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Abstract

We present an example-based approach to pose recov-
ery, using histograms of oriented gradients as image de-
scriptors. Tests on the HumanEva-I and HumanEva-II data
sets provide us insight into the strengths and limitations of
an example-based approach. We report mean relative 3D
errors of approximately 65 mm per joint on HumanEva-I,
and 175 mm on HumanEva-II. We discuss our results using
single and multiple views. Also, we perform experiments
to assess the algorithm’s generalization to unseen subjects,
actions and viewpoints. We plan to incorporate the tempo-
ral aspect of human motion analysis to reduce orientation
ambiguities, and increase the pose recovery accuracy.

1. Introduction

Approaches to vision-based human motion analysis can
broadly be divided into generative and discriminative. The
first category explicitly uses a human body model that de-
scribes both the visual and kinematic properties of the hu-
man body. Discriminative (recognition) approaches learn
the mapping from image space to pose space directly from
carefully selected training data.

Human motion analysis from images is challenging due
to variations in human body dimensions, camera viewpoint,
type of motion and numerous environmental settings such
as lighting. In a generative approach, many of these pa-
rameters can be included in the estimation. While this may
improve the pose recovery accuracy, it comes at the cost
of computational complexity. In discriminative approaches,
these variations can either be encoded implicitly (for ex-
ample variations in lighting and body size dimensions), or
explicitly (for example viewpoint). The fact that not all pa-
rameters can efficiently be encoded explicitly causes dis-
criminative approaches to perform less accurately compared
to generative work. However, discriminative approaches
are computationally much less expensive, and can poten-
tially be applied in real-time. Therefore, they are useful for
applications in Human-Computer Interaction and surveil-

lance, where speed is an issue, rather than accuracy. A dis-
criminative approach also has the ability to automatically
(re)initialize. In this respect, a combined generative and dis-
criminative approach (e.g. [13]) is a promising direction to
obtain accurate results within reasonable time.

We describe an example-based approach to pose recov-
ery. Such an approach uses a (fixed) set of example poses,
with their corresponding visual appearance. Pose recovery
is simply selecting the pose that corresponds to the most vi-
sually similar example. Since the examples usually cover
the pose space very sparsely, the pose estimate is often
obtained through interpolation of then closest examples.
While an example-based approach is conceptually hardly
complex (in fact, the only parameter that can be tuned is
n), existing literature explores many different ways to en-
code the image and the poses. Moreover, the data used for
training and testing is often proprietary, which makes inter-
pretation of the various results and proper consolidation of
the findings difficult. The HumanEva data set [12] provides
us with the opportunity to compare pose recovery results
objectively on data that, although recorded in a controlled
environment, poses challenges with respect to the activities
performed, and the subjects performing them. This allows
us to measure the influence of various factors on the pose re-
covery performance. In the research described here, we do
exactly that, and report our findings on an example-based
approach.

The next section discusses related work on example-
based pose estimation. Section3 explains our method. Ex-
periments and our results are presented in Section4. In Sec-
tion 5, we summarize the advantages and limitations of our
approach, and present directions for future research.

2. Related work

The area of vision-based human motion analysis is too
broad to be thoroughly reviewed here. The interested reader
is referred to [9] for a recent overview. In this section, we
focus on discriminative work, which can be divided into
functional and example-based (nearest-neighbor). In func-
tional work, the mapping from image space to pose space
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is approached functionally, whereas in example-based work
all training data is retained. This notion is important since
it puts a practical limit on the number of examplesm in the
training set of an example-based approach. Regarding the
computational complexity, the order of a straightforward
example-based algorithm is linear inm. Below, we present
a short overview of the different factors that play a role in an
example-based pose recovery approach. Subsequently, we
will explain how these factors have determined the design
of our contribution.

The basis of an example-based approach is to encode the
image observations. In existing literature, a number of dif-
ferent image descriptors have been used, usually based on
silhouettes [3, 4, 6] or edges [1, 8, 11, 13]. These descrip-
tors vary in terms of computational complexity, descriptor
size, robustness against clutter and invariance to scale, ro-
tation and translation. Another important factor is the num-
ber of cameras that is employed. Graumanet al. [4] show
that pose recovery accuracy increases with the number of
views. Also, the type of input affects the algorithm’s per-
formance. Some authors use a training set of synthesized
images [8, 11], which can be encoded robustly without the
presence of noise. Others place their synthesized charac-
ters against a photographed background to introduce realis-
tic noise into their training set [1, 13]. Closely related are
the issues of localization and segmentation. Usually, the
location of the person is known, or obtained from a back-
ground segmentation process. In the latter case, the success
of an algorithm depends heavily on the results of the seg-
mentation.

