynamic Order 5-state chain vs. the size of the

environment samples |S| (Figure 3.10). The bottom of the shaded area in the

graphs is the expected test performance given the random partitioning of the

environment samples. We observe that the shape of both the graphs are sim-

ilar to those of the sample-optimized Rademacher bounds. For the Dynamic

Order 5-state chain, the variable initialization algorithm has a large generaliza-

tion gap at small training set size but this gap is reduced as more samples are

available for training. An important difference between the sample-optimized

Rademacher bound and the cross-validation bound is that, with a small train-

ing set size, |S|, we can already see where we can make decisions about which

algorithm set to pick. This property is very evident in the Dynamic Order dis-

tribution with k = 750 (bottom right of Figure 3.10). In contrast to the sample-

optimized Rademacher bounds I showed earlier in Figure 3.6, where we needed

|S| to be close to 200 before we chose the variable initialization over constant ini-

tialization at k = 750, we need fewer samples using cross-validation (|S| = 20

is sufficient to choose one algorithm set over the other). Secondly, we track the

real full distribution testing performance well.

I return to the Mountain Car distribution and illustrate cross-validation in

action. The results of Algorithm 1 and Algorithm 2 sets are shown in Fig-

ure 3.11. With k = 10, we quickly notice that Algorithm 1 tends to overfit
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Figure 3.10: 5-State Chain distribution Cross-Validation
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Figure 3.11: Mountain Car distribution Cross-Validation

and Algorithm 2 is the better choice in the worst case. With k = 300, it is

even clearer that Algorithm 2 is the better choice. The generalization gap in

cross-validation is much narrower than in the sample-optimized Rademacher

bounds discussed earlier. This applies both to the Mountain Car and 5-state

chain domains. We see that cross-validation is a viable approach for evaluating

meta-RL algorithms.

So far, I have discussed evaluation of meta-RL algorithms and a mixture en-

semble as a potential meta-RL approach. In the next section, I discuss other
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approaches to meta-RL and explore a second ensemble-based approach to cre-

ating meta-RL algorithms.

3.4 Approaches to meta-reinforcement learning

So far in this chapter, I have introduced two ways of creating meta-reinforcement

learning algorithms, optimizing over a whole algorithms space or using a mix-

ture ensemble. On a high level, these are potential the ways of creating meta-RL

algorithms:

• Searching over the complete parameter spaces of known algorithms. This

approach could be prohibitive as it becomes computationally expensive.

For algorithm sets that have large search spaces, finding the best algo-

rithm becomes nearly impossible.

• Optimizing over the parameter space of known algorithms (stochastic op-

timization, multi-armed bandit based approaches). We have a large litera-

ture in optimization and multi-armed bandits (Kleinberg et al., 2008) that

could be used to create meta-reinforcement learning algorithms.

• Mixture based ensembles with random selection of algorithms.

• Ensembles that learn to select or fuse algorithms.

In this final section, I return to the idea of ensembles, and discuss the use

of ensembles in supervised learning and possible approaches to meta-RL algo-

rithms. I introduce an approach to ensemble reinforcement learning using a

linear modular learner and show some preliminary results of an application of

such a learner.
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3.4.1 Meta-reinforcement learning using ensembles

Across a wide range of computational domains, ensemble learning methods

have proven extremely valuable for reliably tackling complex problems. En-

semble (or sometimes modular or portfolio) methods harness multiple, perhaps

quite disparate, algorithms for a problem class to greatly expand the range of

specific instances that can be addressed. They have emerged as state-of-the-

art approaches for word sense disambiguation (Florian and Yarowsky, 2002),

crossword solving (Littman et al., 2002), satisfiability testing (Xu et al., 2010),

movie recommendation (Bell et al., 2010) and question answering (Ferrucci et al.,

2010).

In the context of ensemble-based learning, there are two main approaches

for combining algorithms to make decisions: algorithm selection and algorithm

fusion (Polikar, 2006). Both approaches begin with a set of independent base al-

gorithms that can be used (with varying degrees of success) to attack the prob-

lem at hand. The task of the ensemble learner in algorithm selection, then, is

to map inputs to base algorithms. In principle, the selection problem (input to

algorithm) could be as hard as the learning problem itself (input to output), lim-

iting its utility. In algorithm fusion, on the other hand, the ensemble learner is

responsible for finding a rule for combining the outputs of the base algorithms

(in an input-independent way).

The successful applications of ensemble methods listed earlier are all of the

fusion type. In these cases, supervised examples are available for directly train-

ing the ensemble learner to find an accurate fusion rule. There are multiple

frameworks that constitute ensemble classifiers. The frameworks differ by the

way low-level classifiers interpret input data, their aggregation schemes and

whether the base classifiers are dependent or independent of each other (Rokach,



47

2010). Training examples are not available to learners in an RL setting, however,

necessitating a novel approach if one wants to apply algorithm fusion in RL. In

the RL setting, the ensemble learner only has access to the MDP.

Work by Wiering and van Hasselt (2008) and van Hasselt (2011) investigates

different methods of fusing multiple RL algorithms. Their base algorithms out-

put action distributions, which are combined using either voting, policy ad-

dition or policy multiplication. The authors handle the lack of a supervision

signal in the RL setting by adopting a fixed merging method—the ensemble

learner does not learn at all. As a result, these methods cannot adapt to focus

on the appropriate base algorithms for the task at hand. The authors found

that, in most of their test cases, ensemble learners performed second best to the

best tuned algorithm. Work by Sun and Peterson (1999) investigated propagat-

ing the ensemble learners’ Bellman error to lower level function approximators

(Neural Networks). The work I describe here does not do that.

In the following subsection, I explore the approach of using temporal differ-

ence learning to solve the temporal credit assignment problem for a modular

ensemble learner and thus to appropriately weight the contributions from each

individual base algorithm. In this scheme, the base algorithms must output

action-value estimates (Q values) instead of simply giving action recommenda-

tions. Ultimately, in this approach, the modular learner is an RL method that

uses the base-level value estimates as its feature representation.
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3.4.2 Temporal difference combination of RL algorithms

In this subsection, I present an approach to ensemble-based RL using a lin-

ear Temporal Difference (TD) learning algorithm as a modular learner to com-

bine the value estimates from multiple base RL algorithm algorithms. The ap-

proach goes beyond earlier efforts in ensemble RL (Wiering and van Hasselt,

2008) in that I develop a fusion method that is adjusted given the performance

of the base algorithms in the ensemble instead of combining low-level algo-

rithms according to a fixed rule. In the ensemble classifier approach, given n

classifiers, each classifier i has a prediction di,j(x) as to whether the data point

x belongs to class ωj. The final prediction of the modular learner, µj(x), for

class ωj is µj(x) = ∑n
i=1 wi,jdi,j(x). The supervised modular learner uses held

out labeled training data to learn the combination weights wi for each base

classifier. Whereas supervised classifiers map instances to labels, in a value-

function-based setting, RL algorithms map states and actions to action values

(the Q-function).

Using the supervised ensemble weighted learning as a guide, we can de-

velop a parallel approach in which separate RL algorithms (base algorithms)

create their own Q-functions. The RL modular learner then estimates the envi-

ronment’s Q-function via a weighted linear combination of the Q-values learned

by the base algorithms. The final Q-value given k RL base algorithms is

QW(s, a) =
k

∑
i=1

wiQi(s, a),

where wi are the weights and Qi(s, a) is the estimated Q-value of state s and

action a for RL base algorithm i. The RL modular learner learns the weights wi

for each base algorithm. Given that labeled examples are not available in the RL

setting, another error metric needs to be used. In TD-based algorithms (Sutton,
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1988), the natural error metric is the Bellman error (discussed further in Chapter

4),

ERL,w = ∑
t
[R(s, a) + γQW(s′, a′)−QW(s, a)]2. (3.7)

An advantage of this error metric is that it does not require labeled examples.

This formulation, arrived at by translating standard linear ensemble methods to

the RL setting, is an exact match for the problem solved by linear TD methods.

The twist is that the role of “state” in this formulation is the Q-value estimates

produced by the base algorithms. With that substitution in place, any existing

TD method can be applied to learn weights for the modular learner.

Given that both the base algorithms and the modular learner need to adapt,

I run learning in two stages. First, the base algorithms are trained on the envi-

ronment in question by themselves, then they are frozen and then the modular

learner adapts its weights to combine the Q-values of the base algorithms. I

have experimented with adapting the modular learner and base algorithms si-

multaneously, but the results were less than stable.

As the modular learner searches for the best linear combination of the base

algorithm Q-values, using them as features, convergence guarantees are similar

to those of other linear TD learning algorithms (Tsitsiklis and Van Roy, 1997).

With the above description of the combination of base algorithms, we can view

each base algorithm’s Q-value as a feature for the modular learner that is de-

pendent on a state and action pair, (s, a). The two-stage modular learner is

a least squares algorithm (Boyan, 2002) that minimizes Equation 3.7 and thus

converges to the weights that results in the smallest error between the estimates

and the real returns.
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Ensemble approach to solving MDPs

To assess the fusion ensemble approach in an RL setting, I carried out the eval-

uation on the generalized MDPs framework (Whiteson et al., 2009) discussed

earlier in Section 3.1.1. In this case I use a set of of |S| training MDPs to find

a set of base algorithms to include in the modular learner. I then evaluate the

performance of this modular learner on an unseen test set.

The environment in the modular-learner experiments is the generalized

Mountain-Car environment taken from the 2008 RL competition (Whiteson et al.,

2010). The mountain-car environment was generalized by adjusting observa-

tions from the environment (noisy observations), as well the outcomes of the

actions taken (stochastic actions). This version of the Mountain Car environ-

ment is slightly different to the one earlier used in the chapter in that the obser-

vations (state variables) are noisy.

In this fusion ensemble approach, I create a diverse set of algorithms by tak-

ing a set of |S| training MDPs to identify a promising set of base algorithms

(algorithms that perform well in some of the training MDPs). This set of al-

gorithms would then be used in the modular learner to tackle the test MDPs.

Thus as input the ensemble algorithm receives training MDPs and as output

is a modular RL learner comprised of a set of k base algorithms that will be

combined.

Using this approach, I had access to 10 training MDPs. For each of the train-

ing MDPs, 10 Q-learning algorithms with different parameters were trained

and evaluated. The parameters of the top learner from each of the MDPs were
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Figure 3.12: A modular-learner that combines the results of multiple RL algo-
rithms achieves higher reward across a collection of environments than indi-
vidual RL algorithms.

compared against each other for diversity. Some of the parameters were equiv-

alent and thus only 4 parameters were used for the base algorithms of the mod-

ular learner. The candidate parameter comparison for diversity can be accom-

plished by a clustering algorithm but in this case was done manually. The RL

base algorithms created using the 4 parameters were also evaluated individu-

ally on the test MDPs.

For evaluation, the algorithms (4 individual Q-Learning base algorithms)

and the modular learner (Least Squares Temporal Difference Learning) had

1000 training episodes on each test MDP. The modular learner equally allocated

episodes of interaction between itself and each of its base algorithms. Evalu-

ation was on the last 50 learning episodes. The modular learner’s exploration

rate (ε) was fixed at 0.05 for all tests. The accumulated rewards for each test

MDP configuration were averaged over 5 runs and are shown in Figure 3.12.

In the 5 test MDPs, base algorithm 1 had the highest score among the base

algorithms 2 times, base algorithm 2 was highest 1 time, base algorithm 3 was
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highest 1 time and base algorithm 4 was highest 1 time, The modular learner

is statistically indistinguishable from the best in all 5 test MDPs. In addition,

in Test MDP 1, the modular learner’s policy is significantly better than any of

the base algorithms. If we had used only one set of parameters to learn on the

generalized test MDPs, we would not have gotten as good performance as the

ensemble approach.

To sum up, using a TD algorithm, the high-level modular learner is able to

identify how to weigh and combine low-level (base) algorithms so as to obtain

high returns. Since the modular learner weighs and combines Q values, other

algorithms for the base algorithms can be added/substituted as long as they

estimate Q values. Model-based RL algorithms such as RMax (Brafman and

Tennenholtz, 2003) could be substituted for the base algorithms as they com-

pute Q-functions indirectly. The modular learner’s TD algorithm can also be

substituted with other more efficient algorithms. For example, we could have

the modular learner be a selective learner by using LARS-TD (Kolter and Ng,

2009). This ensemble approach still needs more study. The effects of varying pa-

rameters, such as the discount factor, are still not clear and could provide better

insight in diversity creation for the ensemble RL setting. Furthermore, inves-

tigating how the size of ensemble can be dynamically changed—removing or

adding base algorithms—is another avenue worth investigating. These promis-

ing initial results indicate that we can create meta-reinforcement-learning algo-

rithms that can adapt over different MDPs.

