
Image Based Routing for Image Based Rendering
Daniel Crispell
Brown University

Division of Engineering
daniel crispell@brown.edu

Gabriel Taubin
Brown University

Division of Engineering
taubin@brown.edu

John Jannotti
Brown University

Department of Computer Science
jj@cs.brown.edu

Abstract— Recent research has shown that capturing a scene
using several cameras has many advantages over traditional
single viewpoint or stereo capture. Here, we focus on multi-
camera systems using Internet Protocol (IP) as the mode of
communication. As these networks of cameras grow in size,
the problem of handling the immense amount of data they are
capable of producing becomes an important problem. Our goal
is to build a system consisting of many inexpensive cameras
interconnected via an IP network and capable of rendering novel
views in a distributed and bandwidth-minimizing fashion. The
system should scale well as cameras are added to the network;
we wish to design a system that is capable of handling on the
order of 1000 cameras. The presented system utilizes in-network
processing in order to minimize the amount of bandwidth needed.
A novel data structure (the binmesh) is presented that enables us
to efficiently aggregate representations of available views at each
node. We present a working prototype of the system consisting
of 16 cameras, as well as simulation results for networks of up
to 1024 cameras.

I. I NTRODUCTION

In recent years, there has been increasing interest in multiple
camera systems [1], [2], [3]. As network-enabled cameras
become smaller and less expensive, it is becoming feasible,
physically and economically, to build systems consisting of
networks of hundreds or even thousands of cameras. Although
most, if not all, currently existing camera networks run on
their own dedicated high speed links such as Firewire, we
envision an environment where large numbers of network-
enabled “smart” cameras are attached to arbitrary locations
in a preexisting wired or wireless network and are able
to be immediately integrated into a running image based
rendering or tracking system. This type of camera network
would have many potential uses, including security, surveil-
lance, and entertainment. Towards this goal, we focus in this
paper on designing and building an image based rendering
system capable of synthesizing virtual camera views from an
arbitrarily large number of networked cameras in a distributed
fashion. Generated virtual camera views are useful for human
interaction and display, as well as potential input to tracking
algorithms and other in-network processing. We make no
assumptions about the topography of the cameras, although
it is assumed that each of the cameras intrinsic and extrinsic
calibration parameters are obtainable by the camera. We wish
to construct a system that is capable of handling large (1000+)
numbers of cameras, while keeping network bandwidth usage
and computation throughout the network to a minimum. We

2

1

1

2
1

1

2
1

1

2
1

1

2
1

1

2
1

1

2
1

1

2
1

1

2
1

1

2
1

1

2
1

1

2
1

1

2
1

1

2
1

1

2
1

1

2
1

1

2
1

1
2

1

1

2
1

1

2
1

1

2
1

1

2
1

1

2
1

1

2
1

1

2
1

1

2
1

1
2

1

1

2
1

1

2
1

1

2
1

1

2
1

1

2
1

1

2
1

1

Fig. 1. The binmesh data structure - each face of the geometric proxy stores
a set of bins which encode the directions to camera centers viewing the face.

present a method for constructing such a system and some
preliminary results.

When scaling multiple camera systems up, one obvious
problem that quickly surfaces is an efficient way to handle
the immense amount of data these systems are capable of
producing. Even using VGA resolution (640x480) JPEG com-
pressed image streams, a network of 100 cameras produces on
the order of 1 Gbps of data (assuming 30 fps). All published
work thus far has employed dedicated networks to handle this
data. We wish to build our system on top of existing networks
while disrupting preexisting traffic as little as possible. This
constraint further limits the amount of bandwidth realistically
at our disposal.

In order to achieve a system that scales well and minimizes
needed bandwidth, it is clear that we need to aggregate
redundant data when possible. When operating in an arbitrarily
complex network, it is not practical for any one node in the
network to know the locations, full paths, and views of all
available cameras. Our goal is to minimize the amount of
information stored and the amount of computation performed
at any one node, as well as the total amount of data transferred
over the network links. By dividing the rendered image into
small fragments, we can route requests for these fragments
to the cameras that will contribute to the rendering of the
fragments only. The routing should be done in such a manner
that it is not necessary for any one node in the system to



maintain information about all other nodes. Additionally, we
can aggregate replies (image data) to these requests at natural
aggregation points in the network in order to save bandwidth
and minimize the amount of processing done by the requesting
node. Each node in the tree has to know four pieces of
information:

1) a summary of available views from its children and their
descendants

2) how to aggregate these views for presentation to its
parent

3) how to distribute requests from its parent for a view that
is available through one or more of its children

4) how to combine responses to these requests before
propagating them back up to the parent

Our system accomplishes this with a tree based protocol
conceived as a generalization of IP Multicast’s [4] group
join and forwarding mechanism. Smart cameras “subscribe”
to requests for virtual views based on their fields of view.
Virtual camera requests are routed only to those cameras that
have indicated they might usefully fulfill the requests. Finally,
image data is returned back through the dissemination tree, and
aggregated along the way. This application-specific in-network
processing might be provided by an active network [5] or an
overlay network [6], [7]. In this paper, we present:

• a framework for a scalable camera network design using
aggregation of camera view representation, data requests,
and image data

• a data structure enabling efficient aggregation of camera
viewpoints

• a working prototype and simulation of large-scale camera
networks using this framework and data structure

A. Language and terminology

Throughout this paper, we refer to the camera network as
consisting of a set of connectednodes, where a node can be
either a router, a camera, or a host requesting views from a
virtual camera. It is assumed for the purposes of this paper
that routers are capable of being programmed and performing
some simple image processing operations. Since cameras, like
routers, are built using embedded processors, it is just as easy
to imagine a system in which the cameras also have some
programmability and can share the computational load. Indeed,
we envision a future system in which the line between camera
and router is blurred and each device in the network will be
capable of image capture, image processing, and intelligent
routing to other devices.

II. PREVIOUS WORK

A. Multiple camera systems

Early image based rendering systems developed by Levoy
and Hanrahan [8] and Gortler et al. [9], [10], [11] produced
novel views of a static scene using multiple images from a
single moving camera. Light fields captured using a single
camera have the obvious constraint of being limited to static
scenes. In order to view a light field of video data, multiple

Fig. 2. When the focus plane (dashed line) is a poor approximation of
actual scene depth, blended camera rays do not hit the same surface (blue
rays), causing blurred images.

capture devices are needed. Early work using multiple camera
systems was proposed and presented by Kanade and Rander
[12], [13] in their Virtualized Reality system. Several other
multiple camera systems have been proposed and implemented
since then, including the works of Yang [1], Naemura [14],
Zitnick, [15], and Matsuik [2]. Recently, Wilburn et al. have
demonstrated what is possible when camera systems are scaled
up to 100 cameras [3]. Their cameras are connected via one or
more Firewire busses, using a binary tree topology. Each bus
is capable of handling up to 30 video streams simultaneously.
The root nodes in the trees are connected to host PCs and write
the video streams to hard disks. Although the cameras are
physically connected using a tree topology, all communication
takes place in a centralized manner from the host PC to each
individual camera board.

B. Image based rendering

Image based rendering has been an active area of research
since 1996, when the Lumigraph [9] and Light Field Render-
ing [8] papers introduced systems capable of producing images
of scenes from arbitrary viewpoints given a sufficient set of
input images. This is accomplished conceptually by searching
input images for pixels corresponding to rays that are as close
as possible to rays corresponding to pixels of the desired
view. Here, closeness can be defined in terms of intersection
with the focus plane, angle difference, focus plane to camera
distance, and other measures. The light field and lumigraph
papers employed a “two plane parametrization” in order to
represent the rays of both the input and desired views, where
a ray is represented by its intersection points with a camera
plane and a focus plane. One constraint of these algorithms is
that the camera centers are assumed to be aligned to a regular
planar grid. The lumigraph relaxes this constraint somewhat
by employing “rebinning” of input image data, but this extra
step causes a degradation of image quality [11].

Debevec et al. described a system [16] for rendering scenes
with known geometry using view-dependant texture mapping.
Each face of the scene geometry stored indexes correspond-
ing to images in which the face was visible. Images from
viewpoints similar to that of the virtual camera were used to
texture map the faces. Although this system does not meet our
requirements of scalability to large numbers of cameras (it is
not meant to), we borrow the concept of view storage at the
faces.