Human motion analysis is a spatio-temporal problem,
hence the temporal aspect can be used to improve accuracy.
Howe [6] recovers poses of an entire sequence (batch). This
ensures consistency over time, which is particularly useful
when only a single view is used. Onget al. use a track-
ing (incremental) approach, where a dynamical model puts
a prior on the poses in the next time frame. This guaran-
tees temporal consistency, and reduces the number of eval-
uations needed since only poses with a non-negligible prior
have to be evaluated. Other measures to reduce the order
of example-based algorithms to sub-linear include hashing
[11]. Also, a hierarchical organization of the examples can
reduce the complexity of the algorithm.

In our contribution, we do not regard the temporal as-
pect, nor do we apply any measures to reduce the computa-
tional complexity. A variant of histogram of oriented gra-
dients (HoG, [2]) is used to encode the image observations
within extracted foreground masks. We vary the number
of views and report the performance on the majority of the
available actions and subjects in both the HumanEva-I and
HumanEva-II test sets. Our results provide insight into the
capabilities and limitations of example-based approaches.

3. Method

In this section, we will describe the components of our
approach. Section3.1 discusses the image descriptors that
are used in this research. The pose estimation approach is
explained in Section3.2.

3.1. Histogram of oriented gradients

Dalal and Triggs proposed histograms of oriented gradi-
ents (HoG) as an image descriptor to localize pedestrians
in cluttered images [2]. We believe that their use can be
extended to pose recovery. Gradients are to some extent in-
variant to lighting changes. Moreover, spatial ordering is
preserved, which has been found to be of key importance
for effective recovery [10].

HoGs are calculated within an image’s region of inter-
est (ROI), in our case the bounding box around the sub-
ject. While HoGs can be used to determine this region, as
in [2], we rely on background subtraction. This significantly
speeds up the process, and we obtain the foreground mask
at the same time. We describe the process here in detail to
allow for replication. First, we apply the background sub-
traction with the suggested risk values, as included in the
HumanEva source code [12]. The minimum enclosing box
of all foreground areas larger than 600 pixels is obtained.
After conversion to HSV color space, we apply shadow re-
moval in the lower 20% of the ROI. Pixels that have a sat-
uration that is between 0 and 25 higher than the saturation
of any of the means in the background mixture model, are
removed from the foreground mask. We again obtain the
minimum enclosing box, which is our ROI. Figure1 shows
an example of background subtraction and shadow removal.

(a) (b) (c)

Figure 1. Example of foreground mask calculation: (a) original
image, (b) with background subtracted, and (c) shadow removed.

It may seem that our approach is highly sensitive to good
background subtraction, but the shadow removal is only
needed to ensure that the ROI fits the subject reasonably.



For certain cases, we slightly adjusted the parameters. For
camera 1 in HumanEva-I, only for subject 2, we multiplied
the risk with factor1012 to remove artefacts from the fore-
ground. For cameras 2 and 3 in HumanEva-I, we lowered
the shadow threshold to 10. We did not use the additional
four grayscale cameras in HumanEva-I. For HumanEva-II,
we only reduced the background risk with factor1050 for
camera 3.

To obtain the HoG, we divide the ROI into a grid with
6 rows and 5 columns. This is an arbitrary choice, but
the height of each cell roughly corresponds with the height
of the head in a standing position. Similarly, in a relaxed
standing pose, the body covers approximately 3 columns
horizontally. We did not perform experiments with various
settings but admit this would have been interesting.

Within each cell in the grid, we calculate the orientation
and magnitude of each pixel that appears in the foreground
mask. We divide the absolute orientations over 9 equally
sized bins in the 0°- 180° range. Each pixel contributes the
magnitude of its orientation to the according histogram bin,
which results in a 9-bin histogram per cell. The total length
of the descriptor is therefore 270. The entire descriptor is
normalized to unit length. Compared to Dalal and Triggs
[2], we do not apply color normalization and do not use the
notion of blocks (groups of cells). This reduces computa-
tion cost, and results in a significantly reduced descriptor
size.