3.5 Summary

In this chapter, I presented improved ways to evaluate reinforcement-learning

algorithms online. By extending the reinforcement-learning problem to deal
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with learning and evaluation in a distribution of MDPs, we gain better insight

into the behavior of algorithms in relation to the distributions of MDPs they

would be deployed in. Importantly, we also reduce the chances that the algo-

rithms we create will overfit to single MDPs.

By using the sample-optimized Rademacher bound, we can take a number

of sample MDPs and better make decisions about how well an algorithm set

would perform in the full distribution where the sample was drawn from. I il-

lustrated the application of cross-validation to the meta-reinforcement learning

problem. Multiple MDP-based evaluation is important, not just for seasoned

reinforcement-learning researchers, but also for novices who may not under-

stand the power of the numerous reinforcement-learning algorithms available.

Lastly, I discussed possible ways in which meta-reinforcement-learning algo-

rithms could be created. I also presented an example of the use of a fusion

ensemble reinforcement-learning algorithm in tackling MDPs that are drawn

from a distribution.



54

Chapter 4

Offline Evaluation of Value-Based
Reinforcement-Learning Algorithms

4.1 Introduction

To assess the effectiveness of reinforcement-learning algorithms, it is important

to have a way to compare pairs of algorithms head to head. The gold standard

evaluation is to measure the return of each algorithm online (Kaelbling et al.,

1996), declaring the algorithm that produced the highest return the winner.

While online evaluation is, in some sense, the only true measure of an al-

gorithm’s performance, there are many reasons to desire an offline evaluation

metric using a fixed set of pre-collected data:

• If it is not possible to interact with the target environment and no veridical

simulator is available, offline evaluation is the only option.

• Even if a good simulator is available, if it is complex, time consuming, or

expensive to use, offline evaluation might be preferred.

• Even if a simulator is available and easy to share, offline evaluation can

be important for making the results more comparable. (Many research

groups have rewritten classic RL environments like “mountain car” due

to language incompatibilities or other constraints.)

• When a target environment is a human being (a patient with epilepsy or a



55

grandmaster chess opponent, say) there are practical, and sometimes even

ethical, concerns about testing learning results online. Offline evaluation

can make it possible to collect the data once under controlled conditions

and then share it with researchers throughout the community.

Evaluating learned classifiers offline using labeled batch data is standard

practice in the supervised-learning community. The existence of objective eval-

uation metrics that can be applied directly using batch data has enabled the cre-

ation and comparison of multitudes of algorithms and dramatic improvements

in performance over the years. The introduction of the UCI Machine Learning

data repository (Newman et al., 1998) transformed the way machine-learning

(ML) research is conducted and led to the development of multiple evaluation

metrics as well as inspired other ML sub-communities to develop standards to

collect data and evaluate performance (Bay et al., 2000).

An even more significant use of the UCI database is its availability of “Nat-

ural Domains” (Langley and Kibler, 1991) of classification and regression prob-

lems. The UCI database allows researchers to compare their methods using dif-

ferent metrics on real world problems. The success of algorithms on these Natu-

ral Domains provides some evidence on the general applicability of those algo-

rithms. The explosion of data collected from domains such as education (Siemens

and Long, 2011), healthcare (Murdoch and Detsky, 2013) and marketing (Mayer-

Schönberger and Cukier, 2013) has resulted in large datasets that are sequential

in nature. These datasets may not necessarily be used in a sequential manner

currently, but researchers might gain more insight and knowledge were they to

have tools to better apply and use RL approaches with such data. As such, a

question I would like to assist in answering is how do we evaluate and compare

reinforcement-learning algorithms when we only have access to batch data?
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4.1.1 Related Work

Existing approaches for offline evaluation for RL have taken a number of forms.

Nouri et al. (2009) presented an approach for evaluating value functions for a

fixed policy. Although they provided preliminary results suggesting that al-

gorithms that are effective for learning the value function for a fixed policy can

also be used to learn to maximize reward, the emphasis on fixed policies instead

of return-maximizing policies limits the attractiveness of this approach.

An ideal offline evaluation metric evaluates policies, but such metrics ap-

pear to require strong assumptions. Fonteneau et al. (2010) presented an eval-

uation method that averages the return on a trajectory constructed by selecting

actions using the policy and then finding the closest one-step transitions from

batch-collected transition data. It requires an assumption that “nearest neigh-

bor” modeling produces accurate trajectories, which it will not in general. Li

et al. (2011) and Dudik et al. (2011) provided evaluation algorithms that apply

only in bandit domains (roughly MDPs where state transitions do not depend

on the current action or state), not general environments. However, in the ban-

dit setting, they are quite robust, working directly from batch data without the

need for a simulator or a model of the reward function.

The work I present in this chapter differs from that of Fonteneau et al. (2010)

in that I develop an evaluation metric that uses the collected batch data directly

and not as a proxy to reconstruct the likely trajectories that would have been

produced by the resultant policy. This work also differs from that of Nouri

et al. (2009) in that I evaluate value functions with respect to the optimal value

function, not an arbitrary fixed policy.
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4.1.2 Outline

This chapter presents a first approach to evaluating reinforcement-learning al-

gorithms offline, that is, using sequential batch data. I first survey different

possible metrics that could be used for comparing value-based RL algorithms

against each other. I then present a novel metric, the Relative Bellman Update

Error, and discuss its properties. I then demonstrate its use in comparing the

performance of value functions learned in several benchmark environments.

Finally, I discuss the merits of the different metrics tested and then summarize

the chapter.

4.2 Survey of evaluating state-action value functions

In this chapter I use the definitions from Chapter 2: S as the state space, A as

the action space, T : S× A× S′ → [0, 1] as the transition probabilities between

states as actions are taken, and the reward function R : S× A → <. To assist

in navigating different approaches to metrics for reinforcement-learning algo-

rithms, I examine some additional tools. Given an experience tuple 〈s, a, r, s′〉,

I define the sample Bellman backup operator Bs,a
r,s′ as a mapping from state-action

value function Q to a new state-action value function that is identical to Q ex-

cept

(Bs,a
r,s′Q)(s, a) = r + γ max

a′
Q(s′, a′). (4.1)

Using this notation, the standard Bellman backup operator B can be written as

(BQ)(s, a) =  (Bs,a
r,s′Q)(s, a)¡s′,r

T,R. The notation   · ¡s′,r
T,R denotes that we are taking

an expected value of the expression · with s′ ∼ T(s, a, s′) and r = R(s, a). The

Q-learning algorithm (Watkins and Dayan, 1992) can be written Q ←α Bs,a
r,s′Q,

where←α is the learning update as discussed earlier in equation 2.3. We seek an



58

evaluation metric that (1) is easy to calculate given batch data and (2) enables

us to compare the performance of one state-action value function to another.

That is, given a set of experience tuples of the form 〈s, a, r, s′〉 and a pair of

state-action value functions Q1 and Q2, we want an evaluation of which value

function is superior.

In this section, I survey some ways of assessing state-action value functions.

For consistency, I define each metric M(Q1, Q2) so that it returns a positive

value if Q1 is believed to be superior, a negative value if Q2 is believed to be

superior, and zero if they are judged as being equally good.

4.2.1 Expected Return (online)

The most direct score for comparing state-action value functions is the expected

return, the discounted sum of rewards along an episode following the greedy

policy πQ(s) = argmaxa Q(s, a). Even though it is an online metric, I use it as

the gold standard to compare other metrics. The greedy policy is applied on

the real environment or simulator and the collected rewards are summed. That

is,

return(Q) = E

[
N−1

∑
n=0

γnR(sn, an)

]
,

where R(sn, an) is the reward at timestep n for being in state sn and perform-

ing action an where an = πQ(sn) and sn+1 ∼ T(sn, an, sn+1). Here, N is the

maximum number of timesteps or the trajectory length. The return metric is

Mreturn(Q1, Q2) = return(Q1)− return(Q2).
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4.2.2 Model Free Monte Carlo policy evaluation

Fonteneau et al. (2010) developed Model Free Monte Carlo-like policy evaluation

(MFMC). It is designed to evaluate a policy given a set of experience tuples, but

we can use it to evaluate a value function Q by considering its greedy policy

πQ(s) = argmaxa Q(s, a). The output is the return based on trajectories sam-

pled using the policy and an approximate model of the transition dynamics.

In particular, next states are chosen by finding the closest one-step transitions

in the set of experience tuples. Given start state s0 and policy π, the expected

return calculated by MFMC is

mfmc(Q) = Rp(s0, Q) = 1
p

p

∑
i=1

N−1

∑
n=0

γnrli
n ,

where p is the number of trajectories used in the simulation, N is the trajectory

length, and rli
t is the reward “experienced” from the batch transition sample li

n

(defined next). The batch transition sample is selected by finding the closest un-

used sample using a distance function li
n = argmin(s̃,ã,r,s̃′)∈U ∆((si

n, ai
n), (s̃, ã)),

where ai
n = argmaxa Q(si

n, a), si
0 = s0, si

n+1
= s̃′l

i
n and U is the set of unused

samples. This evaluation metric does not require a simulation model but, in

essence, empirically estimates a model using the batch of experience tuples and

its predefined similarity metric.

A positive attribute of this metric is that it produces values that are intended

to match the return of a given policy or value function. In the limit of infi-

nite data, the values produced are actually equivalent to the gold standard of

expected return from a simulator. In practice, however, a negative attribute

of this metric is that it is itself a learning algorithm. In fact, it is quite close

to kernel-based learning methods (Ormoneit and Śaunak Sen, 2002; Jong and
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Stone, 2007). As such, the evaluation metric is apt to produce wildly skewed re-

sults in favor of learning algorithms that make similar assumptions about state

similarities.

I define the metric based on MFMC as

MMFMC(Q1, Q2) = mfmc(Q1)−mfmc(Q2).

4.2.3 Distance from optimal values

The state-action value function Q∗ is the solution to the equation Q∗ = BQ∗.

The greedy policy with respect to Q∗ maximizes expected return. As such, it is

natural to assess a state-action value function Q by its distance from Q∗. Using

||Q|| = maxs,a |Q(s, a)| as the max norm of Q, we can evaluate Q via ||Q∗−Q||.

Singh and Yee (1994) relate the quantity ||Q∗−Q|| to the difference in return

between following Q’s greedy policy and following Q∗’s. Informally, if ||Q∗ −

Q|| = δ, that means that the action selected greedily at each time step has a

value that is no more than 2δ suboptimal. If this loss is repeated at every step,

the total loss will be 2δ/(1− γ).

Note that if Q = Q∗ + K for a large constant K, ||Q∗ − Q|| will be large (K,

in fact), but Q’s greedy policy is identical to Q∗’s. A bad score by this metric

does not imply a bad policy. However, it does imply a worse bound on how bad

the policy might be.

I define the metric based on the distance from Q∗ to be

Mdist(Q1, Q2) = ||Q∗ −Q2|| − ||Q∗ −Q1||.

A positive property of this metric is that Mdist(Q∗, Q) is non-negative for all

Q. That is, no state-action value function is judged superior to Q∗. Its largest
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drawback is that it cannot be used unless Q∗ is known, which will only be true

for the most basic benchmark problems.

4.2.4 Bellman Residual

The Bellman backup of Q is Q′ = BQ. As mentioned above, the optimal value

function is obtained when Q = Q′, suggesting that the distance between these

quantities ||Q′ − Q||, sometimes called the Bellman residual, is another useful

way of evaluating Q.

Porteus (1982) provides an analysis that can be used to relate ||Q′ − Q|| to

||Q∗−Q|| and therefore to the difference in expected return between following

Q’s greedy policy and following Q∗’s. Informally, if ||Q′ −Q|| = κ,

δ = ||Q∗ −Q||

≤ ||Q∗ −Q′||+ ||Q′ −Q||

≤ γ||Q∗ −Q||+ ||Q′ −Q||

≤ γδ + κ,

from which we derive that δ ≤ κ/(1− γ). A high value of the Bellman residual

does not imply a poor value function. However, a value function with a lower

Bellman residual has a tighter bound on its suboptimality.

I define the metric based on the Bellman residual to be

Mresidual(Q1, Q2) = ‖BQ2 −Q2‖ − ‖BQ1 −Q1‖.

Once again, this metric also has the property that Mresidual(Q∗, Q) is non-

negative for all Q. No state-action value function is judged superior to Q∗.

Its largest drawback is that it cannot be used unless the transition function is

known (or is very densely sampled), because the transition function is needed

for computing the Bellman backup.
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4.2.5 Bellman Update Error

Consider again the Bellman residual and why it cannot be used without a model.

For a value function Q, we would like to evaluate ||Q− BQ|| where BQ is the

Bellman backup applied to Q. That is, we want Q(s, a) to be as close as possible

to the average (over next states) value of (Bs,a
r,s′Q)(s, a).

There is a closely related problem that we can use as an analogy. Imagine

we have some distribution D and we are sampling values x from D. If we want

to encourage the selection of a value of m that is close to the expectation of x,

we can employ the squared error measure  (m− x)2¡x
D because setting m to be

the mean of D minimizes this quantity.