In 2001, Buehler et al. introduced a variation of the light
field/lumigraph [11] that generalized away many of the con-
straints inherent in the original papers. The system makes
no assumptions about the locations of the cameras, and can
produce virtual views in realtime using commodity graphics
hardware. The authors introduce the concept of ageometric
proxy, or a set of vertices and faces that estimate the under-
lying 3D structure that is to be imaged. In the case where no
previous knowledge of the structure is available (as is the case
here), a simple planar mesh can be used. It should be noted that
the further the geometry we wish to image is from the actual
geometric proxy, the blurrier our output image will be due to
the non-convergence of the blended camera rays on the object
surface (Figure 2). The desired image is triangulated using
a regular grid plus projections of geometric proxy vertices
and projections of source camera centers. A weight for each
camera is evaluated at the vertices of the triangulation, and
each triangle is rendered once for each camera with a non-
zero weighting at one of its vertices. The images are then
blended based on the camera weights. Because this algorithm
requires a centralized node that communicates directly with
and performs computations based on each individual camera,
it does not meet our goals.

Yang et al. introduced a system [1] that is capable of
rendering virtual views using an eight by eight array of
64 Firewire video cameras in realtime. The centers of the
source cameras are triangulated in 3D. These triangles are then
projected onto the focal plane and rendered from the desired
point of view using projective texture mapping. Each triangle
is rendered once by each camera that corresponds to a vertex
and blended by the compositor. It is assumed that the cameras
have knowledge of their neighbors in the grid, and so can
determine their individual contributions and weighting in the
final image given only the desired viewpoint and focal plane.
These parameters are not dependant on the source cameras,
so it can be broadcast by the compositor to all cameras.
The cameras themselves can then calculate their contribution
(based on their position in the fixed topology) and return the
weighted image fragments to the central node. Because it is
assumed that the cameras are capable of transmitting their
specific contributions only to the final image, the bandwidth
used by the system is independent of the number of cameras
and depends only on the number of views being rendered.
While this is a very important result, it relies on an assumption
that does not hold true in our desired environment: all cameras
are arranged in a fixed, regular topology and that all cameras
have knowledge of their neighbors in the topology. When this
fixed regular topology assumption is violated, cameras can no
longer determine their own weighting without knowledge of
all other cameras in the system. This means that, although the
texture mapping may still be performed in a distributed manner
by the cameras, the routing and communication will take
place in a centralized fashion, with direct knowledge of and
communication links to all cameras from the central node. We
would like to build a system consisting of an arbitrarily large
number of cameras with completely unconstrained position

...

(a) (b)

a

V1

1 2 3 n

V2

a

2

b c

d e f

1

4 5 6 7 83

Fig. 3. (a) Previous distributed methods assume star-like network topology,
with compositor (node a) located at center. The compositor must maintain
information about all cameras 1,2,. . . n in this case. (b) Our method takes
advantage of the actual (arbitrary) network topology. Node a maintains
information about camera 1 and nodes b and c only, regardless of the
underlying topology.

both in the physical environment and the network. This makes
direct knowledge of neighboring cameras impractical, since
spatial locality does not necessarily imply network locality or
even similar fields of views [17].

In general, the assumption made by all of the discussed
multi-camera systems is that all cameras are directly connected
to a central node (e.g. the compositor) in the network topology.
Because the communication in a centralized system takes place
via direct links between the central node and each of the
source cameras, no aggregation of data along these paths is
possible. Routing protocols such as IP enable the “direct link”
abstraction to be made without loss of correctness, but greater
efficiency and significant bandwidth savings can be achieved
by performing processing at natural aggregation points in
the network. We wish to scale to 1000s of cameras, so the
centralized model is not practical.

In the case of image based rendering, aggregation of data
flowing from the sources to the virtual camera is straightfor-
ward. If a node receives a face rendered by two or more of its
children, the node can blend the fragments (taking into account
their associated weightings) and propagate a single fragment
to its parent node.

In addition to aggregating data on the path from the sources
to the consumer, it would be advantageous to aggregate infor-
mation about the cameras themselves. Ideally, we would like
to avoid any one node (including the virtual camera) having
to store explicit information about all of the cameras in the
network. This has not been a problem in any existing imple-
mentations, but will become more impractical as the numbers
of cameras grow. If information describing camera viewpoints
can be aggregated, each node can store a representation of all
views available over each of its links, and distribute incoming
requests based on those representations. This aggregation of
viewpoints, however, is less straightforward.

