Tuplex: Robust, Efficient Analytics When Python Rules

Leonhard F. Spiegelberg

Brown University
leonhard_spiegelberg@brown.edu

ABSTRACT

Spark became the defacto industry standard as an execu-
tion engine for data preparation, cleaning, distributed ma-
chine learning, streaming and, warehousing over raw data.
However, with the success of Python the landscape is shift-
ing again; there is a strong demand for tools which better
integrate with the Python landscape and do not have the
impedance mismatch like Spark. In this paper, we demon-
strate Tupler (short for tuples and exceptions), a Python-
native data preparation framework that allows users to de-
velop and deploy pipelines faster and more robustly while
providing bare-metal execution times through code compi-
lation whenever possible.

PVLDB Reference Format:

Leonhard F. Spiegelberg and Tim Kraska. Tuplex: Robust, Effi-
cient Analytics When Python Rules. PVLDB, 12(12): 1958-1961,
2019.

DOI: https://doi.org/10.14778/3352063.3352109

1. INTRODUCTION

Python won. It is today THE language for data science.
It provides libraries for almost anything, is driven by a large
community, and its ease of use, expressiveness and high-level
features make it an extremely powerful language [7].

With Python becoming the leading data science language,
millions of users are relying on a common data science stack
consisting usually of Jupyter or Zeppelin notebooks with
various packages/modules: PySpark to distributively pre-
pare data by parsing, cleaning, and filtering; Numpy, Scipy,
Pandas to explore (samples of) the data and to transform
it; Scikit-learn allows to build (statistical) models over small
data while PyTorch, TensorFlow, Keras, or CNTK are used
to build models over large datasets.

However, PySpark stands out as it is the only framework,
which was not designed from the beginning to integrate with
Python as it is actually JVM-based. The latter is problem-
atic in a world where Python dominates the Data Science
landscape. In Spark Python support (similar to R support)

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 12, No. 12

ISSN 2150-8097.

DOI: https://doi.org/10.14778/3352063.3352109

Tim Kraska
Massachusetts Institute of Technology

kraska@mit.edu

was only added as an afterthought and does not achieve the
same performance as other frameworks, which were designed
with Python in mind. For example, Tensorflow, Numpy,
Scikit-Learn, and Keras combine a Python frontend seam-
lessly with a C++ backend for performance and the possi-
bility to take advantage of modern hardware (GPUs, TPUs,
FPGASs). This combination works particularly well as it al-
lows to transfer data between Python, other libraries and
C++ without unnecessary copies, conversions and minimal
communication overhead.

Moreover, from all the mentioned frameworks only Spark
is a general purpose platform aiming to do it all from data
integration, over analytics and streaming, to model build-
ing. However, according to the “one-size-does-not-fit-all”
theory [10], often huge performance gains can be achieved
by building more specialized systems [9].

We therefore started to design Tuplex as an experiment to
explore how a more efficient and Python-optimized frame-
work for distributed data preparation could overcome some
of Python’s inherent problems. Tuplez, short for tuples and
exceptions, provides bare-metal performance whenever pos-
sible through aggressive code generation similar to other
Python-optimized frameworks (e.g., Tensorflow). However,
what distinguishes Tupler the most from Spark and other
data preparation frameworks (e.g., Pandas) is the way Tu-
plex handles errors and its optimization for the common
case. For example, envision the task of parsing a column in
a CSV file into an array of integers. While this can be very
efficiently expressed as a single map function in Python, ex-
ceptions are usually the problem; e.g., the one row in the
CSV file which has the value “N/A” in it rather than a
valid integer and causes the program to crash. Such cases
are omnipresent in any real data preparation pipeline and
Tuplex offers a simple and elegant solution to the problem,
which allows for faster prototyping. Furthermore, as we will
show, our new processing model enables a whole new set of
additional optimizations.

In the following, we first describe the exception-aware pro-
cessing model of Tuplex, then discuss the current implemen-
tation and outline various optimizations Tuplexr does, and
finally describe the demo scenario.

