Making Sense at Scale with Algorithms, Machines & People

Tim Kraska
EECS, Computer Science
UC Berkeley
Agenda

• Issues/Opportunities of Big Data
• AMPLab Background
• AMP Technologies
 - Algorithms for Machine Learning
 - Machines for Cloud Computing
 - People for Crowd Sourcing
• Project Status and Wrap Up
Big Data is Massive…

- Facebook:
 - 130TB/day: user logs
 - 200-400TB/day: 83 million pictures

- Google: > 25 PB/day processed data

- Data generated by LHC: 1PB/sec

- Gene sequencing:
 - Sequence 1 human cell costs Illumina $1k
 - Whole genome: $100,000 → 1.5 GB – 30 TB (raw)
 - Sequence 1 cell for every infant by 2015?
 - 10 trillion cells / human body

- Total data created in 2010: 1 ZettaByte (1,000,000 PB)/year
 - ~60% increase every year
• More and more devices

• Connected people

• Cheaper and cheaper storage: +50%/year
• Diverse
• Variety of sources
• Uncurated
• No schema
• Inconsistent semantics
• Inconsistent syntax
Queries have issues too

- Diverse
- Time-sensitive
- Opportunistic
- Exploratory
- Multi-hypotheses Pitfall
“Big Data”: Working Definition

When the normal application of current technology doesn’t enable users to obtain **timely** and **cost-effective** answers of sufficient **quality** to data-driven questions.
A Necessary Synergy

1. Improve scale, efficiency, and quality of machine learning and analytics to increase value from Big Data (Algorithms)

2. Use cloud computing to get value from Big Data and enhance datacenter infrastructure to cut costs of Big Data management (Machines)

3. Leverage human activity and intelligence to obtain data and extract value from Big Data cases that are hard for algorithms (People)
• Today’s solutions:

- Algorithms
- Machines
- People

- Watson/IBM
- Google search
- Oracle
- Hadoop
- Yelp
- Amazon Mechanical Turk
The AMPLab

Making sense at scale by integrating Algorithms, Machines, and People
AMP Lab: What is it?

A Five-Year research collaboration to develop a new generation of data analysis methods, tools, and infrastructure for making sense of data at scale
(Started Feb 2011)
AMP Faculty and Sponsors

Berkeley Faculty
- Alex Bayen (mobile sensing platforms)
- Armando Fox (systems)
- Michael Franklin (databases) Director
- Michael Jordan (machine learning) Co-Director
- Anthony Joseph (security & privacy)
- Randy Katz (systems)
- David Patterson (systems)
- Ion Stoica (systems) Co-Director
- Scott Shenker (networking)

Sponsors:
• Mobile Millennium Project
 – Alex Bayen, Civil and Environment Engineering, UC Berkeley

• Microsimulation of urban development
 – Paul Waddell, College of Environment Design, UC Berkeley

• Crowd based opinion formation
 – Ken Goldberg, Industrial Engineering and Operations Research, UC Berkeley

• Personalized Sequencing
 – Taylor Sittler, UCSF
AMP Research Themes

• Algorithms
 – Scale up machine learning
 – Error bars on everything

• Machines
 – Datacenter as a computer

• People
 – People in all phases of data analysis

• AMP
 – Put it all together
Algorithms: Error Management

- Immediate results/continuous improvement
- Calibrate answer: provide error bars
- Breakthrough – “Big Data” Bootstrap

![Graph showing estimate vs. number of data points with error bars](image-url)

- Error bars on every answer!

Estimate vs. # of data points chart with dashed line indicating true answer.
Algorithms: Error Management

- Given any problem, data and a time budget
 - Automatically pick the best algorithm
 - Actively learn and adapt strategy

![Graph showing error management process](image)
Algós: Black Swans vs. Red Herrings

What about new data sources and bias?