Moving this idea to the value-function context suggests the following error

measure I call Bellman update error (BUE):

BUE(Q) =   (Q(s, a)− (Bs,a
r,s′Q)(s, a))2¡s′,r

T,R¡s,a
Π . (4.2)

Here, state-action pairs are sampled from some probability distribution Π and

next states are sampled from the transition function.

The idea of Bellman update error is natural—it can be thought of as the

Q-learning rule reconceptualized as an error measure—and has been used (ex-

plicitly or implicitly) repeatedly in the RL literature. For example, it justifies

the use of a mean squared best fit when function approximation is used (Boyan

and Moore, 1995). However, the Bellman update error is known to have some

serious problems (Baird, 1995; Sutton and Barto, 1998).

To better understand the error measure and its problems, it can be rewritten

it as follows. First, define Q′ = BQ. Using the fact that

 (Bs,a
r,s′Q)(s, a)¡s′,r

T,R = Q′(s, a)
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and

Var[(Bs,a
r,s′Q)(s, a)] =  ((Bs,a

r,s′Q)(s, a))2¡s′,r
T,R −Q′(s, a)2,

it is straightforward to rewrite BUE(Q) as

  (Q(s, a)− (Bs,a
r,s′Q)(s, a))2¡s′,r

T,R¡s,a
Π

=  (Q(s, a)2 − 2Q(s, a)Q′(s, a) +  (Bs,a
r,s′Q)(s, a)2¡s′,r

T,R)¡
s,a
Π

=  (Q(s, a)2 − 2Q(s, a)Q′(s, a) + Q′(s, a)2 + Var[(Bs,a
r,s′Q)(s, a)])¡s,a

Π

=  (Q(s, a)−Q′(s, a))2¡s,a
Π +  Var[(Bs,a

r,s′Q)(s, a)]¡s,a
Π .

That is, the Bellman update error is the squared Bellman residual plus the vari-

ance of the Bellman backup. It is worth noting that the variance term disap-

pears if the environment is deterministic, in which case BUE becomes the mean

squared Bellman residual.

In stochastic environments, however, the variance term can have a signifi-

cant impact on the metric’s value. When choosing a value function to minimize

BUE, the appearance of Q in two places in the expression creates a tension be-

tween selecting Q to match the Bellman residual and selecting Q to minimize

the variance term. As a result, it can be the case that the optimal value func-

tion Q∗ is not the value function that minimizes BUE. I show an example of this

situation in Section 4.5.

I define the metric based on BUE as

MBUE(Q1, Q2) = BUE(Q2)− BUE(Q1).

To summarize, the BUE metric has the positive attribute that it can be es-

timated without knowing Q∗ or T. Further, it can be estimated from sampled

data as values are combined across state-action pairs sampled from a distribu-

tion Π. If test data is drawn from this distribution, approximating this average is
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straightforward. Its negative attribute is that, in stochastic environments, poor

value functions can be rated as superior to the optimal value function because

of the errant variance term in its formulation.

4.3 Relative Bellman Update Error

I propose the following novel metric for comparing two state-action value func-

tions Q1 and Q2. Like BUE, it can be estimated from a sample of experience

tuples. But, it has some important properties that set it apart from BUE. For ex-

ample, it can produce a bound on the suboptimality of return, and it correctly

selects Q∗ as the optimal value function given the right sampling distribution

Π.

The basic idea is to consider a Bellman update on the average of Q1 and Q2

instead of one or the other. For state-action value function Qi (i is 1 or 2), we

have

RBUEs,a
i (Q1, Q2) =  (Qi(s, a)− (Bs,a

r,s′(Q1 + Q2))(s, a)/2)2¡s′,r
T,R.

These quantities are then combined into a metric via

MRBUE(Q1, Q2) =  RBUEs,a
2 (Q1, Q2)− RBUEs,a

1 (Q1, Q2)¡s,a
Π .

I provide proofs of RBUE’s properties next.

4.4 Formal evaluation of Relative Bellman Update Error

In this section, I analyze the formal properties of the Relative Bellman Update

Error metric.
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4.4.1 No variance term

Using Q̄ = (Q1 + Q2)/2, Q̄′ = BQ̄, and following a similar derivation to the

one used in Section 4.2.5,

MRBUE(Q1, Q2) =  ((Q2(s, a)− Q̄′(s, a))2 + Var[(Bs,a
r,s′Q̄)(s, a)])¡s,a

Π

− ((Q1(s, a)− Q̄′(s, a))2 + Var[(Bs,a
r,s′Q̄)(s, a)])¡s,a

Π

=  (Q2(s, a)− Q̄′(s, a))2 − (Q1(s, a)− Q̄′(s, a))2¡s,a
Π .

The important thing to note is that the variance terms cancel, leaving only the

difference of the squares of the distance from Q2 and Q1 to the Bellman backup

of Q̄.

This approach to getting rid of the variance term is similar to the policy-

evaluation loss function introduced by Antos et al. (2008). Their empirical policy-

evaluation procedure takes in a policy π and a sample trajectory and returns

a state-action value function that approximates the value of the given policy.

The policy-specific state-action value function is constructed by minimizing a

metric similar to MRBUE.

4.4.2 Optimal values

A significant problem with the more direct metric MBUE is that it can judge the

optimal value function Q∗ as being inferior to a very poor value function. In

this section, I analyze a variant of MRBUE that uses the max-norm instead of

  · ¡s,a
Π . The same result does not hold for   · ¡s,a

Π with general distributions Π, but

I conjecture that it holds when Π is the stationary distribution of the optimal

policy.

The max-norm is defined as ‖Q‖ = maxs,a |Q(s, a)|. In max-norm form,

M∞
RBUE(Q1, Q2) = ‖Q2 − Q̄′‖ − ‖Q1 − Q̄′‖,
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where Q̄′ = B(Q1 + Q2)/2 for Bellman update B.

Theorem 4.4.1. The metric M∞
RBUE(Q

∗, Q) is non-negative for all Q.

Proof. Let δ = ‖Q∗ − Q‖. I claim that it follows that ‖Q∗ − Q̄‖ = δ/2. To

see why, consider any (s, a) and observe that Q∗(s, a) − Q̄(s, a) = Q∗(s, a) −

(Q∗(s, a) + Q(s, a))/2 = (Q∗(s, a) − Q(s, a))/2. Since this equality holds for

every (s, a), it is true for the (s, a) for which |Q∗(s, a)−Q(s, a)| is maximized.

It follows from standard contraction properties of B (Williams and Baird,

1993) that ‖Q∗ − Q̄‖ = δ/2 implies that ‖Q∗ − BQ̄‖ ≤ γδ/2. Given that δ =

‖Q∗ −Q‖ ≤ ‖Q∗ − BQ̄‖+ ‖BQ̄−Q‖ by the triangle inequality, we have

‖Q∗ − BQ̄‖ ≤ γδ/2

‖Q∗ − BQ̄‖ < δ/2

2‖Q∗ − BQ̄‖ < δ

‖Q∗ − BQ̄‖ < δ− ‖Q∗ − BQ̄‖

‖Q∗ − BQ̄‖ < ‖Q∗ − BQ̄‖+ ‖BQ̄−Q‖

−‖Q∗ − BQ̄‖

‖Q∗ − BQ̄‖ < ‖BQ̄−Q‖.

4.4.3 Loss bounds for RBUE

For the max-norm variant M∞
RBUE, I prove a relation between the value it pro-

duces and the suboptimality of the value function.

Consider two state-action value functions, Q1 and Q2. Let ∆ be a bound on

how close they are to each other: ‖Q1−Q2‖ ≤ ∆. The closer they are, the more

reliable the relative bounds will be. Let δ1 = ‖Q1 − Q∗‖ and δ2 = ‖Q2 − Q∗‖.
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These are the quantities we are interested in studying. Let Q̄ = (Q1 + Q2)/2

and Q̄′ = BQ̄ for Bellman operator B. By the triangle inequality, we have ‖Q1−

Q∗‖ ≤ ‖Q1 − Q̄′‖+ ‖Q̄′ −Q∗‖.

Let ‖Q1 − Q̄′‖ ≤ ε1 and ‖Q2 − Q̄′‖ ≤ ε2 bound the relative Bellman resid-

uals. We can also bound

‖Q̄′ −Q∗‖ = ‖BQ̄−Q∗‖

≤ γ‖Q̄−Q∗‖

≤ γ‖(Q1 + Q2)/2−Q∗‖

≤ γ‖(Q1 + (Q1 + ∆))/2−Q∗‖

≤ γ‖Q1 −Q∗‖+ γ∆/2

≤ γδ1 + γ∆/2.

Putting these pieces together, we have that

‖Q1 −Q∗‖ ≤ ‖Q1 − Q̄′‖+ ‖Q̄′ −Q∗‖

δ1 ≤ ε1 + γδ1 + γ
∆
2

δ1 ≤
ε1

(1− γ)
+ γ

∆
2(1− γ)

.

That is, the distance between Q1 and optimal can be bounded as a function of

the values computed as part of the calculation of M∞
RBUE. That is, we can keep

track of the largest difference between two functions ∆ and the largest difference

between one function Q1 and Q̄′.

4.4.4 Estimating RBUE via samples

As the main goal is to develop a metric that allows for offline evaluation on a

wide range of environments, I focus on the use of samples instead of exhaustive
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comparisons of value functions. In particular, although M∞
RBUE is better under-

stood at present, it cannot be computed using a sample. In contrast, MRBUE

can be estimated well by sampling experience from distribution Π. The ex-

pectation of such an estimate matches that of the MRBUE metric—future work

should quantify the variance introduced by finite sample effects.

There are numerous methods by which samples could be collected. It is

important to adequately explore the parts of the state-action space relevant to

optimal or near-optimal policies. Of course, there are environments in which

undirected data collection is not possible as it may lead to undesirable effects.

For example, in a flying helicopter environment, thorough exploration could

lead to pricey crashes. Similarly, in a environment for learning to play chess

against a grandmaster, the grandmaster would be unable to play millions of

games to attempt to provide coverage of likely outcomes. Instead, a reason-

able scheme is to collect trajectories using policies that might be suboptimal in

practice but provide samples from important parts of the state-action space.

4.5 Empirical evaluation of offline evaluation metrics

To assess the value of the different offline evaluation metrics, I carried out com-

parison experiments using a number of different reinforcement-learning envi-

ronments. The metrics used for evaluations were Mreturn, Mdist, MBUE, MRBUE

and MMFMC. The evaluations I report are on the environments Mountain Car

(Sutton and Barto, 1998), Five-State Chain (Strens, 2000) and Marble Maze (Lef-

fler et al., 2007). The state-action value functions evaluated were trained using

batch reinforcement-learning algorithms, namely: Least-Squares Policy Itera-

tion (LSPI) (Lagoudakis and Parr, 2003), with either a grid-like or Fourier basis

(Konidaris et al., 2008), and Q-learning with experience replay (Lin, 1992). I
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provide this information to provide context for the reader, but it actually does

not matter how the value functions were obtained/created as I will only be us-

ing them for comparing the different evaluation metrics. Furthermore, I will

also be evaluating the learned state-action value functions against the optimal

state-action function and the average reward state-action function, denoted QAV

in the figures.

4.5.1 Benchmark environments

In this subsection, I describe and provide metric results for three environments.

For all of the environments and experiments, γ = 0.95. For MMFMC, I use a

Euclidean distance function.

Mountain Car

The first environment in the exploration of evaluation metrics was the classic

Mountain Car that has been discussed earlier in the dissertation (Figure 3.7).

The environment’s state space has two dimensions (position and velocity) and

three actions (forward throttle, backward throttle and no throttle). The environ-

ment has a reward of 0.0 when the car reaches the top of the hill and a reward

of −1.0 for every time point when the car is not at the top of the hill. In the

configuration I use for the experiments, the environment is deterministic and

the car always starts at the bottom of the hill.

The setup of the experiment was as follows. To calculate MBUE, MRBUE

and MMFMC, the batch data consisted of 5 sets of 30,000 transitions sampled

from data collected from a suboptimal policy. The suboptimal, non-stationary

policy took an average of 677 steps to reach the goal. For MMFMC, I had p =

30 and N = 1000. The metric Mreturn also used N = 1000. I evaluated 16
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Figure 4.1: Metrics for Mountain Car

learned state-action value functions (8 from Q-learning, 8 from LSPI), the op-

timal state-action value function Q∗ and the constant function QAV. Given a

distribution Π, I calculate the constant state-action value function that mini-

mizes BUE (Equation 4.2) using the average reward appearing in the distribu-

tion, r̃Π =  R(s, a)¡s,a
Π . That is, QAV(s, a) = r̃Π

1−γ .

The metrics for a selected subset of state-action value functions are shown

in Figure 4.1. For this environment, I also include Mresidual to aid in better un-

derstanding of the results of the other metrics.