2. TUPLEX PROCESSING MODEL

It is very common that a data preparation pipeline run-
ning over the actual data for the first time will crash. This
might be because of misalignment (e.g., a CSV row is not
complete), null values, wrong types (e.g., a string instead of

1958

(a) Spark

(b) Tuplex

Figure 1: Spark uses a chain of RDDs triggered by an
action (here: collect). One or more RDDs produce another
RDD. Tuplex uses a chain of normal sets(NS), with each
normal set potentially producing an exception set(ES) that
is merged back whenever resolution is possible.

an integer), extreme values (e.g., numeric overruns), prob-
lems in the previous transformation step, among many other
reasons. Tupler wants to avoid such crashes and the pro-
cessing model was particularly designed based on the ob-
servation that (1) developers want to have a first working
end-to-end pipeline as fast as possible, (2) errors are better
resolved in an iterative manner later on, (3) it is often better
to collect all errors rather than crash on the first occurrence,
and (4) that in some cases those errors do not matter much.
We therefore developed a simple but powerful variant of the
Spark processing paradigm. Instead of having each opera-
tion take one or more RDDs (i.e., a distributed collection
of data) as input and producing one RDD as output, Tu-
plex’s processing model makes exceptions explicit by having
normal sets (NS) and exception sets (ES). Every operation
in Tupler takes one or more (NS, ES)-pairs, called Tuplex
Pairs or T'Ps, as input and produces one TP pair as output:

op : (NS1,ES1), ..., (NS, ES,.) — (NS, ES)

A pipeline is composed of multiple operations forming a
DAG. Similar to Spark, a DAG of operations is lazily ex-
ecuted by appending an action. An action is an operation
that triggers computation and materializes data, e.g. to be
saved to disk or to return a list of Python tuples. However,
to ensure the API is compatible with the standard way users
program today, Tuplex hides the ES input and makes it only
accessible through its API. For example, the following code
multiplies the value of the first column with 0.5. As one can

c.csv('/data/flights*.csv') \
.map(lambda x: 0.5 * x[0]) \
.collect()

see the code shown below is the same as one would program
today with PySpark or Python. Tuplexz currently supports
a similar API to Spark. However, there exists an important
difference: whenever the map throws an exception for an in-
put row, the according row is placed into the exception set.
This exception set can then be resolved at the end of the
program, by the next operation, or not be resolved at all.
However, in any case, the user is warned by visual output if
such an exception did happen.

1959

For example, users can add special resolve functions to
their pipelines like in the code shown below. The back-
end then automatically applies these functions to the rows
causing exceptions with a matching exception type and ul-
timately merges these rows back to the error-free data (i.e.
thus becoming part of a normal set again). Interesting

c.csv('/data/flights*.csv') \
.map(lambda x: 0.5 * x[0]) \
.resolve (NotANumber, lambda x: 0.0) \
.resolve(TypeError, lambda x: 0.0) \
.collect()

from a systems perspective is, that all exceptions are ef-
fectively tracked through the entire pipeline. For example,
Tuplex keeps the lineage information for every exception
around. Furthermore, it allows to access the exception set at
every stage in the pipeline or in aggregated form at the end.
This has several advantages: (1) it allows to more efficiently
debug an exception even if the execution is distributed, and
(2) it allows to take all exceptions, move them into a normal
set, and write specific code for them. The latter efficiently
makes it possible to iteratively remove problem cases while
having a first working pipeline as fast as possible.

Code for Tuplez is written using standard Python in the
terminal, jupyter notebook or by running .py-files. Tu-
plex allows to track any Python exception thrown during
any stage within the pipeline when executing compiled code
or UDFs in fallback mode. The idea of saving exceptions is
similar to load-reject files for classical DBMS loading, how-
ever, the difference is, that UDFs may throw errors at any
stage during the pipeline which can not be tracked easily
or even handled at all through traditional load-reject files.
Furthermore, in the next section we describe how this mech-
anism can be leveraged to produce optimized code similar
to speculative optimization in JIT engines [12] or classical
profile guided optimization.