III. T HE BINMESH

The type and amount of image data that is useful varies
greatly with the application. For example, if we wish to
reconstruct the three dimensional structure of objects viewed
by the cameras, it is necessary to have multiple (at least two



x

y

x

(a)

z

z

x

x'

y'

(b)

(d)(c)

y

Fig. 4. (a) Unit pyramid (b) normal intersection with unit sphere and unit
pyramid (c) unit pyramid orthographically projected onto xy plane (d) change
of coordinates and first two subdivisions

but possibly many more) views of the same world points.
This is also true of super-resolution applications. In the case
of general surveillance however, we may want to minimize
this redundancy and cover the maximum amount of the scene
with as few images as possible. In general, it would be useful
to have a compact representation of all available views of a
scene and be able to make the decision at runtime which are
transferred.

Borrowing the ideas of the geometric proxy [11] and the
storage of camera view information in the scene geometry
[16], we can begin to formulate a method for viewpoint
aggregation in our camera network. We will render each face
of the geometric proxy independently. The geometric proxy
itself can be specified by the user or fixed if the scene geometry
is known a priori. In our implementation, the geometric proxy
is a planar mesh whose distance from the virtual camera is
specified by the user. We would like to use views from cameras
that are viewing each face of the proxy from as close an
angle as possible to the angle at which the virtual camera
is viewing it. Other factors may be taken into account as well
(e.g. distance from the face) and weighted to give a general
score to each virtual camera for each face. We make the
assumption here that all considered cameras are viewing the
focus plane from a comparable distance, so simply storing unit
length vectors in the directions of the camera centers (from the
face centroid) provides all the information we need in order
to choose cameras for any virtual view of the face. In order to
facilitate aggregation and selection, we use a novel method to
store these vectors in a multigrid fashion (see Figure 4). The
vector is first intersected with the “unit pyramid”, or more
precisely, the surfaceΠ such that:

Π =





x + y + z = 1, x, y > 0
x− y + z = 1, x > 0, y < 0

−x + y + z = 1, x < 0, y > 0
−x− y + z = 1, x, y < 0

(1)

...

1 2 nfaces

1

1

1

1

1

1

...

1 2 nfaces

4

1 1

3

1

1 1

2

1

1 1

1

...

1 2 nfaces

2

1

1

1

1

1

1

3

1

Fig. 5. Binmesh aggregation: vector bins of children are added, element by
element, and the result is passed on to the parent node.

The z axis of the local coordinate system is the normal of
the face. This allows us to restrict ourselves to storing vectors
with positive z, since a negative value indicates a camera
viewing the “back” side of the face. This intersection point
is then projected orthographically onto thexy plane (i.e. the
z component is simply dropped), and a change of coordinates
is employed:

x′ = x + y (2)

y′ = y − x (3)

All unit vectors are thus mapped to a point on thexy plane
within the unit square (−1 <= x, y <= 1). These mapped
points are stored using a quadtree-like structure for efficient
searching at multiple levels of angular resolution. Each face of
our geometric proxy has one such vector bin associated with
it. We call this structure consisting of a set of vertices, faces,
and a camera angle bin for each face abinmesh(figure 1).

A. The data structure

Each vector bin is stored as an array with4n elements,
wheren is the number of subdivision levels used. Each sub-
division is encoded with two bits such that we can efficiently
recover any bin’s four or eight-connected neighbors. By simply
shifting a bin index two bits to the right, we can also obtain
the index of the corresponding bin at the next level in the
hierarchy. Each bin is stored using one byte, making this
structure fairly large for reasonably fine-grained accuracy. In
our implementation, we use six subdivision levels, meaning
vector codes are 12 bits long and we must store 4096 bytes
per face of the geometric proxy. Although these structures
can become large for large proxies, they should be heavily
compressible. Unless a system contains an extremely large
number of well distributed cameras, each vector bin will be
very sparse. In addition, neighboring faces in the geometric
proxy will generally have similar vector bins. We emphasize
that regardless of number and position of cameras that it
represents, the entire uncompressed binmesh structure has a
constant size for a given geometric proxy.