The optimal Q∗ has the best performance in terms of return and the other

value functions are all roughly equally suboptimal. Interestingly, MMFMC does
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a poor job of evaluating the value functions for this problem. Although it cor-

rectly identifies QAV as suboptimal, it estimates Q1 through Q4 as superior to

Q∗. I analyze and discuss the poor performance of MMFMC later in the Marble

Maze subsection (4.5.1). The metrics Mdist, MBUE and MRBUE all score Q∗ as

better than the other value functions, although MBUE and MRBUE only barely

prefer Q∗ to Q2. On the other hand, Mdist identifies Q2 as quite a bit worse than

the others, suggesting that the learner Q2 fits the sampled test data well but

that there are certain state-action values in the state-action space that it approx-

imates poorly. Examining Mresidual gives us insight into this issue. As Mresidual

covers the whole state-action space, it highlights which of the state-action value

functions has the highest Bellman residual error over the whole state-action

space. The Mresidual metric prefers Q2 least when compared to Q∗. This obser-

vation confirms that among the state-action pairs that were not in the sampled

data, Q2 has a poor approximation. The rest of the learners have relatively lower

Mresidual.

Five-State Chain

The second environment I use to analyze the different offline metrics is the ear-

lier discussed classic Five-State chain (Figure 3.2). In the classic Five-State chain,

the effect of the actions are stochastic. There is an 80% chance that the agent will

move in the direction of the chosen action and a 20% chance that the agent will

move in the direction of the other action. A reward of 0 is given for choosing a

in any state. The exception is that in state 5 action it results in a reward of 10. In

all the states, action b results in a reward of 2. For the metrics that need a start

state, the starting position was state 1. To compute the metrics, I used 5 sets of

10,000 transitions sampled from the optimal policy with ε-greedy exploration,
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Figure 4.2: Metrics for Five-state chain

ε=0.2, and uniform sampling of states. For MMFMC, p = 50 and N = 100 and

Mreturn used the same N. I compared 20 learned state-action value functions

and Q∗ and QAV.

The results for these five value functions in this environment are shown in

Figure 4.2. In this smaller, more thoroughly sampled example, MMFMC tracks

Mreturn well.

The metrics Mdist and MRBUE make similar assessments to each other, incor-

rectly flagging Q3 as nearly as good as Q∗. As this environment is stochastic,

MBUE is able to judge two value functions as superior to Q∗. The most inter-

esting comparison is with QAV, the worst value function by nearly every other

metric. Because it is a constant function, the variance term of MBUE for this
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Figure 4.3: Marble Maze with optimal policy (Leffler et al., 2007)

function is zero, which makes the value function appear much better than it is.

Marble Maze

The Marble Maze is a 2-dimensional discrete grid world with 81 states that

includes a start state, pits, walls, and a goal (Figure 4.3). Its actions are up, down,

left and right. Action effects are stochastic—there is 0.8 probability that the agent

will move in the direction of the action, 0.1 probability that it will move left of

the action chosen and 0.1 probability it will move right of the action chosen. A

reward of −0.0001 is given for every timestep until the goal or a pit is reached.

A reward of −1.0 was given for falling into a pit and a reward of 1.0 was given

for reaching the goal.
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For MBUE, MRBUE and MMFMC, the data consisted of 5 sets of 30,000 transi-

tions sampled from data collected from a random policy. In the data collection,

the random policy also had random start states, instead of the one specified in

Figure 4.3. The average trajectory length was 13.5 steps. For MMFMC, the eval-

uation used p = 50 and N = 1000. The metric Mreturn also used N = 1000.

The return was calculated from a single start state as shown in Figure 4.3 . I

create the same number and types of state-action value functions as described

in Section 4.5.1. Comparisons for a subset of the state-action value functions is

shown in Figure 4.4.

In this environment, all the value functions performed nearly optimally,

with the exception of QAV, which was quite poor. The metric MMFMC does not
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Figure 4.5: Analysis of Return and MFMC scores in Marble Maze

track Mreturn well, rating QAV as good compared to Q∗ and Q2 as better than

Q∗. Here, MRBUE and Mdist correctly assess the learned value functions as be-

ing near optimal and QAV as being poor. Again, as suggested by the analysis,

the stochastic nature of this environment causes trouble for MBUE, which rates

QAV as superior to Q∗ due to its lower variance.

The MMFMC metric floundered in this environment just as it had in Moun-

tain Car. We find that the utility of MMFMC is reduced when trajectories and

action chains are long. From Figure 4.5, we see that, as N increases, mfmc(Q∗)

diverges from return(Q∗). In contrast, the performance of QAV—essentially a

random policy—is predicted accurately. When we look at the correlation over

all the action-value functions’ policies evaluated for this environment, we find

that, after N > 3 or so, the correlation between the two scores is erratic.

4.5.2 Comparing the metrics

One way of comparing the evaluation metrics is to examine the correlations

between each of the metrics and the gold standard, Mreturn. Table 4.1 reports

the correlations for Mountain Car (MC), Five-state Chain (5S), and Marble Maze
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Table 4.1: Correlation of metrics vs. Mreturn

Metric MC 5S MM
Mdist 0.5718 0.5346 0.9192
MBUE 0.1194 0.2990 −0.3492
MRBUE 0.1197 0.3029 0.9385
MMFMC −0.0294 0.9737 0.2016

(MM). The correlation calculation is over the full set of action-value functions

for each environment.

Only two of the metrics evaluated consistently correlated positively with

Mreturn, Mdist (which requires knowledge of Q∗) and the newly proposed MRBUE.

In Mountain Car, MMFMC produced inaccurate predictions. In the Five-state

chain (5S), all the metrics correlated positively, but MBUE was the weakest be-

cause of its difficulty in dealing with stochastic outcomes. In Marble Maze

(MM), Mdist and MRBUE correlated very well with Mreturn while the stochas-

tic nature of this domain resulted in a negative correlation for MBUE.

Summarizing the findings across all metrics:

• Mreturn is the gold standard online metric. Its major drawback is that it

cannot be used offline—access to the real environment or an accurate sim-

ulator is required.

• Mdist correlates reasonably well with Mreturn and can be applied offline.

Its use, however, requires knowledge of Q∗, which can be extremely diffi-

cult to obtain.

• MMFMC is an offline metric. It is easy to calculate and, in many cases, it can

produce very accurate estimates of Mreturn. In general, it requires a good

similarity function and sufficient testing data to adequately represent the

state-action space. It also seems to have difficulties accurately simulating
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long trajectories, limiting its utility.

• MBUE is an offline metric and is also very easy to compute. Its drawback

is that it produces inaccurate evaluations in non-deterministic environ-

ments because of a sensitivity to variance.

• The proposed metric, MRBUE, is also easily computable offline. It is robust

to non-deterministic settings and has the potential to be developed fur-

ther. A shortcoming is that it can only make relative judgments between

pairs of state-action value functions, making it impossible to produce a

ranking of a collection of functions directly. Like all offline methods, it

has a dependency on how testing data is collected—a biased sample can

produce misleading evaluations.

4.6 Summary and future work

In this chapter, I presented a first approach to evaluating reinforcement-learning

algorithms offline. The relative Bellman update error metric (MRBUE) intro-

duced in this chapter can be used to build an online reinforcement-learning

evaluation repository. I believe that, if sampled data sufficiently explores the

state and action space, MRBUE provides a foundation on which batch sampled

data can be made available to researchers via the Internet and algorithms can

be evaluated on common datasets without the complexity of creating and shar-

ing simulators. The metric can be used completely offline to evaluate the algo-

rithms or it can allow for a centralized service that could evaluate algorithms

by comparing the state-action value functions they produce to other collected

state-action value functions. Note that mechanisms for producing rankings
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from pairwise comparisons are well studied in the board game and sports com-

munities; future work will examine adapting these schemes to the algorithm

evaluation setting.

Another potential use of batch metrics is in creating selection-based ensem-

ble reinforcement-learning algorithms. Earlier (Section 3.4.1) I discussed an ap-

proach to a fusion based ensemble based reinforcement learning algorithm, but

we could use the batch data collected during the testing phase of an ensemble

algorithm to make choices about which algorithms to use. That is, we could

select algorithms in an ensemble using a batch metric.

In the next chapters, I continue the exploration of offline evaluation of RL

algorithms by focusing on evaluating the policies produced by the algorithms

using the batch data. Given that metrics which use batch data are affected by the

manner data collection is done and whether important parts of the state space

are covered, we need to account for the uncertainty that might result when

doing evaluation using batch data.
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Chapter 5

Uncertainty in Offline Evaluation of Policies

5.1 Introduction

In Chapter 4, we explored the use of multiple metrics to do offline evaluation

for reinforcement learning. The focus was on using comparisons of the state-

action value functions from different algorithms. A limitation of the developed

metric, Relative Bellman Update Error, was that it could produce misleading

evaluations of algorithms given biased samples. In collecting the data samples,

there is no guarantee there is sufficient data for all state-action pairs and no de-

pendable relationship between the policy being evaluated and the policy used

for collection. With this limitation in mind, I focus on how we can quantify un-

certainty in our evaluation of algorithms given batch data.In Chapter 3, when

looking at doing online evaluation, policies resulting from algorithms on the

real MDPs (online) were evaluated. We now return to evaluating the policies,

but using batch data (offline). To evaluate policies using batch data, we need

to deal with limitations that batch data introduces. Specifically, the policy used

to collect samples may not have adequately explored the state space relative to

the policy being evaluated. The policy we are trying to evaluate may result in

a very different state–action frequency than the one that generated the batch

data.
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Domains like medicine, education, and marketing involve sequential inter-

ventions to individuals: treating patients, teaching students and tempting cus-

tomers. There exist many possible sequential interventions or policies and there

is a huge need and opportunity to create personalized predictions of their ef-

fectiveness for unique individuals. In one way of thinking, each task is run on

set of distinctive MDPs. Recognizing that different individuals are slightly dif-

ferent environments means that information that helps identify the behavior of

the current individual could be very useful to inform which strategy to employ

to maximize reward. To create individualized predictions, we seek to lever-

age the increasing use of electronic medical record systems Yoo et al. (2012);

Stewart et al. (2014) Massive Open Online Classes (Siemens and Long, 2011),

and online stores (Chen et al., 2012), which are producing a wealth of infor-

mation about existing deployed policies and their outcomes. It offers a new

opportunity to inform the selection of personalized sequential policies that are

empirically evaluated on prior data.

The goal, in this chapter, is to develop algorithms that can use batch infor-

mation to make accurate predictions about the range of effectiveness a partic-

ular strategy might have for a given individual, such as the range of quality-

adjusted life years a particular diabetes patient might experience if she follows

a certain treatment strategy. Such ranges are important since both individuals

and organizations are frequently not risk-neutral and wish to understand the

distribution of potential returns given the many sources of uncertainty.

Significant sources of uncertainty are:

1. Data sparsity. If there is a limited amount of data that is relevant to the

policy or individual of interest, it will yield significant uncertainty in the

resulting policy-return estimates.
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2. Latent feature uncertainty. Though a new individual is often similar to

some of the individuals about which we have data, exactly which previ-

ous individuals a new person is related to is frequently unknown a priori,

leading to difficulties in predictions.

3. Intrinsic stochasticity. Inherent uncertainty in outcomes, even if the true

probabilities of each outcome are precisely known, also makes a signifi-

cant contribution to the uncertainty concerning the result of executing a

policy.

In this chapter, I quantify prediction accuracy in a way that can be applied in

the context of batch data. I introduce an approach that produces personalized

assessments of an input policy’s effectiveness given batch data. To my knowl-

edge, this model-based reinforcement-learning algorithm is the first approach

that addresses all three important sources of uncertainty over predictive payoff.

It handles latent feature uncertainty by modeling the data as a latent mixture of

subpopulations of individuals, explicitly quantifies data sparsity by accounting

for the limited data available about the underlying models, and incorporates

intrinsic stochasticity into its predictions to yield estimated percentile ranges of

the effectiveness of a policy for a particular new individual instead of only the

policy’s average effectiveness.

5.1.1 Related work

In this chapter, we will be concentrating on predicting the possible returns re-

sulting from executing a given policy in the context of a specific individual.

We assume that the individual–environment interaction can be modeled as a

Markov decision process (MDP). The value of a policy starting from a state s,
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Vπ(s), is the expected sum of discounted rewards obtained from state s when

actions are selected according to policy π. We assume that the transition and

reward models are not provided in advance.

In model-based RL (Sutton and Barto, 1998), an explicit estimate of the

model parameters is computed and used to extract the value function. The

policy-evaluation problem is to estimate the value of a given policy, which is

the problem I focus on in this chapter. Batch RL assumes access to a previously

collected dataset of state transitions and uses it to perform policy evaluation or

identify the best policy.

Though most popular and effective batch RL methods (e.g., Lagoudakis and

Parr (2003)) do not explicitly consider the uncertainties I describe, there has

been some research on estimating uncertainty over the policy value (the uncer-

tainty over the expected sum of rewards) when estimating with limited data.