Number of Hypotheses

- More Data as New Features (columns)
- More Data Per Existing Features (rows)

Not Sustainable

Sustainable
Goal: “The datacenter as a computer”, but…

– Special purpose clusters, e.g., Hadoop cluster
– Highly variable performance
– Hard to program
– Hard to debug
Machines: Problem

• Rapid innovation in cluster computing frameworks
 • Hadoop, Pregel, Dryad, Rails, Spark, Pig, MPI2, …

• No single framework optimal for all applications

• Want to run multiple frameworks in a single cluster
 » …to *maximize utilization*
 » …to *share data* between frameworks
Machines: A Solution

• Mesos: a resource sharing layer supporting diverse frameworks
 – Fine-grained sharing: Improves utilization, latency, and data locality
 – Resource offers: Simple, scalable application-controlled scheduling mechanism

Mesos – Cluster Operating System

Efficiently shares resources among diverse parallel applications

![Graph showing the share of cluster time between MPI, Hadoop, and Spark over time.](image)
Mesos: Implementation Status

- 20,000 lines of C++
- Master failover using ZooKeeper
- Frameworks ported: Hadoop, MPI, Torque
- New specialized frameworks: Spark
- Open source in Apache Incubator
- In use at Berkeley, UCSF, Twitter and elsewhere
Datacenter Programming Framework: Spark

• In-memory cluster computing framework for applications that reuse working sets of data
 – *Iterative* algorithms: machine learning, graph processing, optimization
 – *Interactive* data mining: order of magnitude faster than disk-based tools

• Key idea: “resilient distributed datasets” that can automatically be rebuilt on failure
 – mechanism based on “lineage”

Spark Data Flow vs. Map Reduce
Scala Language Integration

Serial Version

```scala
val data = readData(...)

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
  var gradient = Vector.zeros(D)
  for (p <- data) {
    val s = (1/(1+exp(-p.y*(w dot p.x)))-1) * p.y
    gradient += s * p.x
  }
  w -= gradient
}
println("Final w: " + w)
```

Spark Version

```scala
val data = spark.hdfsTextFile(...)
  .map(readPoint _).cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
  var gradient = spark.accumulator(
    Vector.zeros(D))
  for (p <- data) {
    val s = (1/(1+exp(-p.y*(w dot p.x)))-1) * p.y
    gradient += s * p.x
  }
  w -= gradient.value
}
println("Final w: " + w)
```
Logistic Regression Performance

- 127 s / iteration
 - first iteration 174 s
 - further iterations 6 s

Running Time (s) vs. Number of Iterations for Hadoop and Spark.
• Make people an integrated part of the system!
 – Leverage human activity
 – Leverage human intelligence (crowdsourcing):
 • Curate and clean dirty data
 • Answer imprecise questions
 • Test and improve algorithms

• Challenge
 – Inconsistent answer quality in all dimensions (e.g., type of question, time, cost)
CrowdDB – A First Step

Algorithms

Watson/IBM

Google search

Machines

Crowd DB

People

MATLAB

SIMULINK

R

yelp

Amazon Mechanical Turk

artificial intelligence

algorithms

CrowdDB
Problem: DB-hard Queries

<table>
<thead>
<tr>
<th>Company_Name</th>
<th>Address</th>
<th>Market Cap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Google</td>
<td>Googleplex, Mtn. View CA</td>
<td>$170Bn</td>
</tr>
<tr>
<td>Intl. Business Machines</td>
<td>Armonk, NY</td>
<td>$203Bn</td>
</tr>
<tr>
<td>Microsoft</td>
<td>Redmond, WA</td>
<td>$206Bn</td>
</tr>
</tbody>
</table>

```
SELECT Market_Cap
From Companies
Where Company_Name = "IBM"
```

Number of Rows: 0

Problem:
Entity Resolution
DB-hard Queries

<table>
<thead>
<tr>
<th>Company_Name</th>
<th>Address</th>
<th>Market Cap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Google</td>
<td>Googleplex, Mtn. View CA</td>
<td>$170Bn</td>
</tr>
<tr>
<td>Intl. Business Machines</td>
<td>Armonk, NY</td>
<td>$203Bn</td>
</tr>
<tr>
<td>Microsoft</td>
<td>Redmond, WA</td>
<td>$206Bn</td>
</tr>
</tbody>
</table>

```sql
SELECT Market_Cap
FROM Companies
WHERE Company_Name = "Apple"
```

Number of Rows: 0

Problem:
Closed World Assumption
DB-hard Queries

SELECT Top_1 Image
From Pictures
Where Topic = “Business Success”
Order By Relevance