IV. RENDERING ALGORITHM

A. Spanning tree construction

An important characteristic of the binmesh structure is that
it is dependant only on the geometric proxy and the source
camera positions, and not the virtual camera position. Because



Fig. 6. Multiple resolution levels of the vector bins: Solid boxes represent
the desired vector at multiple resolution levels. The outlined boxes show
the searched eight-connected bins at each level. By searching a bin and its
neighbors, we avoid the problem of missing matches lying across coarse level
boundaries.

of this, we can use a spanning tree rooted at a router directly
connected to the virtual camera node and update the tree only
if a camera changes state, or our underlying geometric proxy
changes. The virtual camera (or cameras) may move through
the scene and receive different views of the geometry with
no update of the structure. This rendering process begins with
the injection of the geometric proxy into the network by the
virtual camera node. The first node to receive this message
becomes the root node in the spanning tree. The message is
then propogated, hop by hop, to all nodes in the network with
each node that receives the message (and is not already part of
the tree) making the sending node its parent. When this process
is completed, each internal node has one parent node, and one
or more child nodes, which could be cameras or other routers.
The root node has a direct connection to the virtual camera
node. For each child, a router node creates a binmesh structure.
In the case of a camera child, the node places a “1” in each
appropriate bin of the binmesh. In the case of a router, the
node passes the geometric proxy down and waits for a binmesh
response. Once binmesh responses for all children have been
received, all child binmeshes are aggregated and the result
is reported to the parent node. Aggregation is accomplished
with a simple element by element add of the binmeshes
(Figure 5). This process continues until the virtual camera
node has received a single binmesh representing the views
of all available cameras in the network.

B. Novel view generation

When a virtual camera node wishes to generate a view,
it sends a request message to the root node containing the
extrinsic and intrinsic parameters of the virtual camera, as
well as the set of visible faces of the geometric proxy to
render. Each visible face index is accompanied by the vector
to the virtual camera center from the face centroid, and the
number k of actual views to blend in order to render the
face. The request is then propagated to relevant cameras in the
following manner: When a node receives a request, it chooses
the set of children to redirect this request to based on the
binmesh structures it has associated with each of them, and
decrementsk accordingly. For example, the root node may

receive a request for a view of facef , to be generated using
the bestk = 3 views available. The root node may then request
the view from childa, to be generated usingk = 2 views, and
child b, to be generated using the single best (k = 1) view only.
How the requests are propagated is up to the individual router
nodes. Router nodes may decide to give preference to cameras
directly connected to the node and perform the mapping from
the real camera to virtual camera themselves (thereby saving
bandwidth), or may choose to give priority to children in order
to pass off as much work as possible (load balancing may be
achieved in this manner). In our implementation, the virtual
camera requests that each face be rendered using the three
best views. The nodes give preference to directly connected
cameras in the case of equally good matches between camera
and router children. The multigrid nature of the vector bins
allows a node to first search at a coarse level and weed out
children with zero or only poor matches, and then move to
progressively finer levels of angular resolution until the desired
number of matches is achieved.

A search at a particular resolution level consists of search-
ing the desired bin and its eight-connected neighbors. We
search in this way to avoid missing close matches that lie
across coarse level bin boundaries (Figure 6). Cameras whose
viewing directions closely match that of the virtual camera
are weighted higher than others in the blending process.
Closeness is determined by the finest level of resolution at
which the source camera vector matches that of the virtual
camera. Request replies from child nodes are received in the
form of image fragments representing the virtual views of the
requested faces. If a node requests (or directly maps) a face
to more than one child, it must perform the blending of the
two replies before propagating the fragment to its parent. The
replies are blended according to their associated weightsw1

and w2, and the composite fragment is given a new weight
wnew based on the following equation:

wnew = wmax −
[

1
(wmax − w1)

+
1

(wmax − w2)

]−1

(4)

By assigning weights in such a manner, we ensure that
fragments with equal individual weights will contribute to the
composite fragment equally regardless of where in the network
they are added. The more individual fragments a blended
fragment is composed of, the heavier its weighting will be. The
exception to these properties occurs if either of the weights
w1, w2 are equal towmax. In that case,wnew is assigned the
valuewmax. The blended fragments are then propagated to the
parent node, and this process continues until the virtual camera
node receives a reply containing all available fragments of
the requested image. The virtual camera node has received a
synthesized image, with the only computation required being
the composition of the received fragments into a complete
image.