3.2. Pose estimation

In an example-based approach, each image observation
is encoded and matched against a training set of encoded
observations. We use the previously described HoGs as en-
codings. To match a HoG with those in the training set, we
need to define a distance measure between the two descrip-
tors. We performed a small-scale experiment with Man-
hattan, Euclidian, cosine andχ2 distance. Consistent with
earlier findings, Manhattan and Euclidian distance proved
to be most suitable. In this work, we use the Manhattan
distance since it has a lower computational complexity.

Matching a HoG with the entire training set results in a
distance value for each of them examples. We could choose
the example with the lowest distance, as this is the exam-
ple that best matches the image observation. However, in
practice, taking then best matches results in more accurate
pose recovery. Of course,n will depend on the number of
examples in the training set that are close to the presented
frame. Here we usen = 25, in accordance with [10]. To
determine the final pose estimate, we use the poses that cor-
respond to then best examples. The final estimate is the
normalized weighted interpolation of these poses. This im-
plies that close HoG matches, contribute more to the final
estimate than HoG matches at a larger distance. One word
of caution is in its place here. Since we interpolate poses,

the final joint estimates are likely to lie closer to the mean
distance for this joint, so closer to the body. This effect is
especially visible for examples that have similar image ob-
servations but are distant in pose space.

Since we do not determine the correspondences between
our localized subject in the image and the estimated pose,
we are not able to reliably estimate the global position of
each joint. Instead, we report the distances of each joint
relative to the pelvis (torsoDistal) joint.

4. Experimental results

We report our findings of experiments on both the
HumanEva-I and HumanEva-II data set. First we describe
our two training sets, one for monocular pose recovery (T1),
and one for recovery using three cameras simultaneously
(T3). In both cases, we used the HumanEva-I sequences
that are used for training and validation.

4.1. Training sets

For the monocular training set T1, we associate the HoGs
for each view with their corresponding poses. Only the ex-
amples that contain valid mocap data are included in the
training set.

Subject
Action S1 S2 S3 Total
Walking 1176 876 895 1899
Jog 439 795 831 1696
Throw/Catch 217 806 0 2065
Gestures 801 681 214 1023
Box 502 933 933 2947
Combo 0 0 0 0
Total 3135 3622 2873 9630

Table 1. Number of training examples per action and subject.

When given a new image observation, together with the
knowledge from which camera the observation is obtained,
we can now estimate the pose. We observe that the elevation
(rotation in vertical direction) and roll (rotation around line
of sight) of all cameras are approximately the same. In other
words, the orientation of all cameras is almost equal except
for the orientation around a vertical axis. If we would rotate
the subject in the scene around a vertical axis, we would
theoretically be able to generate very similar observations
for all cameras. In practice, view-specific parameters such
as backgrounds and lighting conditions are likely to result
in observations that are somewhat different. However, we
want our approach to be robust against these image defor-
mations and therefore, we perform this rotation virtually.
This has the additional advantage that the number of train-
ing data is effectively tripled, resulting in a total of 28,890
samples.



We transform the mocap data in such a way that we
obtain the global positions as if we were looking through
another camera. With an observation from camerai,
and the projection onto cameraj, our pose vectorpi =
(xi, yi, zi, 1)−1 is transformed intopj as follows: pj =
MjM

−1
i pi, whereMi andMj are the rotation matrices of

camerasi andj, respectively.
In T3, we combine the HoGs of the three views into a

single HoG descriptor of length 810. This combined de-
scriptor is larger, and contains the same pose from multiple
views. We therefore expect increased pose estimation accu-
racy over the monocular descriptors. However, combining
our HoGs comes at a cost of a reduced number of examples,
compared to T1. For each frame with valid mocap, we have
exactly one example. The total amount of examplesm that
we can obtain is 9,630. Table1 summarizes the origins of
the examples.

Combining all views into one descriptor has some draw-
backs. When the setup of the cameras changes, the de-
scriptor cannot be used anymore. The relative orientations
of the cameras are encoded implicitly in the combined de-
scriptors. Practically, this means that we cannot evaluate the
HumanEva-II sequences with our training sets, since these
are obtained from the HumanEva-I setting. Another draw-
back arises when one or more views contain inaccurate seg-
mentations. This can, in some cases, render the example
useless.