Strehl and Littman (2005) derived theoretical bounds on the resulting uncer-

tainty in the policy value of discrete state-action MDPs when computed us-

ing MDP model parameter values that may be inaccurate (due to limited data).

Mannor et al. (2007) estimated the bias and variance of the value of a policy

due to estimating with sparse data, also in the context of discrete state–action

MDPs. In the context of continuous-state MDPs, Shortreed et al. (2011) intro-

duced an approach to learn the optimal policy and value as well as its uncer-

tainty given prior (sparse) data. The method was developed to find optimal

treatment strategies for patients with schizophrenia using clinical trial data.

The major assumption of the approach is that the value function can be esti-

mated using a linear combination of features.

Much less attention has been paid to incorporating stochasticity uncertainty.

Work by Tamar et al. (2013) extended TD learning to estimate the variance in
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policy return using linear function approximation. Other work developed para-

metric (Morimura et al., 2010b) and nonparametric (Morimura et al., 2010a) al-

gorithms for approximating the density of returns by defining a distributional

Bellman equation.

To my knowledge, no work in RL considers the uncertainty that arises when

an individual’s match to existing individuals in the observed data is unknown

(latent feature uncertainty). In high stakes domains, it is important to take all

three sources of uncertainty into account to create personalized policy-evaluation

estimates.

5.1.2 Outline

In this chapter, I first introduce the α-interval loss function, a loss function that

will allow us to evaluate range predictions. I then describe a gridworld exam-

ple that will be used throughout the chapter in different configurations. I define

the latent class MDP, an approach to taking into account the different sources

of uncertainty already described. The need for identifying latent structure is

motivated via an extension of the gridworld example. An algorithm to learn

the latent class MDP and produce outcome predictions is developed. Finally, I

demonstrate how this approach allows us to highlight variability in policy effec-

tiveness amongst HIV patients given a prior patient treatment dataset as well as

predicting the outcome of a not-for-profit fund-raising campaign. The results

show that taking into account individual variability and data limitations can

lead to improved range predictions of evaluating the effectiveness of a policy

for new individuals given prior batch data.
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5.2 Interval loss function

A loss function defines a penalty for a prediction x̂ as a function of the actual

realization x of the predicted quantity represented by the random variable X.

For example, squared loss is defined as J(x̂|x) = (x − x̂)2 and is well known

(Murphy, 2012) to be minimized by setting x̂ = E[X]—the mean of the pre-

dicted quantity. We introduce an α ∈ (0, 1] interval loss function, designed to

encourage accurate predictions of the range of possible realizations of the ran-

dom variable being predicted. Concretely, if the prediction for random variable

X is the range (`, u) and the actual value turns out to be x, I define the interval

loss as

Jα(`, u|x) =



α
2 (u− `), if ` ≤ x ≤ u

x− α
2 `− (1− α

2 )u, if x > u

α
2 u + (1− α

2 )`− x, if x < `.

(5.1)

That is, a realization that falls within the predicted interval receives a constant

loss of α/2(u− `) and a prediction outside the interval receives a loss that is its

distance from a specific point inside the interval.

The penalties are defined so that the loss is minimized by setting the bounds

so that a fraction of α/2 of the observations fall below the interval and α/2 of

the observations fall above the interval. This loss function extends the absolute

loss, which is minimized by predicting the median (Murphy, 2012).

Theorem 5.2.1. Jα(`, u|x) is minimized when P(x > u) = α
2 and P(x < l) = α

2 .
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Proof. First, note that

E[Jα(`, u|x)] = α

2

∫ u

`
(u− `)p(x)dx

+
∫ `

−∞
[
α

2
u + (1− α

2
)`− x]p(x)dx

+
∫ ∞

u
[−α

2
`− (1− α

2
)u + x]p(x)dx. (5.2)

This equation is minimized by setting u and ` to the solutions of ∂E[Jα]
∂u = 0 and

∂E[Jα]
∂` = 0, respectively. Using Leibniz’s rule to differentiate the integrals, we

see

0 =
∂E[Jα]

∂u

=
α

2

[∫ u

`
p(x)dx +

∫ `

−∞
p(x)dx

]
−
∫ ∞

u
(1− α

2
)p(x)dx

=
α

2
P(` ≤ x ≤ u) +

α

2
P(x < `)− (1− α

2
)P(x > u).

Solving for u, we get P(x > u) = α
2 . That is, u should be the upper α/2 quantile.

An analogous argument can be used to show that P(x < `) = α
2 .

The next section presents comparisons of approaches for estimating out-

come ranges for policies given batch data.

5.2.1 An illustrative gridworld example

Next, I explore the notion of interval loss in the context of a concrete example.

Consider the problem of learning to predict the return in a version of the 4× 3

gridworld domain from Russell and Norvig (2010) (Figure 5.1). In this domain,

the goal of the robot is to reach the top right corner. The robot always starts at

the bottom left corner. The state space consists of 11 grid positions, excluding

an obstacle near the center. The actions that are available are up, down, left and
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Figure 5.1: 4× 3 Gridworld

right. The reward is −0.04 for being in any state except the goal state (+1) and

the location immediately below the goal (−1), both of which are terminal states.

The agent has probability 1− p that it will move in the direction of the action

chosen, p/2 that it will move left of the action chosen, and p/2 that it will move

right of the action chosen. We term this stochasticity p the slip probability of the

MDP. The experiment that follows used slip probability p = 0.3.

We examine four policy-evaluation prediction algorithms:

1. Expected Outcome: Compute the maximum likelihood estimates of the

transition function and reward function from the data. From the learned

model, compute the expected return x̂ of the policy and predict the in-

terval (x̂, x̂). This approach ignores uncertainty due to data sparsity and

marginalizes out the intrinsic stochasticity.

2. Certainty Equivalence Ranges: Again, compute the maximum likelihood

model. Use it to estimate the α-percentile range of returns by simulating

the rollout of the policy in the model. This approach accounts for intrinsic

stochasticity in the return but ignores the issue of data sparsity.

3. Variance Algorithm: Use the approach of Mannor et al. (2007) to estimate
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Figure 5.2: Gridworld policies π1, π2 and π3 respectively (left to right)

the variance of the outcome, using it to calculate the α-confidence inter-

vals (assuming a Gaussian form). This approach accounts for data spar-

sity but ignores intrinsic stochasticity.

4. Mixed Model: This algorithm creates the Dirichlet posterior distribution

over the multinomial transition model probabilities. (For efficiency, the

reward function is estimated by its maximum likelihood model.) It then

samples transition models from the posterior and carries out rollouts as

in the certainty equivalence ranges method. This approach factors in both

data sparsity and intrinsic stochasticity when making its predictions.

Data was collected by sampling uniformly one of 3 policies and then acting

in the gridworld, beginning from the start state and acting for a maximum of 50

steps. The deterministic polices are: A policy that initially moves upwards and

then to the goal trying to avoid the pit; a policy that goes to the goal by moving

safely next to the pit; a policy that is unlikely to reach the goal, choosing actions

that are perpendicular to the action the first policy would have chosen. The

policies are illustrated in Figure 5.2. The amount of data presented to each of

the four prediction algorithms listed above is varied.

The interval loss function for each approach for three different policies was

computed. Concretely, given an input set of sampled data, a particular policy,
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and one of the four prediction algorithms, an interval over the potential dis-

counted returns, γ = 0.95, of this policy is computed. The interval loss over

a held out set of 300 returns (100 for each of the policies) was computed. The

experiment was repeated 10 times.

The results, shown in Figure 5.3, show—not surprisingly— that prediction

accuracy for all prediction algorithms is lowest (that is, loss is highest) with

the least data. Interval loss drops with increasing data for 3 of the prediction

algorithms. In all cases, data sparsity uncertainty is resolved with more data,

leading the expected outcome and variance algorithms to converge to the same

interval loss (that of predicting the mean) and the certainty equivalence ranges

and mixed model algorithms to converge to the same interval loss (the mini-

mum possible with this distribution). The variance algorithm follows an inter-

esting pattern. It has lower accuracy as its predicted variance of model param-

eters decreases. As it gets more data, however, it converges to the same interval

loss as the expected outcome algorithm—the level associated with predicting

the mean of the true distribution. Similarly, the mixed model and certainty

equivalence ranges algorithm converge to the same low interval loss—that of

the best possible interval predictions. Throughout the graph, the more explic-

itly the algorithm treats the two sources of uncertainty, the lower the loss it

achieves. The Mixed Model achieves lower interval loss with scarce data (pa-

rameter uncertainty) and deals well with intrinsic stochasticity even when there

is a lot of data. (At 100 training samples, 72% of the test data points were within

the 80% predicted range.)

Figure 5.4 visualizes the predictions made by the four prediction algorithms

in the lowest data case considered, four training samples. The gold standard is

shown at the left of the plot, followed by the results of ten different runs of the
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Figure 5.3: Comparison of different policy-evaluation prediction algorithms by
interval loss

mixed model, certainty equivalence ranges, variance, and expected outcome

algorithms. As is evident, there is significant variability from run to run given

only four training samples. Of all the algorithms, the mixed model algorithm

is best able to consistently generate good predictions of the true range.

5.3 Latent class MDPs

The mixed model algorithm effectively deals with uncertainty due to data spar-

sity and the intrinsic stochasticity of a policy’s return. However, frequently, an

additional source of uncertainty arises because it is unclear how the new indi-

vidual, for which we wish to produce a personalized estimate of the effective-

ness of a particular policy, relates to the individuals about which we already

have data. It is often the case that different subgroups of individuals are best

modeled with different model parameters. For example, Lewis (2005) found
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Figure 5.4: Predicted ranges for the four prediction algorithms based on only 4
training samples for Policy 1

that when computing a dynamic pricing policy for news delivery, there were

two latent types of customers, each with distinct MDP transition parameters.

Such different parameters can lead to quite different returns for the same pol-

icy. For instance, the effectiveness of a treatment may depend on an individual’s

age, sex, ethnic background, illness severity or functions of her underlying com-

plex physiology.

If these subpopulations are known in advance, each subpopulation can be

given its own predictor. However, sometimes the right way of breaking up the

community of individuals into groups or classes with similar behavior (in re-

sponse to a sequence of decisions) is revealed only through the data itself (such

as in the customer work of Lewis (2005)). In this situation, we can view each

individual as belonging to a latent class. The latent class MDP model provides a

framework for representing and learning these classes, and using them to im-

prove the personalized policy predictions.

To define a latent class MDP, I augment the standard MDP model with a set
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of classes C, and a static d-dimensional feature vector f . The transition function

(earlier described in Section 2.2) becomes conditioned on the class: Tc(s′ | a, s)

is the probability that state s will transition to state s′ given action a for agents

in class c ∈ C. The static feature vector is assumed to be generated from a

multi-variate normal with class-dependent parameters: mean µc and diagonal

covariance matrix Σc. The static feature vector is used to capture the common

situation that there is some additional, static features known about an individ-

ual (e.g., demographics).

We assume the input batch data is provided in the form of observational

samples, O = {ζ1, . . . , ζN}. Each sample ζi has an associated feature vector

and a trajectory of Ki steps. A standard MDP is simply a special case of the

proposed formulation with no additional static features. We assume that a state

s, such as the top right corner of a grid or a patient with high blood pressure, is

observed via measured data o, for example, GPS coordinate or readings from a

blood-pressure meter. The ith sample ζi can be written as

ζi = { fi}{(s1
i , a1

i , r1
i ), . . . , (sKi

i , aKi
i , rKi

i )},

where fi is the d-dimensional feature vector. The reward rk
i is assumed to be a

function of the observation or observation history. The returns that are received

for an observation sample ζ are defined as R(ζ) = ∑Ki
k=1 γk−1rk. To illustrate

the impact of latent structure on decision making, I present a latent structure

example that is an extension of the earlier gridworld.

5.3.1 Impact of latent structure on decision making

Let’s say we design cleaning robots for one-room apartments and that the cus-

tomers own apartments that can differ along a number of features such as size,
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types of floors, or the presence of a pet. We would like to offer personalized

predictions of effectiveness: How well will each cleaning policy work in a par-

ticular apartment? We have access to data from the robot’s use by other cus-

tomers. How do we use it to offer accurate predictions for a new customer? To

explore this issue, I instantiate the apartment problem in an extension of the

grid-world domain discussed earlier.

We introduce 3 types of apartments that the robot can encounter. The apart-

ments have two measurable features (floor smoothness, floor slope) that affect

the movement of the robot. The types encode the degree of stochasticity for

actions. Specifically, on each type of floor, the robot has probability 1− p that it

will move in the direction of the action chosen, p/2 that it will move left of the

action chosen, and p/2 that it will move right of the action chosen. As before,

we term this stochasticity p the slip probability of an apartment.