3. TUPLEX ARCHITECTURE

Our current Tuplex prototype, which implements the above
process model, is implemented using Python 3.5+ for the
frontend and C++11 for the backend, compiler and execu-
tion engine from scratch. The compiler frontend for Python
is custom written and LLVM 5.0 is used as backend with its
optimization capabilities. The execution engine currently
runs multi-threaded on a single node and has a fallback
mode using the cloudpickle module [8] for any Python func-
tion that we can not transform to more efficient LLVM code.
That way users are not restricted in the libraries or code
they write. In the following sections we describe some of
Tuplex’s unique optimizations.

3.1 Smart Caching

When users develop big data pipelines, they often first sam-
ple the data to prototype and test both the pipeline with its
UDFs before running it over the entire data. This process
might then repeat over various samples until the pipeline is
run over the entire data. With Spark, it is possible that a
single tuple (e.g., in a aggregation) may crash the entire job
after having spent thousands of CPU days, leaving users to
debug logs of hundreds of nodes. However, our novel pro-
cessing model not only avoids those crashes but also offers

several unique opportunities for caching. Tuplex caches re-
sults (normal and error set) between invocations and only
executes what has changed. For example, if a user adds
resolutions only the exceptions are reprocessed and not the
entire pipeline. Note, that in any other framework adding an
exception handler would actually cause the entire pipeline
to be executed again over the entire dataset.

This simple optimization has shown to significantly reduce
the overall execution and development time as it avoids ex-
pensive re-executions.

3.2 Optimizing for the Normal Case

While exceptions are common, relatively speaking they
are rare. For example, it is reasonable to assume that most
rows in a CSV are not broken but a few might be. Further-
more, users tend to test their pipelines on a small subset
of the data first. This opens up new ways of optimization.
Most importantly, we can use the sample to figure out the
common case and optimize the code accordingly. Hence ex-
ceptions sets make it not only easier for the user to deal with
exceptions, we can also use it to stage computation. That
is, first we use a fast code-path for the most common case,
which puts every item it can not handle in the exception set.
We then (automatically) use a more general code to handle
the exception cases, and finally create the exception set for
those errors only the user can help with. We now provide a
few examples of how to optimize for the normal case:

Typing for the Normal Case: Python uses a typing
model known as duck typing [11] that does not check types
at compile type but is strongly typed during runtime. This
means that the same function can be used for strings, in-
tegers, floats or other suitable custom types. A general
compiler must account for all these cases, making compi-
lation difficult and often infeasible. However, at runtime,
there are clearly defined type constraints for which opera-
tions can be performed. Thus, when processing data in a
MapReduce fashion [3], input types can actually be inferred
at query-compilation time to create a dataflow graph for
UDF compilation.

However, sometimes it is not possible to compute a typed
dataflow graph. Here, Tuplex uses a probabilistic approach
for the common case and computes the most likely dataflow
path in order to generate native code for it. Deviations
from this path are then treated as exceptions for which au-
tomatic resolvers are generated. Hence, the Tuplexr frame-
work restricts the typing in the sense that each column of
input data is assumed to adhere to one type normally, i.e.
the most likely one, for the majority case of the data (cf.
Figure 2). This might seem at first sight similar to specula-
tive optimization in JIT engines, e.g. implemented in Java
HotSpot or V8 for Javascript, however there some key dif-
ferences: (1) first, sampling and compilation are done ahead
of time. (2) second, instead of filling a feedback vector and
checking dynamically whether optimized code can be exe-
cuted, optimized code is always executed and whenever an
error condition or deviation from the normal case is encoun-
tered an exception is thrown. (3) third, resolution is deferred
until the normal case terminated and then attempted.

