Data Management in the Cloud

Tim Kraska
MILK?
Do you want milk?

Buy a cow
- High upfront investment
- High maintenance cost
- Produces a fixed amount of milk
- Stepwise scaling

Buy bottled milk
- Pay-per-use
- Lower maintenance cost
- Linear scaling
- Fault-tolerant
Traditional Computing vs. Cloud Computing

Your computer is a cow
- High upfront investment
- High maintenance cost
- Fixed amount of resources
- Stepwise scaling

Cloud computing is bottled milk
- Pay-per-use
- Lower maintenance cost
- Linear scaling
- Fault-tolerant
Requirements for DM in the Cloud

- **Scalability**
 - response time independent of number of clients
- **100 percent read + write availability**
 - no client is ever blocked under any circumstances
- **Cost ($$$)**
 - pay as you go along, no investment upfront
 - get cheaper every year, leverage new technology
- **No administration**
 - “outsource” patches, backups, fault tolerance

Consistency: Optimization goal, not constraint
Outline

- Motivation
- Camp 1: Relational DB’s in the Cloud
 - Amazon RDS
 - MS Azure
- Camp 2: New Cloud DB/Storage System
 - Amazon Dynamo
 - Google’s MegaStore, BigTable, GFS
 - Building a DB applications without a DBMS
- Analytics in the Cloud: Hadoop
- What’s next?
Why not use a standard relational DB?

- **Advantages**
 - Traditional databases are available
 - Proven to work well; many tools
 - People trained and confident with them
Camp 1: Install standard DBMS in the Cloud

- Advantages
 - Traditional databases are available
 - Proven to work well; many tools
 - People trained and confident with them

Virtual Machine

Database
(e.g., Oracle, DB2, MS SQL Server, MySQL,...)
Camp 1: Install standard DBMS in the Cloud

Advantages
- Traditional databases are available
- Proven to work well; many tools
- People trained and confident with them

Disadvantages
- Build for scale-up, not scale-out
- Traditional DBMS solve the wrong problem anyway
 - Focus on throughput and consistency
 - SAP and Oracle misuse the DBMS already today
- Traditional DBMS make the wrong assumptions
 - e.g., DBMS optimizers fail on virtualized hardware
CAP-Theorem

Consistency \text{ vs } Availability

Tolerance against Network Partitioning
Amazon Relational Database Service (RDS)
MS Azure - Architecture

Client Tier

SDS Service Tier

Storage Tier

Distributed SQL Data Cluster

[www.microsoft.com/windowsazure/sqlazure]
Camp 2: Rethink the whole system architecture

- Rethink the whole system architecture
 - Do NOT use a traditional DBMS
 - Build a new systems tailored for cost efficiency, availability, and scalability and see consistency as an optimization goal

- Advantages and Disadvantages
 - Requires new breed of (immature) systems + tools
 - Solves the right problem and gets it right
 - Optimized for cost, availability, scalability,…
 - Leverages organization‘s investments in SOA
Key/Value-Store: Example Dynamo

- Data model: Key->Value
- Operations
 - Put(Key, Value)
 - Get(Key)
 - NO-SQL!!!!

Put(“Tim”, “ETH Zurich”)
Key/Value-Store: Example Dynamo

- **Data model:** Key->Value
- **Operations**
 - Put(Key, Value)
 - Get(Key)
- **Routing**
 - Consistent Hashing
 - Partitioned Hash Table
- **High Availability**
 - Replication
 - Sloppy Quorum and hinted handover
 - Gossiping (Membership)
- **Consistency**
 - Vector Clocks
 - Merkle Trees (Anti-Entropy)

Put("Tim", "ETH Zurich")

[SOSP 07]
Key/Value-Store: Example Dynamo

- Data model: Key->Value
- Operations
 - Put(Key, Value)
 - Get(Key)
- Routing
 - Consistent Hashing
 - Partitioned Hash Table
- High Availability
 - Replication
 - Sloppy Quorum and hinted hand-over
 - Gossiping (Membership)
- Consistency
 - Vector Clocks
 - Merkle Trees (Anti-Entropy)

Put("Tim", "ETH Zurich")

[SOSP 07]
Key/Value-Store: Example Dynamo

- Data model: Key->Value
- Operations
 - Put(Key, Value)
 - Get(Key)
- Routing
 - Consistent Hashing
 - Partitioned Hash Table
- High Availability
 - Replication
 - Sloppy Quorum and hinted hand-over
 - Gossiping (Membership)
- Consistency
 - Vector Clocks
 - Merkle Trees (Anti-Entropy)