For the experiment, the measurable floor features were drawn from 3 un-

derlying normal distributions corresponding to the three apartment types, with

different means and variance. For µ1 = {0.72,−0.50}, σ2
1 = {0.31, 0.42}, µ2 =

{−0.66,−0.66}, σ2
2 = {0.43, 0.36} and µ3 = {−0.02, 0.83}, σ2

3 = {0.32, 0.31}.

The slip probabilities p were 0.0, 0.3, and 0.9 for the three different apartment

types.

To illustrate the performance of predictions made from using data collected

from the apartment gridworld without first attempting to find latent structure,

the results of three different cleaning policies are compared (the gridworld poli-

cies discussed in Figure 5.2). The percentile ranges derived from mixing this

data together are presented and compared to the ranges derived from a sin-

gle type of apartment in which our new owner would belong if we had used
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Figure 5.5: Ranges for returns in the gridworld domain using mixed data (solid
line) vs. data from apartment Type 3 only(dashed line) for each policy

the feature information in classifying them. The 80% ranges for the two sce-

narios using 10000 collected trajectories, for each scenario, with γ = 0.95 are

plotted. The resulting ranges for the return starting at block (1, 1) are shown in

Figure 5.5.

Unsurprisingly, the figure shows that the 80% return ranges for each of three

different policies are quite different when the apartment type is ignored (solid

ranges in Figure 5.5) or known (dashed ranges). Ignoring the type results in

more uncertainty. The resulting bounds are also less informative about the best

policy to choose—π1 seems marginally better if we ignore the types and π3

seems better if we know them.

This simple example suggests that if latent structure is present, it can be very

helpful to model it explicitly since it can lead to improved policy-evaluation

predictions.
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5.4 Modeling uncertainty in latent class MDPs

In this section, I present the model-based Latent Structure and Uncertainty

(LSU) algorithm for producing ranges over the effectiveness of a given policy

for a new individual (see Algorithm 3). LSU uses observational data to learn a

set of proposed latent class MDPs, and uses these models, plus the observable

features of the individual, to estimate the set of policy outcomes. I next present

a strategy for finding latent classes. Then, I discuss how to quantify the differ-

ent types of uncertainty. Closing this section, I revisit the apartment-gridworld

example.

5.4.1 Learning the parameters of a latent class MDP

We present an Expectation-Maximization-based clustering algorithm for fitting

the parameters of a latent class MDP from observational data. I assume as in-

put that the number of hidden classes C is given, but in the empirical results

I will vary this value and evaluate the resulting loss. Assume we have a set

C = {1, . . . , M} of hidden individual classes. The objective is to find the pa-

rameters of a C-latent-class MDP that maximizes the likelihood of the given

N observational samples O = {ζ1, . . . , ζN}. This likelihood function incorpo-

rates both the trajectories and static features. (For simplicity, I omit the reward

for the likelihood model.) The sample likelihood, LN (ζi|c), of features being

drawn from model c is N ( fi|µc, Σc):

LN (ζi|c) = N ( fi|µc, Σc)

=
1

(2π)d/2 |Σc|1/2 e−
1
2 ( fi−µc)TΣ−1

c ( fi−µc).

For the transitions, I create a set of M transition functions, Tc(sk+1 | ak, sk)

for all s ∈ S, a ∈ A and c ∈ C. We define ρc as the prior probability for class c.
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The likelihood of drawing the transitions ζi = (s1
i , a1

i ), . . . (sK
i , aK

i ), from class c

is

LT(ζi|c) =
K

∏
k=1

Tc(sk+1
i | ak

i , sk
i ).

We define

τic =
LN (ζi|µcΣc)LT(ζi|Tc)ρc

∑c′∈C LN (ζi|µc′ , Σc′)LT(ζi|Tc′)ρc′
(5.3)

as the probability that observation i belongs to class c, and

ΨM = (ρ1, · · · , ρM, µ1, · · · , µM, Σ1, · · · , ΣM, T1, · · · , TM)

as the parameter space for the complete model. As such, the log likelihood of

the samples is

L(O|ΨM) = log
N

∏
i=1

∑
c∈C

ρcLN (ζi|µc, Σc)LT(ζi|Tc). (5.4)

Equations 5.3 and 5.4 form the basis of an Expectation Maximization (EM)

algorithm for a fixed number of models M. As we can split the likelihood func-

tion into two, the EM algorithm uses the standard EM maximization step for

the Gaussian mixture models representing features (Bilmes, 1998) as well as

that for the multinomial mixture model representing the transition functions.

We focus on the details of updating the maximum likelihood estimations for

the transition model. We will use a portion of the quantities estimated within

this model to estimate uncertainty later on. In the h-th iteration, we have calcu-

lated τh
ic, defined in Equation 5.3, in the E step, and in the M step we will iterate

Ψh
M → Ψh+1

M by finding the maximum likelihood estimates for the Gaussian

and multinomial mixture models. Additionally as part of LCEM, we also cal-

culate the maximum likelihood estimate of the reward function R̂(s, a, s′) for

all s, s′ ∈ S, a ∈ A given the training data. We do not know the number of

models M so run EM with several values of M. We monitor the likelihood of
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Algorithm 2 Latent Class Expectation Maximization (LCEM)
Input: Observations O, number of latent classes M, number of iterations H

Initialize Ψ0
M randomly.

Split data into training OTr and validation OV sets.
Run EM for H iterations with OTr, return ΨH+1

M
Calculate L(OV |ΨH+1

M )

return: EM model Ψ∗, R̂

a held out set (cross validation) but later discuss how to make a choice on an

appropriate value of M using the interval loss function. This algorithm, Latent

Class Expectation Maximization (LCEM), is outlined in Algorithm 2.

5.4.2 Computing an Interval of Possible Returns

The output of the LCEM algorithm is a latent class MDP with M classes as

well as membership probabilities of each training trajectory to each of the la-

tent classes. I now describe the Latent Structure and Uncertainty (LSU) algo-

rithm (Algorithm 3) that uses these classes to estimate the range of returns of a

particular policy for a new individual.

First, I wish to explicitly represent the uncertainty we have over the latent

class MDP parameters due to the limited data1. I do so by not treating the

resulting estimates from the EM procedure as point estimates, but instead by

creating a Bayesian posterior probability distribution over the latent class MDP

parameter estimates. This approach is an extension of the mixed model de-

scribed in the gridworld example. To do so, I take the trajectories and use their

soft assignments to each class to produce a Dirichlet posterior distribution over

the multinomial transition model probabilities associated with each latent class

1 Model uncertainty due to the local EM search is not modeled, but we can later assess how
well the approach does in terms of capturing real individuals’ returns.
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MDP. In more detail, for each class, for each state–action pair (s, a), I define

Dir(λ), where λ(s,a) is a count vector for each next state s′. This vector is set as

the number of occurrences of (s, a, s′) triples experienced in the training obser-

vation data, weighted by the probability that each trajectory was assigned to

model c.

For a new individual i (for whom we wish to produce a personalized policy

prediction), we can calculate the probability of latent class membership2 using

their input static features fi, which are assumed to be known in advance (such

as demographic features):

wic = p(c| fi) =
N ( fi|µcΣc)ρc

∑c′∈CN ( fi|µc′ , Σc′)ρc′
. (5.5)

We are now ready to describe how a range for the policy returns for a new

individual i can be estimated. First compute wic for each class c ∈ C and then

repeat the following procedure many times: Sample a latent class c given the

individual’s probability weight vector wi. Then sample a transition model for

each state–action pair T̄c from class c’s associated Dirichlet distributions. Per-

form a trajectory rollout, using the policy of interest to select actions for the

states encountered, and the sampled transition model to generate the simu-

lated transitions. Record the resulting return obtained during this rollout, and

then repeat this whole process. Finally, use the empirical α/2 percentiles as the

prediction. Algorithm 3 summarizes the entire prediction algorithm, named

Latent Structure and Uncertainty (LSU). The effectiveness of LSU is evaluated

2 We could also incorporate uncertainty over the feature-class parameters, by computing
hyperparameters over the fit Gaussian models, and adding an additional outer loop to the LSU
algorithm in which we first sample a model from the feature-class hyperparameters, and then
use that model to compute the probability of latent class membership for the individual. How-
ever, the experimental results suggest that incorporating additional uncertainty over the model
parameters provides a significant benefit only when data is very limited, and therefore suspect
that incorporating feature-class model uncertainty would make little difference empirically.
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Algorithm 3 Latent Structure and Uncertainty (LSU)
Input: Observations O, policy π, new individual i, simulation steps N, num-
ber of latent classes M
H ← number of EM iterations
Ψ, R̂← Run LCEM(O, M, H)
wi ←Membership probability to classes in Ψ (5.5)
for n = 1 to N − 1 do

Sample latent class c from Ψ according to wi
Sample T̄n

c from Dir(λc
S,A)

Rn ← Simulate π trajectory in T̄n
c with R̂

end for
Calculate α/2 and 1− α/2 ranges for R

by seeing whether a held-out individual’s true return for the policy in question

lies within the predicted interval.

To evaluate the accuracy of the predictions, we thus need the interval loss

function described earlier in Section 5.2. In this setting, for each individual

we can predict an α/2 interval, but need a way in which we can say, on aver-

age whether the interval predictions are accurate. As such, the interval loss

function captures how well the empirically estimated intervals cover the real

outcomes.

Next, I briefly discuss the computational complexity of the LSU algorithm

before revisiting the apartment gridworld and applying LSU to that problem.

5.4.3 Computational cost of the LSU algorithm

Here,I present the computational complexity for the full LSU algorithm on a

dataset. First, I will present the analysis of LCEM and then the analysis of the

prediction phase of LSU. The presentation is split into first the EM section and

then the process of calculating the outcome ranges.
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For LCEM, as input, we are given: N trajectories, C latent classes, a max-

imum of K steps per trajectory and d individual features. The computational

cost, per epoch, of the LCEM algorithm is: O(NCd) to calculate the likelihood

due to the individual features, O(NCK) to calculate the likelihood due to the

trajectory transitions and finally O(NC) to put them together and calculate

equation (5.3). As such, the complete E-Step costs

O(NC(d + K)).

LCEM can benefit from being distributed. Approaches such as those from

Wolfe et al. (2008) can be used to speed up the deployment of the algorithm.

The M-step, on the other hand, consists of: Updating the mean and diag-

onal covariance matrix of each cluster in C with cost O(2NCd); Calculating

the maximum likelihood estimates of the transition function results with cost

O(NKC) to calculate the scaled (s, a, s′) statistics and then O(|S||A|C) for the

ML estimates. The total M-Step cost is

O(2NCd + NCK + |S||A|C).

For the LSU algorithm, with a maximum of K steps to roll out the cost of each

simulation epoch, consists of: O(Cd) to calculate the individual’s membership

probabilities (calculated once); O(|S||A|) to sample a new transition function;

and K simulation steps. The total cost with m simulation epochs and O(1) to

calculate the range is

O(Cd + |S||A|m + Km + 1).

In general, for learning the latent model, we would like to have N � |S||A|

and as such the learning computational cost would be dominated byO(NC(d+

K)). This indicates that as we increase the number of latent classes the compu-

tational cost increases linearly in C.
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5.4.4 Applying LSU to the apartment gridworld

Returning to the apartment gridworld, Figure 5.6(a) presents the observation

likelihood varying the number of classes in LCEM using mixed data from all

three MDP types (1500 trajectories). The LCEM algorithm was run with 20 EM

iterations and the experiment repeated 10 times with the 300 samples (100 for

each policy and uniformly sampled apartment) used to calculate the loss func-

tion. First, the likelihood (Figure 5.6(a)) of the validation data increases as the

number of latent states increases. After M = 3, the gains in likelihood are small.

Inspecting interval loss, Jα, for the validation set, Figures 5.6(b) and (c), we see

that, as we increase the number of latent classes, we decrease the interval loss

for the 95% and 80% return ranges up until M = 3. Afterwards, the interval

loss starts increasing. As such, we see that we can use the interval loss to gauge

the accuracy of our predictions and as an indicator that overfitting is occurring.

Figure 5.7 presents the comparison of the loss for a version of LSU that used

the maximum likelihood parameters, LSU Certainty Equivalence, and another

that returns the expected value instead, LSU Expected. Just as in Figure 5.3,

LSU Expected has a higher loss and in this case LSU Certainty Equivalence has

similar loss to full LSU.

Figure 5.8 provides ranges for three different policies (shown in Figure 5.2)

under three different conditions. The first two conditions –all data mixed (left

range for each policy) and all data from apartment Type 3 (middle range for

each policy) —were described earlier. They represent, in a sense, the worst

(features not used) and the best (true class known) predictions that can be made

for a new apartment of Type 3. The third condition (right range for each policy)

comes from applying LSU with M = 3 to the same data to find the latent classes

and then presenting 1000 randomly generated apartment features from Type 3
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to LSU to estimate the value of each policy. The 1000 resulting ranges were then

averaged together. As can be seen, these ranges are much closer to the best case

than the worst case—LSU does a good job of estimating values from features

in this case.