4.2. Results for HumanEva-I

The HumanEva-I test sequences are performed with the
same camera setup as the training sets. Also, the same test
subjects appear in these videos. Except for action Combo,
all action-subject combinations also exist in the training
set. For the number of examples per subject and action,
we again refer to Table1. We did not perform evaluations
for subject 4, due to background segmentation errors. We
plan to report on these sequences in the near future, to pro-
vide more insight into how our approach performs on un-
seen subjects.

For each sequence, we evaluate the performance on both
T1 and T3. For T1, we use the image observations from
camera 1. In informal experiments we looked at the differ-
ences between the three cameras but these were small. For
T3, we use the combined image observations of all three
cameras. The results, broken down by action, subject and
training set, are summarized in Table2. We omitted all
frames for which the mocap data was invalid. Also, the first
5 frames of each sequence were removed since these frames
were duplicated in the decoding of the video.

The first thing to notice is the relatively small difference
between the performance of our monocular tests, and those
using three cameras. We obtained mean errors over all sub-
jects and sequences of 66.22 and 60.93mm, respectively.

Apparently, our HoG descriptors are to a large extent in-
variant to depth ambiguities. We expect that this ability
can mainly be subscribed to the fact that our descriptor is
based on gradients, which have high magnitudes for the
arms. These are helpful when differentiating between front
and back poses.

To be able to interpret our results, we need a baseline.
We use the mean distance between all poses. Since we in-
terpolate the poses of the best matches, our pose estimate
will always be within the range of poses in the training set.
This baseline is therefore the mean distance for randomly
selecting a pose withn = 1. The mean distance per joint
for T3 is then 299.87mm. For T1, the distance is slightly
lower, 291.54mm.

4.2.1 Comparison with related research

Before we take a closer look at the errors for different se-
quences, we compare our general findings with those previ-
ously reported on the HumanEva-I data set. We restrict our
comparisons to discriminative approaches.

The work by Howe [5] uses silhouettes in an example-
based approach. Attention is paid to correct segmentation of
these silhouettes. As in previous work [6], chamfer distance
and turning angle are used to compare the silhouettes. Ad-
ditionally, optical flow is used to include some form of tem-
poral consistency. Second order Markov chaining is used
to eliminate poses that have matching observations, but dif-
fer significantly in pose (e.g. swapping of the arms). The
fact that silhouettes are ambiguous regarding the depth or-
dering of limbs makes such a measure necessary. Errors
are reported in 2D for the Walking sequence of subject 3.
Tests are performed with either one color camera, or one
grayscale camera, with comparable results. The mean error
in both cases is around 17 pixels which, for a figure height
between 250 and 410 pixels and an assumed subject height
of 1.80 meters, comes down to approximately 75-125mm.
If we compare these results with our own, there are some
important differences. First, Howe performs image regis-
tration and the errors reported are in fact absolute. Sec-
ond, our approach recovers poses in 3D and does not make
use of temporal information. We would be interested to see
how our approach would perform with the silhouettes and
matching functions as used by Howe. This would give more
insight into the strengths and weaknesses of both image de-
scriptors.

Lee and Elgammal [7] present another study that reports
on the HumanEva-I set. Silhouettes are used, and a func-
tional mapping is learned. In an offline step, they construct
a manifold topology based on synthesized silhouettes of a
walking person, as viewed from a large number of angles.
The novelty of their work is to learn a geometric mapping
between the embedded manifold to the data. The authors re-



Subject 1 Subject 2 Subject 3
Action C1 C1–3 C1 C1–3 C1 C1–3
Walking 41.24 (16.84) 37.54 (11.95) 39.56 (26.75) 40.09 (23.86) 55.27 (21.70) 55.25 (25.07)
Jog 46.38 (18.60) 45.21 (13.74) 38.02 (9.97) 37.65 (12.20) 47.35 (23.47) 45.37 (18.32)
Throw/Catch 69.49 (31.94) 57.61 (23.75) 111.71 (33.38) 92.79 (31.75)
Gestures 26.38 (13.51) 23.69 (7.18) 75.13 (28.10) 72.83 (26.32) 75.29 (11.09) 56.11 (6.44)
Box 79.71 (27.71) 88.67 (36.20) 103.37 (45.08) 91.28 (41.19) 100.35 (52.31) 92.28 (47.86)
Combo 69.84 (49.34) 71.89 (52.17) 106.11 (79.74) 83.89 (53.10)
Average 48.32 (19.17) 48.78 (17.27) 65.90 (31.86) 61.89 (29.92) 82.68 (39.95) 70.95 (30.42)