Put(“Tim”, “ETH Zurich”)

[SOSP 07]
Google’s Approach

- Chubby
 (Locking Service)
- Scheduling
- MegaStore
 Transactions, Indexes, GQL
- BigTable
 Distributed Multi-Dimensional Map
- Google File System (GFS)
 Distributed Storage (made for append-only)
BigTable

- Distributed multi-level map (*again no SQL*)
- Fault-tolerant, persistent
- Scalable
 - Thousands of servers
 - Terabytes of in-memory data
 - Petabyte of disk-based data
 - Millions of reads/writes per second, efficient scans
- Self-managing
 - Servers can be added/removed dynamically
 - Servers adjust to load imbalance

[SOSP 03]
BigTable Architecture

Bigtable cell

Bigtable master
- performs metadata ops, load balancing

Bigtable tablet server
- serves data

Cluster Scheduling Master
- handles failover, monitoring

GFS
- holds tablet data, logs

Chubby (Locking Service)
- holds metadata, handles master-election

[SOSE 03]
BigTable DataModel

- **Distributed** multi-dimensional sparse map (key, column, timestamp) → cell contents

![Diagram of BigTable DataModel](image)
Google’s Approach

- **Chubby** (Locking Service)
- **Scheduling**
- **MegaStore**
 - Transactions, Indexes, GQL
- **BigTable**
 - Distributed Multi-Dimensional Map
- **Google File System (GFS)**
 - Distributed Storage (made for append-only)
Building DB applications without a DBMS

Concept commercialized in Sausalito (28msec, Inc.)
Step 1: Clients commit update records to pending update queues

[SIGMOD 08]
Step 2: Checkpointing propagates updates from SQS to S3

[SIGMOD 08]
Cloud Storage/DB Systems

- **Commercial**
 - Azure SQL, Store
 - Google MegaStore, BigTable
 - Amazon S3, SimpleDB, RDS, CloudFront
 - 28msec Sausalito
 - ...

- **OpenSource:**
 - HBase (≈ BigTable)
 - CouchDB/Scalaris (≈ Dynamo)
 - Cassandra (≈ Dynamo + BigTable Data-Model)
 - Redis
 - Cloudy (ETHZ)
 - SCADS (Berkeley)
 - ...

22.02.2010
Systems Group/ETH Zurich
Outline

- Motivation
- Camp 1: Relational DB’s in the Cloud
 - Amazon RDS
 - MS Azure
- Camp 2: New Cloud DB/Storage System
 - Amazon Dynamo
 - Google’s MegaStore, BigTable, GFS
 - Building a DB applications without a DBMS
- Analytics in the Cloud: Hadoop
- What’s next?
Why MapReduce?

Big Data
Potential Applications

- Web data analysis applications
 - Example: Google
Google: The Data Challenge

- Jeffrey Dean, Google Fellow, PACT’06 keynote speech:
 - 20+ billion web pages x 20KB = 400 TB
 - One computer can read 30-35 MB/sec from disk
 - ~ 4 months to read the web
 - ~ 1,000 hard drives just to store the web
 - Even more to “do” something with the data
 - But: Same problem with 1,000 machines < 3 hours

- MapReduce CACM’08 article:
 - 100,000 MapReduce jobs executed in Google every day
 - Total data processed > 20 PB of data per day
Map/Reduce in a Nutshell

- **Given:**
 - a very large dataset
 - a well-defined computation task to be performed on elements of this dataset (preferably, in a parallel fashion on a large cluster)

- **MapReduce programming model/abstraction/framework:**
 - Just express what you want to compute (map() & reduce())
 - Don’t worry about parallelization, fault tolerance, data distribution, load balancing (MapReduce takes care of these)
 - What changes from one application to another is the actual computation; the programming structure stays similar

[OSDI 04]
Map/Reduce in a Nutshell

- Here is the framework in simple terms:
 - Read lots of data
 - **Map**: extract something that you care about from each record (similar to map in functional programming)
 - Shuffle and sort
 - **Reduce**: aggregate, summarize, filter, or transform (similar to fold in functional programming)
 - Write the results

- One can use as many Maps and Reduces as required to model a given problem

[OSDI 04]
Map/Reduce Example: Count Word Occurrences in a Document

map \((k_1, v_1) \rightarrow \text{list}(k_2, v_2) \)

map (String key, String value):
 // key: document name
 // value: document contents
 for each word \(w \) in value:
 EmitIntermediate(\(w \), "1");

reduce \((k_2, \text{list}(v_2)) \rightarrow \text{list}(v_2) \)

reduce (String key, Iterator values):
 // key: a word
 // values: a list of counts
 int result = 0;
 for each \(v \) in values:
 result += parseInt(\(v \));
 Emit(AsString(result));
Google’s MapReduce Model

Input key*value pairs

Data store 1

map

(key 1, values...)