If we know which class each individual falls into, we can easily estimate the

range of outcomes for each cleaning policy by maintaining separate statistics

for each class. In practice, however, it is impossible to know that an individual

comes from a particular class. I ran an additional experiment to uncover how

the LSU algorithm behaves when presented with individuals from different

classes. I sampled features for 100 individuals uniformly from the three classes.

I then applied Equation 5.5 to estimate the probability that each individual was

Type 3 and used LSU to compute the resulting range of outcomes. I plotted the

probability of the individual being in Type 3 against the computed ranges of
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the returns from two different policies.

The results, shown in Figure 5.9, have several noteworthy properties. First,

for individuals whose probability of being Type 3 was near 1.0, policy π2 is

clearly significantly better than policy π1, despite its wide range of possible

outcomes due the stochasticity in the MDP’s transitions.

Second, for individuals whose probability of being Type 3 was 0.0, both poli-

cies had narrower intervals. But, since there is uncertainty as to which of the

other types of gridworlds the individuals are, there is still uncertainty in out-

comes. These individuals should be given a different recommendation—π1 is

much better than π2. Finally, in the middle of the graph, ranges are wider, cap-

turing the fact that there is additional uncertainty as to which latent class these

individuals match. For these individuals, the choice of policy would depend

on their risk attitude: the top of π1’s range is better than π2’s, but its bottom is

also lower.

5.5 Application to real world datasets

Having applied LSU to a synthetic dataset, we now move to real world datasets.

The first case study shows the application of LSU to an HIV dataset to predict

the outcomes of treatment choices available to patients. The second provides

predictions of the outcomes of non-profit fund-raising appeals using a histori-

cal funding appeal donation dataset from the Paralyzed Veterans of America.

5.5.1 Personalized treatment uncertainty

In this subsection, I detail the application of the LSU approach to a real life ob-

servational collection. I used an HIV (Human Immunodeficiency Virus) dataset
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from the EUResist project (Zazzi et al., 2012; Prosperi et al., 2009). This data

differs from that of clinical trials in that it is an amalgamation of observational

datasets from different patients, hospitals, and European countries. Our exper-

iment is not a rigorous treatment of the efficacy of HIV treatments or EUResist,

but serves to illustrate the potential use of the LSU approach with observational

data from important areas such as medicine.

Human Immunodeficiency Virus

HIV is a lentivirus that slowly leads to the Acquired Immunodeficiency Syn-

drome (AIDS) (Weiss, 1993). After the initial infection, the virus replicates and

infects and destroys CD4 T-cells, leading to the collapse of the immune system.

A number of antiretroviral therapies are used in the treatment of HIV. Though

these therapies are often successful, in the long term, the virus mutates, making

the treatment less effective.

As such, HIV drug-treatment therapies require monitoring as well as peri-

odic changes to the regimen. Ernst et al. (2006) have previously presented an

approach of treating the HIV treatment problem as a sequential decision prob-

lem, specifically optimizing for structured therapy interruptions. Shechter et al.

(2008) and Braithwaite et al. (2008) presented approaches that optimize when

to start HIV therapies. Braithwaite et al. (2008), on the other hand, presented

an approach to optimizing the CD4 cell threshold to begin therapies. In this

work, I assume the patient is always on a treatment and use an HIV dataset (in-

stead of a simulator) to predict the treatment-effectiveness ranges for different

treatments.
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EuResist dataset

The EuResist dataset consists of 18467 patients going through numerous HIV

treatment therapies. The dataset was originally envisioned as a tool for re-

searchers to build models that predict whether a drug would be effective or

not on a patient (Zazzi et al., 2012; Prosperi et al., 2009). Current literature in

the area focuses on predicting the response between 4–12 weeks. For a drug to

be classified as effective, it must reduce the viral load 100-fold from baseline or

result in the virus being undetectable. I use the dataset to evaluate the effective-

ness of sequential therapies, similar to the approach of Shortreed et al. (2011).

A significant difference from this prior work is that observational data instead

of clinical trial data is being used in this case. This approach potentially makes

it possible to bring a larger amount of data to bear on policy evaluation, but

the lack of controls can make the interpretation of past treatments challenging.

The approach to this HIV problem is different of that of Ernst et al. (2006) in

that I am not evaluating policies that use treatment interruptions (I assume the

patient is always on a treatment) and further use data directly from HIV patient

observations as opposed to a mathematical model of the virus’ progression.

I extracted from the dataset the set of patients who underwent at most 2

different treatment therapies over a 24-month period. The periods take place

anytime between Jan. 2000 and Dec. 2010. I treat the viral load as a state vari-

able and tracked its changes monthly over 24 months. Since patients did not

have their viral loads taken at regular intervals, the viral loads for months in

which there was no data were interpolated. A piecewise linear interpolation

was used, where values for the viral load were calculated every 30 days (encod-

ing a month). Similar to Shortreed et al. (2011), I further encode the patient’s

treatment stage. I take their first treatment therapy as Stage 0 and the second
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treatment, after a switch, is Stage 1. Thus, s1,0 is state 0 in stage 1.

The patients’ continuous features in the latent class MDP were: baseline

viral load, baseline CD4 count, baseline CD4 percentage, age and number of

previous treatments.3 The features were standardized, a linear re-scaling of

the features so that each of the features has zero mean and standard deviation

of 1. With assistance from HIV health-care experts, I identified the top 10 ther-

apy/drug cocktail groups occurring in the reduced data set, discarding data

that used therapies outside these groups. Each unique therapy was taken as an

action. The state space was discretized by binning the values of the viral load.

The bins for the viral load, in copies/mL, were [0.0,50,100,1K,100M]. State s0,0

and state s0,4 are thus viral loads between 0 and 50.0 copies/mL and 1K and

100M copies/mL, respectively. The reward function was the negation of the

Area Under Curve (AUC), calculated monthly, of the viral load over the period

being studied. This reward function favors a patient having a lower viral load

over a long period of time. I calculated the return with γ = 1.0 but with a

maximum of 24 steps (24 months), ensuring that returns are finite.

Discovering latent classes

The initial step in the approach is to find if there is indeed latent structure. To

find the number of latent classes into which the HIV patient data should be

split, I again randomly partitioned the data into a training set (for EM) and

validation set. The training set, after standardization and removing outliers,

consisted of 6552 samples while the validation set had 250 samples. To calcu-

late the interval loss function for the dataset, I sought out the most common

3 The dataset includes virus genomic information for only some of the patients, as such was
not used it as a feature. Including genomic information is a great opportunity for future work
as it is a valuable marker for resistance and mutations.
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Figure 5.10: Likelihood and loss functions for the LSU algorithm with mixed
observational data from the HIV dataset

two-stage treatment policies that were observed in the dataset. From the sub-

population that followed these top policies, I sampled 50 patients and made

them part of the validation set of 250. These 50 patients are those who would

have a the highest likelihood of a switch and as such we can evaluate their full

two stage policy. The results of running the LSU algorithm on the observational

HIV data is plotted in Figure 5.10. The best performance of multiple EM runs

(as per the interval loss function) with the same training samples is shown. The

experiment is repeated 8 times.

The likelihood of observing the data increased as we increased the number

of latent classes. Similarly, the 80% and 60% (Figure 5.10 (b) and (c)) interval

losses drop, indicating that the interval estimates improve as well. The plot

indicates that the HIV data indeed has latent structure. The gains after M > 3

are small.

Over multiple runs of the algorithm, there is evidence of a split between

clusters comprised of patients with lower viral baseline loads (approximately
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10K copies/mL) and other clusters that, in comparison, have high baseline viral

loads. The low viral-load cluster tends to have a higher prior probability than

the rest of the clusters. Having analyzed multiple runs of the LCEM algorithm

for this dataset, the algorithms does not settle on a single value for this clus-

ter features, as such I indicate that this is an approximation. This may indicate

the need for more data to settle the feature parameters of the cluster. The 60%

ranges of returns of two treatment policies from a good run with M = 4 (Fig-

ure 5.11) are shown to illustrate the impact the different clusters may have on

the predicted outcomes. As we do not have the original model distributions, a

subsample of 200 patients is drawn from the original dataset and their features

used to visualize the outcome ranges vs. the probability of falling into the latent

class with the highest estimated prior probability 4.

The interval predictions are shown in Figure 5.11. Patients with a higher

probability of belonging in this latent class show an advantage to policy π1:

higher overall returns and tighter ranges than π2. For patients with an almost

0 probability of being in this class, the opposite is true: π1 now has extremely

large ranges of possible returns, whereas π2 seems to do quite well and have

fairly tight ranges. There is substantially more uncertainty over the return of π1

for patients with a near-zero probability of this class than for other patients or

the other policy. This example illustrates exactly the sort of issue that I hoped

the LSU approach can capture—adjusting the predicted returns for a policy

based on differences in the latent class membership of different individuals,

which can capture differences in the underlying models as well as differences

4 To improve comparability, the graph includes only patients that had a baseline viral load
of between 100–1000 copies/mL (start state of s0,2). The latent class visualized has an estimated
prior probability of 0.50, while the three other classes have probabilities of 0.23, 0.21 and 0.06,
respectively.
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in the amount of data about those classes.

5.5.2 Personalized fund-raising appeals

The second dataset the latent class approach was applied to is the donor history

database of the Paralyzed Veterans of America (PVA). This dataset was origi-

nally used for the Knowledge Discovery and Data Mining Tools Competition in

1998 (Parsa, 1998). The dataset contains information about the PVA’s direct mail

appeal history with multiple donors. I will first describe the dataset and then

present the results of applying the LSU algorithm to extract latent structure to

improve policy evaluations.
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PVA donor database

The PVA is a not-for-profit organization that provides programs and services

for US veterans with spinal injuries or disease. They are one of the largest di-

rect mail fund-raisers in the USA. The original goal of the release of this dataset

was to predict whether donors would respond to a campaign or not given their

donation history and information about the last 22 campaigns sent by PVA,

covering the years 1994, 1995 and 1996. This dataset was presented as a classifi-

cation problem. The dataset included information about campaigns sent prior

to the campaign to be classified. From each of the donors, there were multiple

demographic variables captured. For each of the campaigns, the date on which

the campaign was sent, types of mailer sent, the date and amount of donation

(if received) were also recorded.

For my analysis, the data are reformulated into a sequential decision prob-

lem. I would like to predict the range of cumulative donations received from

donors in a certain period given different mailing policies. I use the Recency,

Frequency and Amount (RFA) or Recency, Frequency and Monetary Value (RFM)

formulation (Kahan, 1998) to encode the state the donors are in. The RFA sum-

marizes the history of a donor. The original dataset had its own RFA formula-

tion that was only available for the months in which campaigns were sent. To

supplement this information, the RFA is recalculated on a monthly basis and

adopted a simple RFA formulation. The RFA calculation is started at Septem-

ber 1993, with every donor having an RFA of [0,0,0]. For every month after that,

until September 1996, I checked if any campaigns were sent (via the campaign

information provided or the date of original gift recorded in the database) and

whether donations were received for those donations or not. For simplicity,

an action is defined as being a “sent campaign” or “no sent campaign” in each
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month. If two campaigns were sent, they were classified as a single event in-

stead of two.

Similar to the work of Mannor et al. (2007), the RFA components are dis-

cretized into 4 bins. For the recency (months since last gift), the discretization

used is [0,1,4,8,27]. For the frequency (the number of gifts in the last 6 months),

the discretization used is [0,0.99,1,2,6]. For the amount (average donations in

the last 6 months), [0,1,10.5,16,1000]. There are numerous ways in which the

RFA can be calculated and investigators have flexibility. This formulation was

chosen for its simplicity. This discretization resulted in 18 accessible states and

2 actions (send a campaign or don’t send a campaign). The donors’ continuous

features in the latent class MDP were: Age, number of donations that had been

sent by donor before the start of the campaigns in the dataset, total amount

that had been sent by donor before the start of the campaigns in the dataset.

There are other features available in the dataset, especially pertaining to the

demographics of the neighborhoods that the donors live. For this dissertation,

I chose to focus on individual donor features; however, this analysis can be ex-

panded further. For evaluation purposes, a policy is defined in this application

area as a linear set of action choices over the 25 months (starting August 1994)

in which outcomes will be predicted. For example, a policy could be: send a

campaign every two months, or send a campaign to a donor every month. Each

mailer costs 68 cents as provided in the dataset description. As such, if a cam-

paign is sent to a donor and no gift is received, a reward of −0.68 is assigned.