V. PROTOTYPEIMPLEMENTATION

We have implemented a prototype of our system design
using readily available IP webcams, a preexisting IP network,



(a) (b)

Fig. 7. (a) The four by four web camera array. (b) The 16 cameras are
physically connected to a single router

V

r1

r2 r3 r5

21 4

5 6 7 8

3

9 10 11 12

13 14 15 16

r3

Fig. 8. Although the array cameras are physically connected to a single
router, we simulate 5 routers, each with a fanout of four.

and PCs to perform the computations and routing. We do
not currently have the capability of reprogramming either
of the cameras or routers, so each router is simulated via
an independent application running on one of the PCs, and
is started with a configuration file indicating its directly
connected camera and router nodes in the network. Using 16
of the cameras and a high speed switch, we have constructed
a four by four camera array (Figure 7) for use in our system.
The cameras are physically connected to a single switch, but
we divide the array into four quadrants as shown in Figure 8
and simulate one router connected to each of four cameras in
each quadrant. Using this setup, we are able to produce novel
views in realtime (4 – 6 fps). Note that although all 16 cameras
have a similar viewpoint because of the grid topology, this is
not an assumption of the system. Any arrangement of cameras
will work fine, including panoramic capture systems such as
that presented by Swaminathan and Nayer [18].

A. Rendered image quality

Using the 16 camera array, two sets of images were ren-
dered: One using a straightforward method similar to that
presented by Buehler [11], and one using the distributed
algorithm presented in this paper. In order to provide a ground
truth for the rendering, a camera was removed from the array
and a virtual view was rendered from that position. Figure 10

shows the true image, a result produced by the unstructured
lumigraph implementation, and two views rendered using
our method. The views are from the identical location but
with different focus planes. The view rendered using the
centralized algorithm appears slightly crisper, possibly due
to the quantization of the normal vectors and the fact that
in our implementation, camera distance is not taken into
account when weighting the source images. Overall, however,
our distributed algorithm produces comparable results to the
centralized version.

VI. L ARGE NETWORK SIMULATION

In order to evaluate the systems capability to handle large
numbers of cameras, we have simulated networks consisting
of 4, 16, 64, 256, and 1024 cameras. In each simulation the
cameras were arranged in a large, regular grid topology. We
do not currently have image data corresponding to all of the
cameras in the large networks, however if we make sure to
render from viewpoints near clusters of cameras for which
we do have data, the cameras with invalid image data do
not contribute to the rendered image. The overlay trees used
for view generation consisted of 1, 5, 85, and 341 router
nodes, respectively. Each node in the tree had a fanout of
four, with the cameras connected as leaves in the tree. The
manner in which cameras are connected has a significant
effect on the overall efficiency of the system, so we ran
two sets of experiments: In the first set, we grouped the
cameras according to spatial locality, as in Figure 8. In the
second set of experiments, we chose the camera connections
randomly, with no regard to their physical position. Using
these simulated network topologies, we recorded the total
amount of data being transferred over each of the links during
the generation of a single frame from a virtual camera located
within the boundaries of the grid. Figure 9 shows the results
of these experiments. Because we use a tree structure and
aggregate request and reply data at each node, the amount
of total bandwidth needed will rise logarithmically with the
total number of cameras in the network. Additionally, the
bandwidth used over any given link is bounded by the size
of a request/reply pair for the full set of geometric proxy
faces (dashed line in Figure 9). If the overlay tree is organized
in a spatially coherent manner such as that in Figure 8, and
the number of cameras is much greater than the total number
of “useful” cameras for a given view, we can gain further
efficiency, roughly up to a constant factor ofk. This is because
at high levels of an “organized” tree, child links represent sets
of cameras with very different views, so it is unlikely that the
request will be propagated to more than one child. The best-
case scenario occurs when a request fork fragments is directed
to k cameras connected to the same router, since the data can
be immediately aggregated at that node. The worst case occurs
when the root node distributes a request tok distinct children,
using roughlyk times the bandwidth of the best-case scenario.
This demonstrates the value of having a network topology
that roughly corresponds to camera similarity: when the set of
cameras that are useful for a given task are located near each



0 200 400 600 800 1000
0

2

4

6

8

10

12

14

16

number of cameras

T
ot

al
 d

at
a 

tr
an

sm
itt

ed
 p

er
 fr

am
e 

(M
B

)

random camera connections

organized camera connections

0 200 400 600 800 1000
0

50

100

150

200

250

300

350

number of cameras

A
ve

ra
ge

 d
at

a 
tr

an
sm

itt
ed

 p
er

 li
nk

 p
er

 fr
am

e 
(k

B
)

random camera connections

organized camera connections

Fig. 9. Total and average per link bandwidth used in simulation. The dashed
line represents the maximum possible data transferred over one link per frame
(i.e. a request for all fragments of the proxy and its corresponding reply). The
total bandwidth usage rises logarithmically with the number of cameras, and
the efficiency of the system can be improved by connecting them in a coherent
manner.