(key 2, values...)

(key 3, values...)

... Barrier == Aggregates intermediate values by output key

key 1, intermediate values

reduce

final key 1 values

key 2, intermediate values

reduce

final key 2 values

key 3, intermediate values

reduce

final key 3 values

Data store n

Input key*value pairs

[key, values...]

[key, values...]

[key, values...]

[OSDI 04]
Parallel Dataflow Systems and Languages

- Sawzall
- Pig Latin, HiveQL
- DryadLINQ

- MapReduce
- Apache Hadoop
- Dryad

High-level Dataflow Languages

Parallel Dataflow Systems

- A high-level language provides:
 - more transparent program structure
 - easier program development and maintenance
 - automatic optimization opportunities
Outline

- Motivation
- Camp 1: Relational DB’s in the Cloud
 - Amazon RDS
 - MS Azure
- Camp 2: New Cloud DB/Storage System
 - Amazon Dynamo
 - Google’s MegaStore, BigTable, GFS
 - Building a DB applications without a DBMS
- Analytics in the Cloud: Hadoop
- What’s next?
What’s next???

- Consistency (CAP Theorem)
 - How to balance consistency vs. cost vs. availability?
 - Does consistency limit the scalability?
 - How to scale transaction processing?
- Data model & languages
 - Is Key/Value really what we need?
 - Why do I need to implement a join by myself???
 - E.g. BOOM
- Other workload patterns
 - Streaming
 - Scientific
 - Data Mining
 - …
- Cost optimizations
 - New optimization goal: Cost (not performance)
 - SLA imply implicit cost
- Benchmarks
- Security (don’t get me started)
- …
What’s next???

- Consistency (CAP Theorem)
 - How to balance consistency vs. cost vs. availability?
 - Does consistency limit the scalability?
 - How to scale transaction processing?

- Data model & languages
 - Is Key/Value really what we need?
 - Why do I need to implement a join by myself???
 - E.g. BOOM

- Other workload patterns
 - Streaming
 - Scientific
 - Data Mining
 - ...

- Cost optimizations
 - New optimization goal: Cost (not performance)
 - SLA imply implicit cost

- Benchmarks

- Security (don’t get me started)

- ...
Consistency Rationing

- ACID prevents scaling & availability (CAP theorem)!
- Strong consistency is expensive
- But not everything is worth gold!

- Idea: Handle data according to the cost of inconsistency
- Violating consistency is OK as long as it helps to reduce the overall cost

[VLDB 09]
Consistency Rationing - Guarantees

- Apply weak consistency protocols (e.g. session consistency)
- Apply strong consistency protocols (e.g., serializability)
- Switches between A and C guarantees
 - Depends on some strategy
 - Decision is local per server
- Consistency requirements per category instead of transaction level
- Different categories can mix in a single transaction

[VLDB 09]
Streaming in the Cloud - Smoky

Provide streaming as a service: No installation, maintenance etc.

- Use Cases
 - Server/workflow monitoring
 - message transformations
 - combining RSS streams
 - ...

- Leverage established cloud techniques

- Idea: Storage ring: Key-> Data

Stream ring: Event-type ->Query
Other (selected) ETH projects

- **CloudBench**
 - A benchmark for the cloud

- **Barrelfish**
 - new written-from-scratch OS kernel
 - targeted for multi- and many-core processor systems

- **Rhizoma**
 - constraint-based runtime system for distributed applications
 - self-hosting

- **Concierge**
 - blur the burden between mobile and cloud applications

- **Xadoop**
 - XQuery on Hadoop
Summary

- Cloud has changed the view on data management
 - Focus on scalability, availability and cost
 - Instead of consistency and performance at any price
 - E.g. No-SQL Movement
- As a result many Cloud Storage/DB Systems appeared on the marked place
- Although (or because) the cloud is economical driven, it provides many interesting research challenges

tim.kraska@inf.ethz.ch