Table 2. Mean 3D error (and SD) inmmfor HumanEva-I test sequences, evaluated with a single camera (C1) and all three cameras (C1–C3).

port errors on the Walking validation sequences of subjects
1-3. Their mean, normalized, relative 3D error is approxi-
mately 35mmwhen no dynamical model is assumed, and
31mmusing a particle filter with constant velocity for both
gait phase and view change. Normalization of the pose is
obtained by transforming the pose coordinates into a body-
centered coordinate space. Effectively, this removes errors
due to incorrect estimation of the pose around the verti-
cal axis. Insensitivity to the subject is demonstrated since
the manifold topology is learned from data not contained
within HumanEva-I. It remains to be investigated how the
approach works for open (i.e. non-repetitive) actions.

4.2.2 Results for individual sequences

We will now discuss our results in more detail. If we look
at different actions, we see large variations between se-
quences. In general, poses from the Walking and Jog se-
quences are recovered with the highest accuracy. This can,
at least partly, be explained by the fact that these motions
have been performed at least several times in the training
sets. Each cycle resembles the others in contrast to, for ex-
ample, catching a ball where the ball appears at more or less
random places. In Figure2, we present the affinity matri-
ces of two walking cycles and two instances of catching and
throwing a ball. We immediately see the similarity between
the two walking cycles by the dark line on the diagonal.
This line is less apparent for two sequences of catching and
throwing a ball.

We should be able to see the same when looking at our
test results. Figure3(a-b) shows the plots of the mean errors
over the sequences Walking and Throw/Catch, performed
by subject 2 and obtained using all three cameras. The error
plot is much more peaked for the Throw/Catch sequence.
The peaks (e.g. around 350, 550 and 700) correspond to
catching or throwing the ball. The lower errors around 450
and 650 correspond to waiting for the ball, which is in fact
a standing pose. The slightly higher errors in the Walking
sequence after 200, and around 650, correspond to the sub-
ject walking towards the camera. Here, depth ambiguities
occur.

(a) Walking (b) Throw/Catch

Figure 2. Affinity matrices for camera 1 of (a) Walking cycle, and
(b) Throw/Catch sequence, performed by subject 1. Dark values
correspond with small distances. Notice the similarity between the
Walking cycles. The white ‘plus’ in the Throw/Catch sequence is
caused by incorrect segmentation due to the presence of the ball.

When we take another look at Table2, we notice rather
larger differences between subjects for the Gesture action.
In this action, the subject waves and makes beckoning ges-
tures. Subject 1 and 3 perform these gestures with their right
hand, in both the training and test sequences. This explains
the low standard deviations.

The Box actions show some of the highest errors, which
is somewhat surprising. More careful analysis of the video
data shows that, for subject 2 and 3, there is quite some
variation in the footwork. Subject 1 uses the same standing
pose as a basis but is facing camera 1. From this view, it
is difficult to estimate the depth of the arms. The view for
camera 2 and 3 are almost exactly from the side. This results
in many estimations where the wrong arm is estimated to be
stretched out.

The Combo action is a combination of walking, jogging,
and some ‘freestyle’ moves, jumping on one leg and balanc-
ing on one foot. These latter moves are not present in the
training set. For subject 2, the mean error over the whole se-
quence is shown in Figure3(c). The peak around frame 250
is caused by incorrect background segmentation. Frames
1160-1370 contain the jumping on one leg action, in frames



(a) Walking

(b) Throw/Catch

(c) Combo

Figure 3. Mean 3D error (inmm) plots for HumanEva-I (a) Walk-
ing, (b) Throw/Catch, and (c) Combo action, all performed by sub-
ject 2 and obtained using all three cameras. Instances that have a
zero error contain invalid mocap.

1660-1960 the subject balances on one foot. The difference
in error is apparent, and gives us a clue about the perfor-
mance of an example-based approach for unseen actions.
We discuss this further in Section4.3.

4.2.3 Additional tests on validation set

To allow comparison with previous work on the HumanEva-
I set, we report here our results for the Walking sequence,
performed by subject 1. This sequence is contained within
our training sets, so we had to remove it. Our resulting train-
ing sets with removed trial are T1T and T3T , for the monoc-
ular and multi-camera cases, respectively. In addition, we
created training sets where we removed all examples for the
Walking action, T1A and T3A. This reduces the training set
by 20%. Also, we removed all instances of subject 1, re-
sulting in T1S and T3S , each containing roughly two thirds
of the total number of samples. These training sets allow
us to gain insight into the generalization to unseen subjects
and unseen motions. The results are presented in Table3,
with mean errors for the training part (frames 591-1203),
the validation part (1-590) and over the entire sequence.