other in the network, data thinning is more effective and can
be utilized at higher levels of the tree. In reality, our systems
will fall somewhere between the two extreme cases presented
in Figure 9; it is reasonable to assume that paths to nearby
cameras will traverse many of the same links, however, for
general camera topologies spatial locality does not necessarily
imply similar views (e.g. orientations could be different).

The data presented assumes that the setup step described
in Section IV-A has already been performed. This setup step
requires the broadcast of the geometric proxy to all nodes, and
the propagation of each nodes’ binmesh structure to its parent.
The size of the binmesh structure is dependant on the number
of faces in the geometric proxy and the maximum resolution of
the vector bins, but in general is relatively large. In our exper-
iments, we used a planar geometric proxy with 338 faces, and
six subdivision levels for the vector bins (46 = 4096 bytes per
vector bin), leading to an uncompressed binmesh size of about
1.32 MB. For relatively small numbers of cameras or groups
of cameras with similar viewing directions, these structures are
very sparse and can be compressed before transfer if needed.
Using gzip on its fastest setting, the binmesh of the root node
in the 1024 camera simulation was compressed to under 21 kB
(1.5% of the original). We do not perform any compression
in the current implementation of our system.

VII. F UTURE WORK

While these preliminary results are promising, some work
has yet to be done to realize the true potential of the sys-
tem. The first order of future work will involve building
a system with more cameras. We plan to distribute many
cameras throughout a conference room and experiment with
the synthesization of views for remote collaboration purposes.
In order to improve results for dynamic scenes, we will need
to perform synchronization to assure that blended images
correspond to temporally matching images. Several existing
camera network implementations [3], [2], [13] use cameras
with external trigger inputs to ensure exact synchronization.
Our inexpensive webcams cannot be externally triggered,
and further, wiring them to a trigger signal would violate
our requirement that the cameras be interfaced to via the
existing network only. Yang et al. [1] demonstrate a real-time
system that achieves adequate frame correspondence by an
initial synchronization of the internal clocks of the host PCs,
and an agreed upon schedule for downloading images. By
synchronizing the node clocks (using a protocol such as NTP)
and specifying a download time with each frame request, we
could implement a distributed version of such an algorithm. In
addition to synchronization, we will need a more efficient way
of calibrating our cameras. Currently, we calibrate each camera
individually using Zhang’s camera calibration technique [19].
Baker and Aloimonos [20] and Devarajan and Radke [17] have
both presented methods for the calibration of multi-camera
networks that would be better suited to our system as the
number of cameras grows.

Another potentially interesting area to research could be
the consolidation of data corresponding to multiple virtual
camera requests. Currently, we treat each virtual camera
independently, including the formation of the spanning tree.
If we can assume that multiple virtual cameras share the same
geometric proxy, we can save bandwidth by consolidating
data corresponding to faces being viewed by multiple virtual
cameras.

Currently, the geometric proxy is represented by a plane
perpendicular to the virtual cameras viewing direction and at
a user-specified distance. We would like to experiment with
allowing the system to iteratively modify this proxy to achieve
better focus at each face. Such a system would provide better
looking pictures as well as an estimate of the underlying scene
structure.

VIII. C ONCLUSION

In this paper, we have presented preliminary results towards
the implementation of a large-scale multi-camera system based
on off the shelf components and IP networking technology.
We demonstrate one possible use of such a network by
generating novel views in a distributed fashion, using the
binmesh structure to store available views in the network. We
have compared the results produced using an implementation
of our system with those produced by an existing centralized
technique. We have also simulated the operation of our system
using camera networks of various sizes, including large-scale



(a) Actual view from removed camera (b) View synthesized using centralized method

(c) Distributed method: focus plane in foreground(d) Distribured method: focus plane in background

Fig. 10. Ground truth image and rendered images using the 16 camera array

networks consisting of over 1000 cameras. Although this paper
deals specifically with the problem of image based rendering,
we view it as one instance of a more general problem and
hope to apply the same principles of intelligent routing and
distributed processing to other problems, including camera
calibration and object tracking.