Compression for the Normal Case: The execution
model of splitting the output of an operator into a normal
and an exceptional set allows to introduce artificial excep-
tions for increased execution speed. For example, in Python,
integers are by default represented as 64-bit values. Many

1960

@20

S

Figure 2: A dataflow graph computed from a sample of
input data. The most likely datapath is shown together
with the most likely typing along its edges. This path is used
to generate native code for the normal path. When input
deviating from the normal path is encountered, an exception
is thrown and resolved after the normal case computed.

data fields, however, (e.g. a year, month, day column) re-
quire fewer bits, and computations over them may be ex-
pressed more efficiently as e.g. 16-bit integer operations. Be-
cause the program should semantically follow valid Python,
in the case that an input value is found to require 64-bit com-
putation, an artificial exception is thrown and a resolver is
generated to compute its results using full 64-bit integer op-
erations. The same approach can be used to compress con-
stants and strings on-the-fly, or to perform delta-encoding
on numeric values. Aside from leveraging compiler optimiza-
tions (e.g. peephole optimizations or auto-vectorization),
this enables Tuplex to use a more efficient internal ma-
terialization format. Native code for a pipeline of Python
UDFs is then generated based on ideas from Tupleware [2]
and Hyper [5]. To speed up typical data preparation tasks
over CSV files, Tupler has a module to generate code for
an efficient reader for CSV files according to the RFC-4180
standard. For this, ideas similar to Mison like aggressive
column projection and speculation are used [4].

3.3 Initial Results

We tested Tuplex on a data integration scenario using
scraped Zillow data for which a comparable Spark job fails.
In order to show a 1:1 performance benchmark rows that
would lead to an exception within a UDF were excluded
from the original input file. The resulting file was then
scaled to a size of 1GB and 10GB respectively. The query
shown here consists of 12 UDF's written in Python to clean
the data and outputs the result as a single CSV file. In a
direct comparison depicted in Figure 3 Tuplex is around an
order of magnitude faster than Spark 2.4.2. The query was
implemented using Spark’s DataFrame API [1] and in the
older RDD API [13] using Python dictionaries or tuples to
represent rows.

4. DEMONSTRATION OVERVIEW

In our demonstration, we want to show how users can
easily build pipelines, track errors and resolve them using
Python in interactive mode, file mode or via Jupyter note-
books [6] using the Tuplez framework and Tuplex WebUI.
For this, we showcase a typical data scientist workflow where

%)
S

500

==

IS
S

e

w
S
w
S
S

/7

timeins
timeins

N
S
N
S
S

-
)
-
)
S

400 ri_“
———
[[
[[
[[
[[
[[
[[
[L |

[] [
[[
[]
[[
[[
— L | = [I

0
Tuplex Spark Spark Spark Tuplex _ Spark Spark Spark
DataFrame RDD tuple RDD dict DataFrame RDD tuple RDD dict

(a) 1 GB (b) 10 GB

Figure 3: In this sample query Tuplex achieves a speedup
of &~ 9.7x to 15.75%x over Spark 2.4.2. Startup time was
excluded for Spark, whereas times for Tuplex are end-to-
end. Each framework was configured to use 4 executors and
a maximum of 16 GB of main memory. The benchmark was
performed on a AWS EC2 rbxlarge instance with a 150GB
SSD drive, numbers are averaged over 6 runs.

scraped data from Zillow is analyzed. Users can experi-
ence the error tracking capabilities of Tuplez first-hand for
this dataset and how the framework helps them to rapidly
explore data using a Jupyter notebook without having to
worry about breaking the pipeline. In a second example,
we show the superior execution speed of Tuplex over Spark
on a scaled out version of the (scraped) Zillow dataset we
created. The sample query we demonstrate consists of sim-
ple UDFs extracting information, e.g. from a string like
'2 bds, 3 ba, 2,740+ sqft', type conversions, filtering
and column selection. The Tuplex WebUI we will use to
show the error cases is shown in Figure 4. It tracks any er-
rors that occurred during execution @ in real time. To help
users to write code for error resolution, users are displayed
a summary of errors @ caused within an operator as well
as a traceback for the first row (3) that caused an exception.
In addition, for each exception type a small sample of the
input data transformed by the operator is shown @ Fur-
thermore, users are able to investigate the physical plan the
backend generates, and its performance @ (e.g., how much
time is spent on the normal sets and error sets).