Compared to the results in Table2, the errors obtained

Set Train Validation Total
T1T 80.14 (25.39) 74.40 (23.95) 77.15 (24.81)
T3T 76.92 (28.50) 74.81 (23.86) 75.82 (26.20)
T1A 94.72 (33.46) 92.69 (28.90) 93.66 (31.17)
T3A 103.90 (46.23) 110.55 (44.96) 107.37 (45.68)
T1S 84.18 (29.68) 76.86 (25.56) 80.36 (27.83)
T3S 78.25 (29.02) 77.30 (24.12) 77.76 (26.57)

Table 3. Mean 3D error (and SD) inmm for HumanEva-I train-
ing/validation sequence Walking, performed by subject 1. Errors
are presented for different training sets.

here are approximately 35-70mmper joint higher. It should
be noted that the number of examples is reduced and this is
likely to have a negative effect on the pose recovery accu-
racy. Our first observation is that even when only one trial
is removed, the error is larger. Removal of this sequence re-
sults in a lower number of examples of the Walking action.
Moreover, all examples of the same subject for the Walking
action are left out. Apparently, our approach is much more
accurate when person-specific observations are used.

When all Walking examples are removed, the error in-
creases 15-35mm. Closer analysis of the examples used in
the reconstruction shows that these are mainly from the Jog
action. Walking and jogging show many resemblances, but
in the Jog action the elbows are usually more bent, and the
distance between the feet is kept small. This explains the
increase.

A final observation can be made with respect to the re-
moval of examples containing subject 1. The results are
slightly less accurate than in the case where only the Walk-
ing action of subject 1 is removed. This leads us to con-
clude that only few examples from other actions are used in
the estimation. Also, we have an estimate of the accuracy
for pose recovery when the subject is not in the training set.
Again, we must make a remark about the significantly re-
duced number of relevant samples, that is likely to increase
the error also in this case.

4.3. Results for HumanEva-II

The HumanEva-II set consists of two Combo sequences
performed by subjects 2 and 4. HumanEva-II differs from
HumanEva-I in the recording setup. Four color cameras are
used, instead of the three color cameras and four grayscale
cameras. The cameras are placed at different positions, and
the elevation angles differ slightly. As mentioned before,
this setup does not allow us to do any evaluation on the T3
training set.

Our evaluation was performed similar to that of the
HumanEva-I test sequences. In Table4 the results are sum-
marized for both subjects and for each camera separately.
The three sets contain various movements within the se-
quence. Set 1 (frame 1-350) contains walking, set 2 (frame
1-700) contains walking and jogging, and set 3 (frame 1-



1202 for subject 2, and 1-1258 for subject 4) contains the
whole sequence. This includes walking, jogging, jumping
on one leg and balancing on one foot.

Our first remark concerns the analysis of the sequence
performed by subject 4. We removed frames 298-337 from
the results since these appeared to be erroneous. We ob-
tained mean errors per joint above 1,200mm. Visual inspec-
tion of our pose estimates and the video revealed no pecu-
liarities. Moreover, an average distance per joint of 1,200
mmis very unlikely since we use relative distances.

Compared to the results that we obtained for the Combo
sequences of HumanEva-I for T1, these results are higher.
Ideally, we would expect errors for set 1 that are compara-
ble to those of the Walking sequences in HumanEva-I. Sim-
ilarly, for set 2, we expected results that are close to those
of Walking and Jog.

In explaining these results, we take another look at
the results that we obtained when analyzing the validation
Walking sequence in HumanEva-I, Section4.2.3. We ob-
served that the error increases when there are no exam-
ples in the training set for the same person, performing
the same action. We expect that this is also the case for
our HumanEva-II results. Although subject 2 appears in
HumanEva-I, the clothing is different. This probably has
an effect on the HoGs, and subsequently on the closest
matches.