REFERENCES

[1] J. C. Yang, M. Everett, C. Buehler, and L. McMillan, “A real-time
distributed light field camera,” inEGRW ’02: Proceedings of the 13th
Eurographics workshop on Rendering. Aire-la-Ville, Switzerland,
Switzerland: Eurographics Association, 2002, pp. 77–86.

[2] W. Matusik and H. Pfister, “3d tv: a scalable system for real-time acqui-
sition, transmission, and autostereoscopic display of dynamic scenes,”
ACM Trans. Graph., vol. 23, no. 3, pp. 814–824, 2004.

[3] B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth,
A. Adams, M. Horowitz, and M. Levoy, “High performance imaging
using large camera arrays,” inSIGGRAPH ’05, 2005.

[4] S. E. Deering, “Multicast routing in a datagram internetwork,” Ph.D.
dissertation, Stanford University, Dec. 1991.

[5] D. L. Tennenhouse, J. M. Smith, W. Sincoskie, D. J. Wetherall, and G. J.
Minden, “A survey of active network research,”IEEE Communications
Magazine, vol. 35, no. 1, pp. 80–86, Jan. 1997.

[6] J. Touch, “Dynamic internet overlay deployment and management using
the X-Bone,” inComputer Networks, July 2001, pp. 117—135.

[7] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris,
“Resilient overlay networks,” inProc. of the 18th ACM Symposium on
Operating Systems Principles, 2001, pp. 131–145.

[8] M. Levoy and P. Hanrahan, “Light field rendering,” inSIGGRAPH ’96:
Proceedings of the 23rd annual conference on Computer graphics and
interactive techniques. New York, NY, USA: ACM Press, 1996, pp.
31–42.

[9] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The lumi-
graph,” in SIGGRAPH ’96: Proceedings of the 23rd annual conference
on Computer graphics and interactive techniques. New York, NY,
USA: ACM Press, 1996, pp. 43–54.

[10] A. Isaksen, L. McMillan, and S. J. Gortler, “Dynamically reparameter-
ized light fields,” in SIGGRAPH ’00: Proceedings of the 27th annual
conference on Computer graphics and interactive techniques. New
York, NY, USA: ACM Press/Addison-Wesley Publishing Co., 2000, pp.
297–306.

[11] C. Buehler, M. Bosse, L. McMillan, S. Gortler, and M. Cohen, “Unstruc-
tured lumigraph rendering,” inSIGGRAPH ’01: Proceedings of the 28th
annual conference on Computer graphics and interactive techniques.
New York, NY, USA: ACM Press, 2001, pp. 425–432.

[12] T. Kanade, P. Narayanan, and P. Rander, “Virtualized reality: Concepts
and early results,” inIEEE Workshop on the Representation of Visual
Scenes, June 1995, pp. 69 – 76.

[13] P. Rander, P. Narayanan, and T. Kanade, “Virtualized reality: Construct-
ing time-varying virtual worlds from real events,” inProceedings of
IEEE Visualization ’97, October 1997, pp. 277–283.

[14] T. Naemura, J. Tago, and H. Harashima, “Real-time video-based mod-
eling and rendering of 3d scenes,” inIEEE Computer Graphics and
Applications, vol. 22, no. 2, March 2002, pp. 66–73.

[15] C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski,
“High-quality video view interpolation using a layered representation,”
ACM Trans. Graph., vol. 23, no. 3, pp. 600–608, 2004.

[16] P. Debevec, Y. Yu, and G. Boshokov, “Efficient view-dependent image-
based rendering with projective texture-mapping,” Berkeley, CA, USA,
Tech. Rep., 1998.

[17] D. Devarajan and R. Radke, “A distributed metric calibration of large
camera networks,” inBroadnets 2004, 2004.

[18] R. Swaminathan and S. Nayar, “Nonmetric calibration of wide-angle
lenses and polycameras,”PAMI, vol. 22, no. 10, pp. 1172–1178”,
October 2000.

[19] Z. Zhang, “Flexible camera calibration by viewing a plane from un-
known orientations.” inICCV, 1999, pp. 666–673.

[20] P. Baker and Y. Aloimonos, “Calibration of a multicamera network,” in
IEEE Workshop on Omnidirectional Vision, 2003.