Finally, we will show by means of example how Tuplex is
able to optimize for the normal case and provide a direct
comparison to Spark.

5. ACKNOWLEDGEMENTS

This research is funded in part by NSF Career Award IIS-
1453171, Air Force YIP Award FA9550-15-1-0144, a Paris
Kanellakis Graduate Fellowship and supported by Google,
Intel, and Microsoft as part of the MIT DataSystems and
Al Lab (DSAIL).

6. REFERENCES

[1] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K.
Bradley, X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, et al.
Spark sql: Relational data processing in spark. In SIGMOD,
pages 1383-1394. ACM, 2015.

[2] A. Crotty, A. Galakatos, K. Dursun, T. Kraska, C. Binnig,

U. Cetintemel, and S. Zdonik. An architecture for compiling
udf-centric workflows. PVLDB, 8(12):1466-1477, 2015.

[3] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. Communications of the ACM,
51(1):107-113, 2008.

[i Tuplex 0.1.3 Back to Overview Pipeline Physical Plan Configuration

Pipeline
took 109ms to complete, 902 good rows, @ exceptions

parallelize

User Defined Function:

Raised Exceptions: e

lambda a, b: a / b Exception type count

ZeroDivisionError 98

Detailed overview for rows throwing ZeroDivisionError exceptions:

error traceback on first sample:
line 1 in :

---> ZeroDivisionError: 'division by zero'
Data sample:

column0 columni

4 0

0
o
8
5

ol o ol o

collect

Figure 4: Rows causing errors are clustered by exception
type and are saved for later resolution. For each operator
and exception type, a sample of input data that caused such
errors is displayed to the user via the Tuplex WebUL

[4] Y. Li, N. R. Katsipoulakis, B. Chandramouli, J. Goldstein, and
D. Kossmann. Mison: a fast json parser for data analytics.
PVLDB, 10(10):1118-1129, 2017.

[5] T. Neumann. Efficiently compiling efficient query plans for
modern hardware. PVLDB, 4(9):539-550, 2011.

[6] F. Pérez and B. E. Granger. IPython: a system for interactive
scientific computing. Computing in Science and Engineering,
9(3):21-29, May 2007.

[7] G. Piatetsky. Python eats away at r: Top software for
analytics, data science, machine learning in 2018: Trends and
analysis, May 2018.

[8] picloud. The cloudpickle package. (acc. 11/25/2018).

[9] A. Rubin. Column store database benchmarks: Mariadb
columnstore vs. clickhouse vs. apache spark - percona database
performance blog. https://www.percona.com/blog/2017/03/17/
column-store-database-benchmarks\
-mariadb-columnstore-vs-clickhouse-\vs-apache-spark/, mar
2017. (acc. 03/18/2019).

[10] M. Stonebraker. Technical perspective - one size fits all: an
idea whose time has come and gone. Commun. ACM,
51(12):76, 2008.

[11] G. Van Rossum et al. Python programming language. In
USENIX Annual Technical Conference, volume 41, page 36,
2007.

[12] T. Wirthinger, C. Wimmer, C. Humer, A. W68, L. Stadler,
C. Seaton, G. Duboscq, D. Simon, and M. Grimmer. Practical
partial evaluation for high-performance dynamic language
runtimes. In ACM SIGPLAN Notices, volume 52, pages
662-676. ACM, 2017.

[13] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,

M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In Proceedings of the 9th
USENIX conference on Networked Systems Design and
Implementation, pages 2-2. USENIX Association, 2012.

	Introduction
	Tuplex Processing model
	Tuplex Architecture
	Smart Caching
	Optimizing for the Normal Case
	Initial Results

	Demonstration Overview
	Acknowledgements
	References