Yet, if we consider the subjects as unseen, the error is
higher. We expect this to be the result of the modified cam-
era setup. The elevation of the camera is different, and there
is a roll angle introduced for some cameras. We expect this
to have quite a large impact, as HoG are not rotation invari-
ant. Also, the background is modelled with a single Gaus-
sian. This results in less accurate background segmentation,
and this reflects on the HoG descriptors.

Figure4 shows the mean error plots of the HumanEva-
II sequences. The increased error for the unseen actions
(frame 750-end) is apparent. Other peaks (e.g. for subject
2 around frame 100, 220, 300 and 370) are due to forward-
backward ambiguities. Figure5 shows the original frames
and the frames corresponding to the single best example.
We plan to conduct experiments with tracking to increase
accuracy in these cases.

5. Conclusion and future work

We took an example-based approach to pose recovery.
Histograms of oriented gradients have been used as image
descriptors, and matched against our training sets. The final
pose estimate was obtained by interpolating the poses of the
25 best matches based on their normalized weight. Since
we do not calculate the correspondence between the image
and our examples, we report mean 3D errors over all joints,
relative to the pelvis.

(a) Subject 2

(b) Subject 4

Figure 4. Mean 3D error (inmm) plots for the HumanEva-II
Combo sequences performed by (a) subject 2, and (b) subject 4.
Instances that have a zero error have been ignored (see text).

We evaluated our approach on both the HumanEva-I and
HumanEva-II test sequences. For HumanEva-I, we found
only small differences between our monocular case, and
when three views were used. Part of this small difference
can be explained by the reduced amount of relevant sam-
ples in the multi-view case. Our results varied depending
on the action performed. For walking and jogging, errors
around 45mmwere obtained. The mean error for all actions
and all subjects is approximately 65mm. Our approach is
somewhat person specific, and does not generalize well to
unseen actions. For HumanEva-II, errors close to 125mm
were obtained for the walking and jogging movements. The
higher error can be explained by the fact that the subjects
look different from the ones in the training set (one of the
subjects does not appear in the training set, the other wears
different clothing). Also, the viewpoints and recording set-
tings are slightly different, which resulted in less accurate
background segmentation and consequently, less accurate
HoG descriptors. Due to this different setup, we were not
able to perform any evaluations with more views.

From a practical point of view, we plan to process the
sequences containing subject 4 in HumanEva-I. This would
give us more insight into whether the reduced accuracy for
the HumanEva-II sequences is due to the changed view-
points, or the fact that the subjects appear differently.

In order to allow our approach to perform in real-time,
we would like to evaluate some measures to reduce the com-
putational complexity, including hashing and hierarchical
matching.

We have already observed that vision-based human mo-
tion analysis is spatio-temporal in nature. We noticed sev-
eral times that reduced accuracy is often caused by forward-



Action Set Camera 1 Camera 2 Camera 3 Camera 4 Average
Combo S2 1 121.96 (72.51) 100.35 (34.28) 101.25 (44.72) 113.49 (48.19) 109.26 (49.93)
Combo S2 2 111.96 (59.83) 95.93 (34.54) 105.97 (60.93) 116.06 (54.85) 107.48 (52.54)
Combo S2 3 173.92 (111.22) 142.62 (77.93) 203.13 (144.72) 161.94 (89.45) 170.40 (105.83)
Combo S4 1 129.92 (54.38) 120.73 (49.24) 183.61 (86.69) 146.60 (57.14) 145.22 (61.86)
Combo S4 2 138.89 (58.27) 115.93 (39.16) 146.75 (71.99) 151.44 (55.84) 138.25 (56.32)
Combo S4 3 166.31 (77.09) 147.50 (66.10) 200.31 (120.20) 203.77 (101.67) 179.47 (91.27)

Table 4. Mean 3D error (and SD) inmmfor HumanEva-II test sequences, evaluated with a single camera. Results are broken down per set.

backward ambiguities. We therefore plan to conduct evalu-
ations where we track the movements over time (incremen-
tally), and recover poses in a batch approach over an entire
sequence. We expect both approaches to substantially re-
duce our errors, and bring accurate real-time pose recovery
within reach.
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(a) Frame 300 (b) Frame 600 (c) Frame 900 (d) Frame 1200

Figure 5. Single best estimate (top row) and original frame (bottom
row) for the HumanEva-II Combo sequence performed by subject
2. Frame 300 shows forward-backward ambiguity in the walking
action. Frames 900 and 1200 contain unseen movements. Colors
have been adapted for the viewer’s convenience.
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