Number of Rows: 0

Problem:
Subjective Comparison
Easy Queries

<table>
<thead>
<tr>
<th>Company_Name</th>
<th>Address</th>
<th>Market Cap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Google</td>
<td>Googleplex, Mtn. View CA</td>
<td>$170Bn</td>
</tr>
<tr>
<td>Intl. Business Machines</td>
<td>Armonk, NY</td>
<td>$203Bn</td>
</tr>
<tr>
<td>Microsoft</td>
<td>Redmond, WA</td>
<td>$206Bn</td>
</tr>
</tbody>
</table>

```
SELECT Market_Cap
From Companies
Where Company_Name = "IBM"
```

$203Bn
Number of Rows: 1
Pretty Easy Queries

<table>
<thead>
<tr>
<th>Company_Name</th>
<th>Address</th>
<th>Market Cap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Google</td>
<td>Googleplex, Mtn. View CA</td>
<td>$170Bn</td>
</tr>
<tr>
<td>Intl. Business Machines</td>
<td>Armonk, NY</td>
<td>$203Bn</td>
</tr>
<tr>
<td>Microsoft</td>
<td>Redmond, WA</td>
<td>$206Bn</td>
</tr>
</tbody>
</table>

SELECT Market_Cap
From Companies
Where Company_Name =
“The Cool Software Company”

$xxxxBn
Number of Rows: 1
Microtasking Marketplaces

- Current leader: Amazon Mechanical Turk
- Requestors place Human Intelligence Tasks (HITs)
 - Requestors approve jobs and payment
 - API-based: “createHit()”, “getAssignments()”, “approveAssignments()”
 - Other parameters: #of replicas, expiration, User Interface,…
- Workers (a.k.a. “turkers”) choose jobs, do them, get paid
Idea: CrowdDB

Use the crowd to answer DB-hard queries

Where to use the crowd:
• Find missing data
• Make subjective comparisons
• Recognize patterns

But not:
• Anything the computer already does well

M. Franklin, D. Kossmann, T. Kraska, S. Madden, S. Ramesh, R. Xin.
CrowdDB: Answering Queries with Crowdsourcing, SIGMOD 2011
CrowdSQL

DDL Extensions:

Crowdsourced columns

CREATE TABLE company (
 name STRING PRIMARY KEY,
 hq_address CROWD STRING);

Crowdsourced tables

CREATE CROWD TABLE department (
 university STRING,
 department STRING,
 phone_no STRING)
PRIMARY KEY (university, department);

DML Extensions:

CrowdEqual:

SELECT *
FROM companies
WHERE Name ~= “Big Blue”

CROWDORDER operators (currently UDFs):

SELECT p FROM picture
WHERE subject =
"Golden Gate Bridge"
ORDER BY CROWDORDER(p, "Which pic shows better %subject");
User Interface Generation

• A clear UI is key to response time and answer quality.
• Can leverage the SQL Schema to auto-generate UI (e.g., Oracle Forms, etc.)
Query Optimization and Execution

CREATE CROWD TABLE department (name STRING PRIMARY KEY phone_no STRING);

CREATE CROWD TABLE professor (name STRING PRIMARY KEY e-mail STRING dep STRING REF department(name));

SELECT * FROM PROFESSOR p, DEPARTMENT d WHERE d.name = p.dep AND p.name = “Michael J. Carey”

(b) Logical plan before optimization (c) Logical plan after optimization (d) Physical plan
Dealing with the Open-World

SELECT *
FROM PROFESSOR p,
 DEPARTMENT d
WHERE p.dep = d.name
AND p.name = "Carey"

SELECT *
FROM PROFESSOR p,
 DEPARTMENT d
WHERE p.dep = d.name
LIMIT 0, 10

SELECT *
FROM PROFESSOR p,
 DEPARTMENT d
WHERE p.dep = d.name

Only allowed with iterative query improvement
MTFunction

- implements the CROWDEQUAL and CROWDORDER comparison
- Takes some description and a type (equal, order) parameter
- Quality control again based on majority vote
- Ordering can be further optimized (e.g., Three-way comparisons vs. Two-way comparisons)

Are the following entities the same?