If a gift is received, 0.68 is subtracted from the amount of the donation. The

return is calculated with γ = 1.0 and a maximum of 25 steps (25 months).
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Figure 5.12: Likelihood and loss functions for the LSU algorithm with mixed
observational data from the fund-raising dataset

Latent class analysis

Here, I present the results of running LSU on the fund-raising dataset. The

data is randomly split into training set and validations set. After cleanup and

removing any outliers, I use 10000 samples for training. An additional 400 data

samples are used for EM validation and to calculate the loss function. The orig-

inal dataset has ∼90000 donors, but a sample of 10000 is used for training and

400 for the validation and interval loss function calculation. The experiment

was repeated 8 times. Figure 5.12 presents the the results of running LSU on

the dataset.

The likelihood of the observations increases as we increase the number of
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latent classes. Similarly, the 80% and 95% interval loss is reduced as we in-

corporate more latent classes. The 80% loss starts slightly increasing when we

reach M = 5 latent classes. The likelihood of the data also slightly dips once

we are at 6 underlying classes. So, as with the HIV dataset, modeling the latent

structure leads to more accurate predictions.

Next, I display 60% ranges of returns of two different fund-raising appeal

policies with M = 5. Policy π1 sends appeals every four months and policy

π2 sends appeals every 2 months. I drew a subsample of 200 donors from the

original dataset and used their features to visualize the ranges versus the prob-

ability of falling into one of the latent classes. Only individuals who had an

initial starting state (RFA) of [0,0,0] are considered. The latent class visualized,

Cluster 1, has an estimated prior probability of 0.24, while the four other classes

have probabilities of 0.27,0.13,0.20 and 0.16, respectively. This latent class is

composed of donors of 66 years of age, an average of $88 in previous donations

and average of 11 previous donations sent. This class was chosen to illustrate

the differences between it and other classes in terms of the range of expected

returns.

The interval predictions are shown in Figure 5.13. As a donor’s probability

of belonging in this latent class gets nearer to 1.0, we see that policy π2 has an

advantage over π1 and the ranges for policy π1 are narrower. As we move from

right to left, donors decreasing in their probability of falling into this latent

class, the ranges for π1 tend to be wider while the lower limits of π2 tend to be

higher.

Through analyzing multiple runs of the algorithm, we found a strong clus-

ter, Cluster 2, made up of individuals who are around 57 years old and have sent

no donations prior. This cluster, visualized in Figure 5.14, is more likely to send
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Figure 5.13: 60% returns of two policies versus being in donor Cluster 1

more donations and as such has higher upper and lower limits as compared to

Cluster 1.

This section explored the application of LSU to real-world datasets. Through

analyzing the results, we see that if there is latent structure in the data, the

model can discover and exploit it given features from the individual. The la-

tent clusters discovered allow us to better predict the outcomes of policies as

evidenced by the reduction in the interval loss.

One natural next question is whether different classes have different best

policies; intuitively, do different groups have better outcomes under different

policies? The current loss function is not designed to perform partitions of the

population into those with different best policies. Rather, it seeks to provide ac-

curate predicted ranges of the effectiveness of a policy and capture differences

among groups in this effectiveness. This second issue, which is tackled here,

is still important to both decision makers and the individuals in question—two
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Figure 5.14: 60% returns of two policies versus being in donor Cluster 2

individuals may both have the same best intervention/treatment/policy, but

one may expect his/her outcomes to be better than the other. In e-commerce,

the same ad may be most preferred amongst customers, but one group of cus-

tomers will only click on it 30% of the time, and another 50%, which greatly

impacts a company’s predicted revenue.

5.6 Summary and Discussion

I presented a novel method for using batch observational data to provide per-

sonalized estimates of the effectiveness of policies. The approach first searches

for latent structure, and then quantifies uncertainty within and across the latent

classes to compute effectiveness ranges for new individuals. I demonstrated

that the approach helped capture important variability in HIV patient outcomes
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as well as donation amounts of a fund-raising appeal, allowing us to make bet-

ter predictions of the result of different policies. Such methods are of increas-

ing importance given the huge number of potential applications (healthcare,

e-commerce, online education, etc.) that could benefit from such algorithms.

One exciting next step is to expand the approach beyond policy evaluation

to use uncertainty intervals to compute risk-dependent policy recommendations

for individuals. A challenge for this direction, at least in the healthcare domain,

is characterizing the individual’s risk attitude—risk-seeking individuals prefer

policies with a higher upside whereas risk-averse individuals prefer policies

with a lower downside. Eliciting and incorporating this information into the

search is an important problem to be resolved.

There is also an interesting question of how to leverage information gath-

ered about the new individual as they respond to the proposed policy to refine

the underlying estimates of their latent class and/or model parameter values.

Framing the problem as a POMDP with a static latent class may be a fruitful

way to start to address this issue. Finally, it would also be interesting to extend

the model representation to handle continuous-state MDPs.
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Chapter 6

Conclusion

In this chapter, I present concluding remarks as related to the thesis statement:

The applicability of reinforcement-learning methods to real-world challenges can be im-

proved by novel evaluation methodologies, including online procedures for characteriz-

ing the capacity of reinforcement-learning algorithms and offline evaluation procedures

that account for the uncertainties resulting from the use of noisy batch data.

I first present a summary, draw some overarching conclusions, and finally

suggest some areas of future work.

6.1 Summary

This dissertation’s focus has been on improved evaluation methods to further

the applicability of reinforcement learning in real-world challenges. The first

challenge tackled was the development of online evaluation methods to bet-

ter demonstrate the behavior and the capacity of reinforcement-learning algo-

rithms with respect to the environments in which they are deployed (Chap-

ter 3). By introducing the problem of meta-reinforcement learning, finding the

best algorithm given a distribution of MDPs, we are able to focus our evaluation

on how well sets of algorithms generalize to different MDPs. Two distinct eval-

uation methods were created. The first, using a uniform convergence bound,

output a sample optimized generalization bound of the performance of a set



119

of algorithms given a sample of MDPs drawn from a larger MDP distribution.

The second method, an application of cross-validation, provided a proxy to the

sample optimized generalized bound that could be more useful for practition-

ers. Analyzing the application of these evaluation approaches, we show how

one can detect overfitting and gain an intuition of the generalization error of a

set of algorithms given only a sample of MDPs.

The second focus of the dissertation was offline evaluation of reinforcement-

learning algorithms given batch data. Batch data allows us to tackle real-world

problems that are harder to gain access to, to conduct online learning with or

carry out online evaluation on. Ultimately, through all of our scientific pursuits,

we would like to have our algorithms model real world behavior. In RL, that

means we need to be able to deal with the shortcomings of using batch data

to evaluate algorithms. First, the dissertation presented metrics that can be

used to compare value-based reinforcement-learning algorithms (Chapter 4).

A new metric, Relative Bellman Update Error, was developed and its properties

presented. Ultimately, the offline metrics are hindered by a strong dependence

on how the batch data is collected and how much of it is available. To deal with

this shortcoming, one has to confront the uncertainty that arises when using

batch data.

The latter part of the dissertation introduces a model-based evaluation method

that tackles multiple sources of uncertainty resulting from using batch data

(Chapter 5). I introduce the latent class MDP for capturing and quantifying

the different sources of uncertainty. I introduce an expectation maximization-

based algorithm for learn the parameters of the latent class MDP. To measure

the accuracy of the ranges of outcomes predicted by the model, I introduce the
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interval-based loss function. Through the application of the approach to a syn-

thetic problem as well as two problems using real-world data, we explore the

behavior of the approach. We observe that we increase our prediction accuracy

when we find appropriate latent structure in the data we are modeling.

6.2 Conclusions

When researchers compare the performance of different algorithms, they wish

to communicate to others the behavior of their algorithms. Through focusing

on generalization in reinforcement-learning online evaluation, we discover that

using single MDPs and tuned algorithms increases the chances of overfitting

and further obscures the potential interactions between certain algorithms and

certain MDPs. This challenge is not unique to RL but RL researchers have not

actively focused on challenges relating to generalization. By using evaluation

methods that characterize the capacity of algorithms and highlight the behav-

ior of algorithms in relation to changing environment characteristics, we can

better understand the limitations of these algorithms. The sample-optimized

generalization bound provides theoretical underpinnings of relating a set of

algorithms to an MDP distribution using only a sample of MDPs from that dis-

tribution. A more practical approach, cross-validation, still uses MDP samples

from a distribution but is less conservative than the sample-optimized gener-

alization bound. Both of these approaches can be used to detect over/under

fitting of algorithms and provide information to researchers that can highlight

the positive/negative aspects of choices of one algorithm set as opposed to an-

other. This potentially increases the applicability of algorithms to more do-

mains as researchers who would need RL algorithms would better understand

their strengths and their shortcomings better.
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To develop RL algorithms for real world problems, we need to have mecha-

nisms for evaluating these algorithms on real world data. To do so, for multiple

practical reasons, we have to use batch data. Metrics to compare value-based

algorithms to each other on batch data are limited due to extreme sensitivity

on the manner in which sampling is done. As such, a mechanism is needed for

capturing the uncertainty inherent in using batch data for evaluation. By quan-

tifying the uncertainty due to batch data, we can better evaluate policies result-

ing from algorithms using real-world data. As a demonstration, I applied these

methods to two batch datasets captured in the context of medicine and market-

ing. The practical implication of this work is that it suggests we can create RL

algorithms, train them using batch data and use the batch data to evaluate the

outcomes of the policies resulting from the batch data. Having the ability to

communicate ranges of outcomes of policies/interventions to domain experts

can add valuable information in the sequential decision-making process. Deal-

ing with real-world problems will extend the reach of reinforcement learning

in general and the focus on quantifying uncertainty due to batch data is a small

step in understanding a direction that can potentially bring in other disciplines

and their challenges.

6.3 Future Work

Ultimately, given the new online evaluation approaches, there is an opportu-

nity to create meta-reinforcement learning algorithms that are efficient. Earlier,

we discussed the concept of mixture-ensembles as part of the sample optimized

generalization bound (Section 3.3.1) and fusion ensembles as an example of an

approach to create a meta-reinforcement learning algorithm (Section 3.4.2). If
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we treat parameter tuning as a stochastic optimization problem, we can lever-

age the large body of work in relation to stochastic optimization (Spall, 2005;

Goschin et al., 2013) as well as multi-armed bandits (Bubeck et al., 2011; Wein-

stein, 2014). Bringing these tools to bear would require augmenting existing RL

algorithms; as such, might be attractive to practitioners as they would be ap-

plications of existing optimization techniques on the RL algorithm parameter

space.

Recently, there has been more attention paid to creating RL algorithms in

the meta-RL setting. Of particular interest is the recent combination of Deep

Learning (Hinton et al., 2006) and reinforcement learning to tackle the Atari

arcade environment Mnih et al. (2013). The original approach to learning in

the Arcade environment involved using a small subset of video game MDPs to

set parameters (training) for the reinforcement-learning algorithms. With the

parameters set, the RL algorithms were then deployed on a larger set of test

video game MDPs (Bellemare et al., 2013). Human-competitive performance

has been achieved in these large problems, supporting the idea that evaluation

methods like the meta-RL framework have an important role to play in scaling

up RL approaches to complex real-world problems. I believe these published

results should be applauded. I do not mean to diminish their impact, but I

believe that there is still more to gain by varying the size of the training set,

varying the specific MDPs, and measuring/approximating the generalization

error with the larger testing set.

An obstacle to the adoption of evaluation methods that account for gen-

eralization in reinforcement learning will be the computational cost involved.

In this dissertation, I presented two example environments that are small in

comparison to the state-of-the-art benchmarks. Even so, overfitting is still very



123

much a danger that researchers have to be aware of, and finding efficient ways

to compute evaluation statistics that can then be analyzed for generalization

power will be critical.

The latent class MDP presented in this dissertation modeled the member-

ship of sub-populations as well as transition models belonging to each of a set of

latent populations. For simplicity, however, it did not model uncertainty in the

reward function. An extension of this work would be to investigate the impact

of having different reward functions for each sub-population and modeling the

uncertainty that results. We can think of a situation in which one has two pa-

tients who belong to two subpopulations, their transition functions as per their

transition models might be different but their ultimate reward functions as per

the same states and actions might be slightly different as well. In the presented

model, the reward function is ultimately intertwined with modeling choices

made by a researcher and, as such, in some cases it might have no impact at

all. In others, however, these choices might reveal patterns that can be used to

improve the model.

Given an offline evaluation method that can provide the range of outcomes

of a policy given batch data, a second set of questions arise: Can we we find

the optimal policy given the uncertainty? Can we find an optimal policy with

regard to the latent classes in the MDP? To do so, we believe one would have

to incorporate the concept of risk in the policy-creation step. Concepts such as

prospect theory (Kahneman and Tversky, 1979) could be incorporated into the

step to find the optimal policy given different risk profiles that a practitioner is

considering.

This dissertation has explored new evaluation methods in trying to increase

the applicability of reinforcement learning to real-world challenges. What we
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measure should ultimately assist us in understanding the real-world around

us as well allow us to make better choices in how we model this real-world.

This dissertation is but a small step in improving our understanding of some of

the challenges reinforcement learning faces in expanding its reach to real-world

challenges.
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