- IBM == Big Blue

Which picture visualizes better "Golden Gate Bridge"?
Query:
SELECT p FROM picture
WHERE subject = "Golden Gate Bridge"
ORDER BY CROWDORDER(p, "Which pic shows better %subject");

Data-Size: 30 subject areas, with 8 pictures each
Batching: 4 orderings per HIT
Replication: 3 Assignments per HIT
Price: 1 cent per HIT

Which picture visualizes better "Golden Gate Bridge"

Submit

(a) 15, 1, 1
(b) 15, 1, 2
(c) 14, 3, 4
(d) 13, 4, 5
(e) 10, 5, 6
(f) 9, 6, 3
(g) 4, 7, 7
(h) 4, 7, 8

(turker-votes, turker-ranking, expert-ranking)
Can we build a “Crowd Optimizer”?

Select *
From Restaurant
Where city = ...
Price vs. Response Time

5 Assignments, 100 HITs

Percentage of HITs that have at least one assignment completed

Time (mins)
Can we build a “Crowd Optimizer”?

Select *
From Restaurant
Where city = ...

be very wary of doing any work for this requester...

Hmm... I smell lab rat material.

I would do work for this requester again.

I advise not clicking on his “information about restaurants” hits.

This guy should be shunned.
Processor Relations?

AMPLab

HIT Group » Simple straight-forward HITs, find the address and phone number for a given business in a given city. All HITs completed were approved. Pay was decent for amount of time required, when compared to other available HITs. But not when looked at from an hourly wage perspective. I would do work for this requester again.

posted by…

fair:5 / 5 fast:5 / 5 pay:4 / 5 comm:0 / 5

Tim Klas Kraska

HIT Group » I recently did 299 HITs for this requester…. Of the 299 HITs I completed, 11 of them were rejected without any reason being given. Prior to this I only had 14 rejections, a .2% rejection rate. I currently have 8522 submitted HITs, with a .3% rejection rate after the rejections from this requester (25 total rejections). I have attempted to contact the requester and will update if I receive a response. Until then be very wary of doing any work for this requester, as it appears that they are rejecting about 1 in every 27 HITs being submitted.

posted by …
Crowd as specialized CPUs

<table>
<thead>
<tr>
<th></th>
<th>Cloud</th>
<th>Crowd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>($0.02 - $2.10)/ hour</td>
<td>$4.8 / hour</td>
</tr>
<tr>
<td>Pay Model</td>
<td>pay-as-you-go</td>
<td>pay-as-you-go</td>
</tr>
<tr>
<td>Investment</td>
<td>none</td>
<td>training</td>
</tr>
<tr>
<td>Response Time</td>
<td>Varied: msec</td>
<td>Varied: min, hours, days</td>
</tr>
<tr>
<td>Capabilities / Features</td>
<td>good (number crunching) & bad (AI)</td>
<td>good (AI) & bad(number crunching)</td>
</tr>
<tr>
<td>Programming</td>
<td>formal</td>
<td>natural language GUI</td>
</tr>
<tr>
<td>Availability</td>
<td>virtually unlimited</td>
<td>???</td>
</tr>
<tr>
<td>Affinity</td>
<td>virtualized</td>
<td>personal</td>
</tr>
<tr>
<td>Reliability</td>
<td>Faulty but not malicious</td>
<td>Faulty and possibly malicious</td>
</tr>
<tr>
<td>Legal</td>
<td>Privacy</td>
<td>Privacy++, taxes, benefits,..</td>
</tr>
</tbody>
</table>
Future: Crowdsourcing → DB++?

• Cost Model for the Crowd
 – Latency (mins) vs. Cost ($) vs. Quality (%error)
• Adaptive Query Optimization
 – How to monitor crowd during query execution?
 – How to adapt the query plan?
• Caching / Materializing Crowd Results
 – E.g., maintaining the cached values
• Complexity Theory
 – Three-way comparisons vs. Two-way comparisons
• Privacy: Public vs. Private crowds
 – Flip-side of affinity of turkers
• Meta-crowds: Crowds help crowds (e.g. UI)
Future: DB → Crowdsourcing++?

Crowd-Hard Problems:

• Programming Language: GUI
• Many, many knobs to turn
• Changing platform behavior
• Quality Control
• Learning effects
• Community Management
• ...

The DB-Approach can help?

• Data independence, cost-based optimization, schema management...
The AMPLab

Make sense at scale by holistically integrating Algorithms, Machines, and People
Summary - AMPLab

• Goal: Tame Big Data Problem
 Balance quality, cost and time to solve a given problem
• The computing challenge of the decade
• Widespread applicability across applications
• To address, we must Holistically integrate
 Algorithms, Machines, and People

We thank our sponsors: